ACS Publications. Most Trusted. Most Cited. Most Read
Assessing Lysine and Cysteine Reactivities for Designing Targeted Covalent Kinase Inhibitors
My Activity

Figure 1Loading Img
    Article

    Assessing Lysine and Cysteine Reactivities for Designing Targeted Covalent Kinase Inhibitors
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2019, 141, 16, 6553–6560
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.8b13248
    Published April 4, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Targeted covalent inhibitor design is gaining increasing interest and acceptance. A typical covalent kinase inhibitor design targets a reactive cysteine; however, this strategy is limited by the low abundance of cysteine and acquired drug resistance from point mutations. Inspired by the recent development of lysine-targeted chemical probes, we asked if nucleophilic (reactive) catalytic lysines are common on the basis of the published crystal structures of the human kinome. Using a newly developed pKa prediction tool based on continuous constant pH molecular dynamics, the catalytic lysines of eight unique kinases from various human kinase groups were retrospectively and prospectively predicted to be nucleophilic, when kinase is in the rare DFG-out/αC-out type of conformation. Importantly, other reactive lysines as well as cysteines at various locations were also identified. On the basis of the findings, we proposed a new strategy in which selective type II reversible kinase inhibitors are modified to design highly selective, lysine-targeted covalent inhibitors. Traditional covalent drugs were discovered serendipitously; the presented tool, which can assess the reactivities of any potentially targetable residues, may accelerate the rational discovery of new covalent inhibitors. Another significant finding of the work is that lysines and cysteines in kinases may adopt neutral and charged states at physiological pH, respectively. This finding may shift the current paradigm of computational studies of kinases, which assume fixed solution protonation states.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b13248.

    • Calculated and experimental pKa’s and data from modeling simulations (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 100 publications.

    1. Qing-Sheng Zhao, Shu Yang, Ting-Ting Guo, Jian-Bo Ma, Xiao-Hong Cheng, Sheng-Jiao Yan. Pyridyloxy-Directed, Pd(II)-Catalyzed Late-Stage C(sp2)–H Alkynylation and Olefination of Tyrosine Oligopeptides. The Journal of Organic Chemistry 2025, 90 (21) , 6910-6925. https://doi.org/10.1021/acs.joc.5c00118
    2. Huan Ling, Lin Li, Liping Duan, Weixue Huang, Jiangnan Zheng, Shijie Zhang, Xinling Li, Xiaorong Qiu, Yang Zhou, Nan Ma, Xiaomei Ren, Jinwei Zhang, Zhen Wang, Yujun Zhao, Ruijun Tian, Zhi-Min Zhang, Ke Ding. O-Cyanobenzaldehydes Irreversibly Modify Both Buried and Exposed Lysine Residues in Live Cells. Journal of the American Chemical Society 2025, 147 (14) , 11955-11963. https://doi.org/10.1021/jacs.4c18006
    3. Marco Paolino, Giusy Tassone, Paolo Governa, Mario Saletti, Matteo Lami, Riccardo Carletti, Filippo Sacchetta, Cecilia Pozzi, Maurizio Orlandini, Fabrizio Manetti, Massimo Olivucci, Andrea Cappelli. Morita–Baylis–Hillman Adduct Chemistry as a Tool for the Design of Lysine-Targeted Covalent Ligands. ACS Medicinal Chemistry Letters 2025, 16 (3) , 397-405. https://doi.org/10.1021/acsmedchemlett.4c00479
    4. Mingzhe Shen, Daniel Kortzak, Simon Ambrozak, Shubham Bhatnagar, Ian Buchanan, Ruibin Liu, Jana Shen. KaMLs for Predicting Protein pKa Values and Ionization States: Are Trees All You Need?. Journal of Chemical Theory and Computation 2025, 21 (3) , 1446-1458. https://doi.org/10.1021/acs.jctc.4c01602
