Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Two-Enzyme Pathway Links l-Arginine to Nitric Oxide in N-Nitroso Biosynthesis
My Activity

Figure 1Loading Img
    Article

    Two-Enzyme Pathway Links l-Arginine to Nitric Oxide in N-Nitroso Biosynthesis
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2019, 141, 9, 4026–4033
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.8b13049
    Published February 14, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Nitric oxide (NO) has wide-ranging roles in biology, but less is known about its role in building chemical diversity. Here we report a new route to NO from the biosynthetic pathway to the N-nitroso compound streptozocin. We show that the N-nitroso group of streptozocin comes from the biosynthetic reassembly of l-arginine, with the guanidino nitrogens forming a nitrogen–nitrogen bond. To understand this biosynthetic process, we identify the biosynthetic gene cluster of streptozocin and demonstrate that free l-arginine is N-methylated by StzE to give Nω-monomethyl-l-arginine. We show that this product is then oxidized by StzF, a nonheme iron-dependent enzyme unrelated to known nitric oxide synthases, generating a urea compound and NO. Our work implies that formation and capture of NO is the likely route to N-nitroso formation in vivo. Altogether, our work unveils a new enzyme pair for the production of NO from l-arginine and sets the stage for understanding biosynthetic routes to N-nitroso natural products.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b13049.

    • Experimental methods, Table S1–S6, and Figures S1–S34 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 60 publications.

    1. Ziyang Zheng, Jon Clardy, Hung-wen Liu. Biosynthesis of the Unusual Epoxy Isonitrile-Containing Antibiotics Aerocyanidin and Amycomicin. Journal of the American Chemical Society 2024, 146 (30) , 21061-21068. https://doi.org/10.1021/jacs.4c06411
    2. Anne Marie Crooke, Anika K. Chand, Zheng Cui, Emily P. Balskus. Elucidation of Chalkophomycin Biosynthesis Reveals N-Hydroxypyrrole-Forming Enzymes. Journal of the American Chemical Society 2024, 146 (23) , 16268-16280. https://doi.org/10.1021/jacs.4c04712
    3. Jingkun Shi, Xin Zang, Zhijie Zhao, Zhuanglin Shen, Wei Li, Guiyun Zhao, Jiahai Zhou, Yi-Ling Du. Conserved Enzymatic Cascade for Bacterial Azoxy Biosynthesis. Journal of the American Chemical Society 2023, 145 (49) , 27131-27139. https://doi.org/10.1021/jacs.3c12018
    4. Han N. Phan, Olivia M. Manley, Sydney S. Skirboll, Lide Cha, Dalton Hilovsky, Wei-chen Chang, Peter M. Thompson, Xiaojing Liu, Thomas M. Makris. Excision of a Protein-Derived Amine for p-Aminobenzoate Assembly by the Self-Sacrificial Heterobimetallic Protein CADD. Biochemistry 2023, 62 (22) , 3276-3282. https://doi.org/10.1021/acs.biochem.3c00406
    5. Menghua Wang, Katherine S. Ryan. Reductases Produce Nitric Oxide in an Alternative Pathway to Form the Diazeniumdiolate Group of l-Alanosine. Journal of the American Chemical Society 2023, 145 (30) , 16718-16725. https://doi.org/10.1021/jacs.3c04447
    6. Christina Makris, Jamie K. Leckrone, Alison Butler. Tistrellabactins A and B Are Photoreactive C-Diazeniumdiolate Siderophores from the Marine-Derived Strain Tistrella mobilis KA081020-065. Journal of Natural Products 2023, 86 (7) , 1770-1778. https://doi.org/10.1021/acs.jnatprod.3c00230
    7. Richiro Ushimaru, Ikuro Abe. Unusual Dioxygen-Dependent Reactions Catalyzed by Nonheme Iron Enzymes in Natural Product Biosynthesis. ACS Catalysis 2023, 13 (2) , 1045-1076. https://doi.org/10.1021/acscatal.2c05247
    8. Yijing Wang, Lihua Dong, Hao Su, Yongjun Liu. Dioxygen Activation and Nδ,Nε-Dihydroxylation Mechanism Involved in the Formation of N-Nitrosourea Pharmacophore in Streptozotocin Catalyzed by Nonheme Diiron Enzyme SznF. Inorganic Chemistry 2022, 61 (39) , 15721-15734. https://doi.org/10.1021/acs.inorgchem.2c02814
    9. Kenichi Matsuda, Kuga Arima, Satoko Akiyama, Yuito Yamada, Yo Abe, Hikaru Suenaga, Junko Hashimoto, Kazuo Shin-ya, Makoto Nishiyama, Toshiyuki Wakimoto. A Natural Dihydropyridazinone Scaffold Generated from a Unique Substrate for a Hydrazine-Forming Enzyme. Journal of the American Chemical Society 2022, 144 (28) , 12954-12960. https://doi.org/10.1021/jacs.2c05269
    10. Molly J. McBride, Mrutyunjay A. Nair, Debangsu Sil, Jeffrey W. Slater, Monica E. Neugebauer, Michelle C. Y. Chang, Amie K. Boal, Carsten Krebs, J. Martin Bollinger, Jr.. Substrate-Triggered μ-Peroxodiiron(III) Intermediate in the 4-Chloro-l-Lysine-Fragmenting Heme-Oxygenase-like Diiron Oxidase (HDO) BesC: Substrate Dissociation from, and C4 Targeting by, the Intermediate. Biochemistry 2022, 61 (8) , 689-702. https://doi.org/10.1021/acs.biochem.1c00774
    11. Nicolai Lehnert, Eunsuk Kim, Hai T. Dong, Jill B. Harland, Andrew P. Hunt, Elizabeth C. Manickas, Kady M. Oakley, John Pham, Garrett C. Reed, Victor Sosa Alfaro. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chemical Reviews 2021, 121 (24) , 14682-14905. https://doi.org/10.1021/acs.chemrev.1c00253
    12. Shotaro Shimo, Richiro Ushimaru, Alicia Engelbrecht, Mei Harada, Kazunori Miyamoto, Andreas Kulik, Masanobu Uchiyama, Leonard Kaysser, Ikuro Abe. Stereodivergent Nitrocyclopropane Formation during Biosynthesis of Belactosins and Hormaomycins. Journal of the American Chemical Society 2021, 143 (44) , 18413-18418. https://doi.org/10.1021/jacs.1c10201
    13. Junkai Wang, Xixi Wang, Qingwen Ouyang, Wei Liu, Jiankai Shan, Hongwei Tan, Xichen Li, Guangju Chen. N-Nitrosation Mechanism Catalyzed by Non-heme Iron-Containing Enzyme SznF Involving Intramolecular Oxidative Rearrangement. Inorganic Chemistry 2021, 60 (11) , 7719-7731. https://doi.org/10.1021/acs.inorgchem.1c00057
    14. Linyue Chen, Zixin Deng, Changming Zhao. Nitrogen–Nitrogen Bond Formation Reactions Involved in Natural Product Biosynthesis. ACS Chemical Biology 2021, 16 (4) , 559-570. https://doi.org/10.1021/acschembio.1c00052
    15. Huayu Wu, Dan Zhong, Zhijun Zhang, Yahui Wu, Yunkun Li, Hongli Mao, Kui Luo, Deling Kong, Qiyong Gong, Zhongwei Gu. A Bacteria-Inspired Morphology Genetic Biomedical Material: Self-Propelled Artificial Microbots for Metastatic Triple Negative Breast Cancer Treatment. ACS Nano 2021, 15 (3) , 4845-4860. https://doi.org/10.1021/acsnano.0c09594