    5. Bryn Marie Reimer, Ernest Awoonor-Williams, Andrei A. Golosov, Viktor Hornak. CovCysPredictor: Predicting Selective Covalently Modifiable Cysteines Using Protein Structure and Interpretable Machine Learning. Journal of Chemical Information and Modeling 2025, 65 (2) , 544-553. https://doi.org/10.1021/acs.jcim.4c01281
    6. Bo Yuan, Yifan Feng, Mengyan Ma, Weiming Duan, Yujie Wu, Jiaxin Liu, Hong-Yi Zhao, Zhe Yang, San-Qi Zhang, Minhang Xin. Lysine-Targeted Covalent Inhibitors of PI3Kδ Synthesis and Screening by In Situ Interaction Upgradation. Journal of Medicinal Chemistry 2024, 67 (22) , 20076-20099. https://doi.org/10.1021/acs.jmedchem.4c01284
    7. Giulia Alboreggia, Parima Udompholkul, Emma L. Atienza, Kendall Muzzarelli, Zahra Assar, Maurizio Pellecchia. Covalent Targeting of Histidine Residues with Aryl Fluorosulfates: Application to Mcl-1 BH3 Mimetics. Journal of Medicinal Chemistry 2024, 67 (22) , 20214-20223. https://doi.org/10.1021/acs.jmedchem.4c01541
    8. Skye B. Brettell, Omar Janha, Abbey Begen, Gillian Cann, Saumya Sharma, Niniola Olaniyan, Tamas Yelland, Alison J. Hole, Benazir Alam, Emily Mayville, Ross Gillespie, Michael Capper, David A. Fidock, Graeme Milligan, David J. Clarke, Andrew B. Tobin, Andrew G. Jamieson. Targeting PfCLK3 with Covalent Inhibitors: A Novel Strategy for Malaria Treatment. Journal of Medicinal Chemistry 2024, 67 (21) , 18895-18910. https://doi.org/10.1021/acs.jmedchem.4c01300
    9. Guanghui Tang, Xuan Wang, Huisi Huang, Manyi Xu, Xingyu Ma, Fengfei Miao, Xiaoyun Lu, Chong-Jing Zhang, Liqian Gao, Zhi-Min Zhang, Shao Q. Yao. Small Molecule-Induced Post-Translational Acetylation of Catalytic Lysine of Kinases in Mammalian Cells. Journal of the American Chemical Society 2024, 146 (34) , 23978-23988. https://doi.org/10.1021/jacs.4c07181
    10. Shuhua Ma, Heeral Patel, Craig A. Peeples, Jana Shen. QM/MM Simulations of Afatinib-EGFR Addition: The Role of β-Dimethylaminomethyl Substitution. Journal of Chemical Theory and Computation 2024, 20 (13) , 5528-5538. https://doi.org/10.1021/acs.jctc.4c00290
    11. Laura Hillebrand, Xiaojun Julia Liang, Ricardo A. M. Serafim, Matthias Gehringer. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. Journal of Medicinal Chemistry 2024, 67 (10) , 7668-7758. https://doi.org/10.1021/acs.jmedchem.3c01825
    12. Giulia Alboreggia, Parima Udompholkul, Carlo Baggio, Kendall Muzzarelli, Zahra Assar, Maurizio Pellecchia. Histidine-Covalent Stapled Alpha-Helical Peptides Targeting hMcl-1. Journal of Medicinal Chemistry 2024, 67 (10) , 8172-8185. https://doi.org/10.1021/acs.jmedchem.4c00277
    13. Ruibin Liu, Joseph Clayton, Mingzhe Shen, Shubham Bhatnagar, Jana Shen. Machine Learning Models to Interrogate Proteome-Wide Covalent Ligandabilities Directed at Cysteines. JACS Au 2024, 4 (4) , 1374-1384. https://doi.org/10.1021/jacsau.3c00749
    14. Valerie Vaissier Welborn. Understanding Cysteine Reactivity in Protein Environments with Electric Fields. The Journal of Physical Chemistry B 2023, 127 (46) , 9936-9942. https://doi.org/10.1021/acs.jpcb.3c05749
    15. Sophia S. Puliasis, Dominika Lewandowska, Piers A. Hemsley, Runxuan Zhang. ProtView: A Versatile Tool for In Silico Protease Evaluation and Selection in a Proteomic and Proteogenomic Context. Journal of Proteome Research 2023, 22 (7) , 2400-2410. https://doi.org/10.1021/acs.jproteome.3c00135
    16. Parima Udompholkul, Ana Garza-Granados, Giulia Alboreggia, Carlo Baggio, Jack McGuire, Scott D. Pegan, Maurizio Pellecchia. Characterization of a Potent and Orally Bioavailable Lys-Covalent Inhibitor of Apoptosis Protein (IAP) Antagonist. Journal of Medicinal Chemistry 2023, 66 (12) , 8159-8169. https://doi.org/10.1021/acs.jmedchem.3c00467