    16. Molly J. McBride, Debangsu Sil, Tai L. Ng, Anne Marie Crooke, Grace E. Kenney, Christina R. Tysoe, Bo Zhang, Emily P. Balskus, Amie K. Boal, Carsten Krebs, J. Martin Bollinger, Jr.. A Peroxodiiron(III/III) Intermediate Mediating Both N-Hydroxylation Steps in Biosynthesis of the N-Nitrosourea Pharmacophore of Streptozotocin by the Multi-domain Metalloenzyme SznF. Journal of the American Chemical Society 2020, 142 (27) , 11818-11828. https://doi.org/10.1021/jacs.0c03431
    17. Jason B. Hedges, Katherine S. Ryan. Biosynthetic Pathways to Nonproteinogenic α-Amino Acids. Chemical Reviews 2020, 120 (6) , 3161-3209. https://doi.org/10.1021/acs.chemrev.9b00408
    18. Nicolai Lehnert, Kiyoshi Fujisawa, Stephanie Camarena, Hai T. Dong, Corey J. White. Activation of Non-Heme Iron-Nitrosyl Complexes: Turning Up the Heat. ACS Catalysis 2019, 9 (11) , 10499-10518. https://doi.org/10.1021/acscatal.9b03219
    19. Kenichi Matsuda, Toshiyuki Wakimoto. Bacterial Hydrazine Biosynthetic Pathways Featuring Cupin/Methionyl tRNA Synthetase‐like Enzymes. ChemBioChem 2024, 25 (9) https://doi.org/10.1002/cbic.202300874
    20. Kun Gao, Zhenyu Huang, Weiji Yu, Yihong Wu, Weidong Liu, Shufen Sun, Yong Zhang, Dayu Chen. Therapeutic mechanisms of modified Jiawei Juanbi decoction in early knee osteoarthritis: A multimodal analysis. Heliyon 2024, 10 (10) , e30828. https://doi.org/10.1016/j.heliyon.2024.e30828
    21. Kenichi Matsuda, Yuto Nakahara, Atina Rizkiya Choirunnisa, Kuga Arima, Toshiyuki Wakimoto. Phylogeny‐guided Characterization of Bacterial Hydrazine Biosynthesis Mediated by Cupin/methionyl tRNA Synthetase‐like Enzymes. ChemBioChem 2024, 25 (7) https://doi.org/10.1002/cbic.202300838
    22. Anne Marie Crooke, Anika K. Chand, Zheng Cui, Emily P. Balskus. Elucidation of chalkophomycin biosynthesis reveals N -hydroxypyrrole-forming enzymes. 2024https://doi.org/10.1101/2024.01.24.577118
    23. Ziyang Zheng, Jin Xiong, Junling Bu, Daan Ren, Yu‐Hsuan Lee, Yu‐Cheng Yeh, Chia‐I Lin, Ronald Parry, Yisong Guo, Hung‐wen Liu. Reconstitution of the Final Steps in the Biosynthesis of Valanimycin Reveals the Origin of Its Characteristic Azoxy Moiety. Angewandte Chemie International Edition 2024, 63 (1) https://doi.org/10.1002/anie.202315844
    24. Ziyang Zheng, Jin Xiong, Junling Bu, Daan Ren, Yu‐Hsuan Lee, Yu‐Cheng Yeh, Chia‐I Lin, Ronald Parry, Yisong Guo, Hung‐wen Liu. Reconstitution of the Final Steps in the Biosynthesis of Valanimycin Reveals the Origin of Its Characteristic Azoxy Moiety. Angewandte Chemie 2024, 136 (1) https://doi.org/10.1002/ange.202315844
    25. Xiangan Gong, Qian Zhao, Huimin Zhang, Rui Liu, Jie Wu, Nanxin Zhang, Yuanxian Zou, Wen Zhao, Ran Huo, Rongtao Cui. The Effects of Mesenchymal Stem Cells-Derived Exosomes on Metabolic Reprogramming in Scar Formation and Wound Healing. International Journal of Nanomedicine 2024, Volume 19 , 9871-9887. https://doi.org/10.2147/IJN.S480901
    26. Hao Li, Jian-Wen Huang, Longhai Dai, Haibin Zheng, Si Dai, Qishan Zhang, Licheng Yao, Yunyun Yang, Yu Yang, Jian Min, Rey-Ting Guo, Chun-Chi Chen. The structural and functional investigation into an unusual nitrile synthase. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-43285-0
    27. Yusuke Shikai, Seiji Kawai, Yohei Katsuyama, Yasuo Ohnishi. In vitro characterization of nonribosomal peptide synthetase-dependent O -(2-hydrazineylideneacetyl)serine synthesis indicates a stepwise oxidation strategy to generate the α-diazo ester moiety of azaserine. Chemical Science 2023, 14 (33) , 8766-8776. https://doi.org/10.1039/D3SC01906C
    28. Yujiao Bai, Jiansong Miao, Xiaodi Bian, Qian Wang, Wenqing Gao, Yu Xue, Guihua Yang, Peihua Zhu, Jinghua Yu. In situ growth of a cobalt porphyrin-based covalent organic framework on multi-walled carbon nanotubes for ultrasensitive real-time monitoring of living cell-released nitric oxide. The Analyst 2023, 148 (17) , 4219-4226. https://doi.org/10.1039/D3AN00947E
    29. Yutong Yang, Meng Li, Guoying Pan, Jueying Chen, Baolin Guo. Multiple Stimuli‐Responsive Nanozyme‐Based Cryogels with Controlled NO Release as Self‐Adaptive Wound Dressing for Infected Wound Healing. Advanced Functional Materials 2023, 33 (31) https://doi.org/10.1002/adfm.202214089
    30. Xueting Yang, Xin Cao, Ye Fu, Jun Lu, Xiaotong Ma, Ran Li, Shanyue Guan, Shuyun Zhou, Xiaozhong Qu. Layered double hydroxide-based nanozyme for NO-boost multi-enzyme dynamic therapy with tumor specificity. Journal of Materials Chemistry B 2023, 11 (7) , 1591-1598. https://doi.org/10.1039/D2TB02718F
    31. Ram P. Das, Beena G. Singh, J. Aishwarya, Liladhar B. Kumbhare, Amit Kunwar. 3,3′-Diselenodipropionic acid immobilised gelatin gel: a biomimic catalytic nitric oxide generating material for topical wound healing application. Biomaterials Science 2023, 11 (4) , 1437-1450. https://doi.org/10.1039/D2BM01964G
    32. Rowan Wooldridge, Spenser Stone, Andrew Pedraza, W. Keith Ray, Richard F. Helm, Kylie D. Allen. The Chlamydia trachomatis p ‐aminobenzoate synthase CADD is a manganese‐dependent oxygenase that uses its own amino acid residues as substrates. FEBS Letters 2023, 597 (4) , 557-572. https://doi.org/10.1002/1873-3468.14573
    33. Wei Liu, Zhen Lu, Shan Yuan, Xinglin Jiang, Mo Xian. Identification and mechanistic analysis of a bifunctional enzyme involved in the C-N and N-N bond formation. Biochemical and Biophysical Research Communications 2022, 635 , 154-160. https://doi.org/10.1016/j.bbrc.2022.10.039
    34. Olivia M. Manley, Han N. Phan, Allison K. Stewart, Dontae A. Mosley, Shan Xue, Lide Cha, Hongxia Bai, Veda C. Lightfoot, Pierson A. Rucker, Leonard Collins, Taufika Islam Williams, Wei-Chen Chang, Yisong Guo, Thomas M. Makris. Self-sacrificial tyrosine cleavage by an Fe:Mn oxygenase for the biosynthesis of para -aminobenzoate in Chlamydia trachomatis. Proceedings of the National Academy of Sciences 2022, 119 (39) https://doi.org/10.1073/pnas.2210908119
    35. Hai-Yan He, Haruka Niikura, Yi-Ling Du, Katherine S. Ryan. Synthetic and biosynthetic routes to nitrogen–nitrogen bonds. Chemical Society Reviews 2022, 51 (8) , 2991-3046. https://doi.org/10.1039/C7CS00458C
    36. Linlin Pang, Weijing Niu, Yuwei Duan, Liujie Huo, Aiying Li, Jiequn Wu, Youming Zhang, Xiaoying Bian, Guannan Zhong. In vitro characterization of a nitro-forming oxygenase involved in 3-(trans-2’-aminocyclopropyl)alanine biosynthesis. Engineering Microbiology 2022, 2 (1) , 100007. https://doi.org/10.1016/j.engmic.2021.100007
    37. Xiaojun Li, Ryo Shimaya, Tohru Dairi, Wei‐chen Chang, Yasushi Ogasawara. Identification of Cyclopropane Formation in the Biosyntheses of Hormaomycins and Belactosins: Sequential Nitration and Cyclopropanation by Metalloenzymes. Angewandte Chemie 2022, 134 (7) https://doi.org/10.1002/ange.202113189
    38. Xiaojun Li, Ryo Shimaya, Tohru Dairi, Wei‐chen Chang, Yasushi Ogasawara. Identification of Cyclopropane Formation in the Biosyntheses of Hormaomycins and Belactosins: Sequential Nitration and Cyclopropanation by Metalloenzymes. Angewandte Chemie International Edition 2022, 61 (7) https://doi.org/10.1002/anie.202113189
    39. Yuhong Yang, Jian Yang, Hongling Wang, Yusong Jin, Jing Liu, Ranran Jia, Zhuo Wang, Zongli Kang. Analysis of primary metabolites of Morchella fruit bodies and mycelium based on widely targeted metabolomics. Archives of Microbiology 2022, 204 (1) https://doi.org/10.1007/s00203-021-02612-z
    40. Guiyun Zhao, Wei Peng, Kaihui Song, Jingkun Shi, Xingyu Lu, Binju Wang, Yi-Ling Du. Molecular basis of enzymatic nitrogen-nitrogen formation by a family of zinc-binding cupin enzymes. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-27523-x
    41. Matías L. Nóbile, Abigail M. Stricker, Lucas Marchesano, Adolfo M. Iribarren, Elizabeth S. Lewkowicz. N-oxygenation of amino compounds: Early stages in its application to the biocatalyzed preparation of bioactive compounds. Biotechnology Advances 2021, 51 , 107726. https://doi.org/10.1016/j.biotechadv.2021.107726
    42. Molly J McBride, Amie K Boal. SznF, a Metalloenzyme Employed in the Biosynthesis of Streptozotocin. 2021, 1-11. https://doi.org/10.1002/9781119951438.eibc2775
    43. Hui Yang, Shi-Lu Chen. Enzymatic N N bond formation: Mechanism for the N-nitroso synthesis catalyzed by non-heme iron SznF enzyme. Journal of Catalysis 2021, 398 , 44-53. https://doi.org/10.1016/j.jcat.2021.04.010
    44. Hai-Yan He, Katherine S. Ryan. Glycine-derived nitronates bifurcate to O-methylation or denitrification in bacteria. Nature Chemistry 2021, 13 (6) , 599-606. https://doi.org/10.1038/s41557-021-00656-8
    45. Takayoshi Awakawa. Engineered Biosynthesis of Pharmaceutically Important Compounds. Chemical and Pharmaceutical Bulletin 2021, 69 (5) , 415-420. https://doi.org/10.1248/cpb.c21-00032
    46. Roberto G. S. Berlinck, Darlon I. Bernardi, Taicia Fill, Alessandra A. G. Fernandes, Igor D. Jurberg. The chemistry and biology of guanidine secondary metabolites. Natural Product Reports 2021, 38 (3) , 586-667. https://doi.org/10.1039/D0NP00051E
    47. Tzu‐Yu Chen, Jinfeng Chen, Yijie Tang, Jiahai Zhou, Yisong Guo, Wei‐chen Chang. Current Understanding toward Isonitrile Group Biosynthesis and Mechanism. Chinese Journal of Chemistry 2021, 39 (2) , 463-472. https://doi.org/10.1002/cjoc.202000448
    48. Molly J. McBride, Sarah R. Pope, Kai Hu, C. Denise Okafor, Emily P. Balskus, J. Martin Bollinger, Amie K. Boal. Structure and assembly of the diiron cofactor in the heme-oxygenase–like domain of the N -nitrosourea–producing enzyme SznF. Proceedings of the National Academy of Sciences 2021, 118 (4) https://doi.org/10.1073/pnas.2015931118
    49. Yohei Katsuyama, Kenichi Matsuda. Recent advance in the biosynthesis of nitrogen–nitrogen bond–containing natural products. Current Opinion in Chemical Biology 2020, 59 , 62-68. https://doi.org/10.1016/j.cbpa.2020.05.002
    50. Guiyun Zhao, Yuan-Yang Guo, Shunyu Yao, Xinjie Shi, Longxian Lv, Yi-Ling Du. Nitric oxide as a source for bacterial triazole biosynthesis. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-15420-8
    51. Feifei Hou, Yupeng Wan, Qi Gan, Mo Xian, Wei Huang. Identification of 8-Azaguanine Biosynthesis–Related Genes Provides Insight Into the Enzymatic and Non-enzymatic Biosynthetic Pathway for 1,2,3-Triazole. Frontiers in Bioengineering and Biotechnology 2020, 8 https://doi.org/10.3389/fbioe.2020.603514
    52. Tzu‐Yu Chen, Jinfeng Chen, Yijie Tang, Jiahai Zhou, Yisong Guo, Wei‐chen Chang. Pathway from N‐Alkylglycine to Alkylisonitrile Catalyzed by Iron(II) and 2‐Oxoglutarate‐Dependent Oxygenases. Angewandte Chemie 2020, 132 (19) , 7437-7441. https://doi.org/10.1002/ange.201914896
    53. Tzu‐Yu Chen, Jinfeng Chen, Yijie Tang, Jiahai Zhou, Yisong Guo, Wei‐chen Chang. Pathway from N‐Alkylglycine to Alkylisonitrile Catalyzed by Iron(II) and 2‐Oxoglutarate‐Dependent Oxygenases. Angewandte Chemie International Edition 2020, 59 (19) , 7367-7371. https://doi.org/10.1002/anie.201914896
    54. Tai L. Ng, Monica E. McCallum, Christine R. Zheng, Jennifer X. Wang, Kelvin J. Y. Wu, Emily P. Balskus. The l ‐Alanosine Gene Cluster Encodes a Pathway for Diazeniumdiolate Biosynthesis. ChemBioChem 2020, 21 (8) , 1155-1160. https://doi.org/10.1002/cbic.201900565
    55. Menghua Wang, Haruka Niikura, Hai‐Yan He, Phillip Daniel‐Ivad, Katherine S. Ryan. Biosynthesis of the N–N‐Bond‐Containing Compound l ‐Alanosine. Angewandte Chemie 2020, 132 (10) , 3909-3913. https://doi.org/10.1002/ange.201913458
    56. Menghua Wang, Haruka Niikura, Hai‐Yan He, Phillip Daniel‐Ivad, Katherine S. Ryan. Biosynthesis of the N–N‐Bond‐Containing Compound l ‐Alanosine. Angewandte Chemie International Edition 2020, 59 (10) , 3881-3885. https://doi.org/10.1002/anie.201913458
    57. Guiyun Zhao, Shunyu Yao, Kristina W. Rothchild, Tengfei Liu, Yu Liu, Jiazhang Lian, Hai‐Yan He, Katherine S. Ryan, Yi‐Ling Du. The Biosynthetic Gene Cluster of Pyrazomycin—A C‐Nucleoside Antibiotic with a Rare Pyrazole Moiety. ChemBioChem 2020, 21 (5) , 644-649. https://doi.org/10.1002/cbic.201900449
    58. Jiawei Zhang, Po-Hsun Fan, Geng-Min Lin, Wei-Chen Chang, Hung-wen Liu. Recent Progress in Unusual Carbohydrate-Containing Natural Products Biosynthesis. 2020, 336-392. https://doi.org/10.1016/B978-0-12-409547-2.14698-0
    59. Jason B. Hedges, Katherine S. Ryan. In vitro Reconstitution of the Biosynthetic Pathway to the Nitroimidazole Antibiotic Azomycin. Angewandte Chemie 2019, 131 (34) , 11773-11777. https://doi.org/10.1002/ange.201903500
    60. Jason B. Hedges, Katherine S. Ryan. In vitro Reconstitution of the Biosynthetic Pathway to the Nitroimidazole Antibiotic Azomycin. Angewandte Chemie International Edition 2019, 58 (34) , 11647-11651. https://doi.org/10.1002/anie.201903500
    61. Robert A. Hill, Andrew Sutherland. Hot off the Press. Natural Product Reports 2019, 36 (6) , 850-854. https://doi.org/10.1039/C9NP90019E

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2019, 141, 9, 4026–4033
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.8b13049
    Published February 14, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    4745

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.