    17. Yang Zhou, Hang Yu, Anna Constance Vind, Lulu Kong, Yiling Liu, Xiaojuan Song, Zhengchao Tu, Caihong Yun, Jeff B. Smaill, Qing-Wen Zhang, Ke Ding, Simon Bekker-Jensen, Xiaoyun Lu. Rational Design of Covalent Kinase Inhibitors by an Integrated Computational Workflow (Kin-Cov). Journal of Medicinal Chemistry 2023, 66 (11) , 7405-7420. https://doi.org/10.1021/acs.jmedchem.3c00088
    18. Zhitao Cai, Tengzi Liu, Qiaoling Lin, Jiahao He, Xiaowei Lei, Fangfang Luo, Yandong Huang. Basis for Accurate Protein pKa Prediction with Machine Learning. Journal of Chemical Information and Modeling 2023, 63 (10) , 2936-2947. https://doi.org/10.1021/acs.jcim.3c00254
    19. Aarion Romany, Ruibin Liu, Shaoqi Zhan, Joseph Clayton, Jana Shen. Analysis of the ERK Pathway Cysteinome for Targeted Covalent Inhibition of RAF and MEK Kinases. Journal of Chemical Information and Modeling 2023, 63 (8) , 2483-2494. https://doi.org/10.1021/acs.jcim.3c00014
    20. Kemel Arafet, Laura Scalvini, Francesca Galvani, Sergio Martí, Vicent Moliner, Marco Mor, Alessio Lodola. Mechanistic Modeling of Lys745 Sulfonylation in EGFR C797S Reveals Chemical Determinants for Inhibitor Activity and Discriminates Reversible from Irreversible Agents. Journal of Chemical Information and Modeling 2023, 63 (4) , 1301-1312. https://doi.org/10.1021/acs.jcim.2c01586
    21. Peng Chen, Guanghui Tang, Chengjun Zhu, Jie Sun, Xuan Wang, Menghua Xiang, Huisi Huang, Wei Wang, Lin Li, Zhi-Min Zhang, Liqian Gao, Shao Q. Yao. 2-Ethynylbenzaldehyde-Based, Lysine-Targeting Irreversible Covalent Inhibitors for Protein Kinases and Nonkinases. Journal of the American Chemical Society 2023, 145 (7) , 3844-3849. https://doi.org/10.1021/jacs.2c11595
    22. Volkan Fındık, Betül Tuba Varınca Gerçik, Öykü Sinek, Safiye Sağ Erdem, Manuel F. Ruiz-López. Mechanistic Investigation of Lysine-Targeted Covalent Inhibition of PI3Kδ via ONIOM QM:QM Computations. Journal of Chemical Information and Modeling 2022, 62 (24) , 6775-6787. https://doi.org/10.1021/acs.jcim.2c00569
    23. Julie A. Harris, Ruibin Liu, Vinicius Martins de Oliveira, Erik Antonio Vázquez-Montelongo, Jack A. Henderson, Jana Shen. GPU-Accelerated All-Atom Particle-Mesh Ewald Continuous Constant pH Molecular Dynamics in Amber. Journal of Chemical Theory and Computation 2022, 18 (12) , 7510-7527. https://doi.org/10.1021/acs.jctc.2c00586
    24. Tanel Sõrmus, Darja Lavogina, Anu Teearu, Erki Enkvist, Asko Uri, Kaido Viht. Construction of Covalent Bisubstrate Inhibitor of Protein Kinase Reacting with Cysteine Residue at Substrate-Binding Site. Journal of Medicinal Chemistry 2022, 65 (16) , 10975-10991. https://doi.org/10.1021/acs.jmedchem.2c00067
    25. Daniel F. Earley, Amaury Guillou, Simon Klingler, Rachael Fay, Melanie Gut, Faustine d’Orchymont, Shamisa Behmaneshfar, Linus Reichert, Jason P. Holland. Charting the Chemical and Mechanistic Scope of Light-Triggered Protein Ligation. JACS Au 2022, 2 (3) , 646-664. https://doi.org/10.1021/jacsau.1c00530
    26. Ruibin Liu, Shaoqi Zhan, Ye Che, Jana Shen. Reactivities of the Front Pocket N-Terminal Cap Cysteines in Human Kinases. Journal of Medicinal Chemistry 2022, 65 (2) , 1525-1535. https://doi.org/10.1021/acs.jmedchem.1c01186
    27. Amaury Guillou, Eda Nisli, Simon Klingler, Anthony Linden, Jason P. Holland. Photoactivatable Fluorescent Tags for Dual-Modality Positron Emission Tomography Optical Imaging. Journal of Medicinal Chemistry 2022, 65 (1) , 811-823. https://doi.org/10.1021/acs.jmedchem.1c01899
    28. Zhitao Cai, Fangfang Luo, Yongxian Wang, Enling Li, Yandong Huang. Protein pKa Prediction with Machine Learning. ACS Omega 2021, 6 (50) , 34823-34831. https://doi.org/10.1021/acsomega.1c05440
    29. Parima Udompholkul, Carlo Baggio, Luca Gambini, Giulia Alboreggia, Maurizio Pellecchia. Lysine Covalent Antagonists of Melanoma Inhibitors of Apoptosis Protein. Journal of Medicinal Chemistry 2021, 64 (21) , 16147-16158. https://doi.org/10.1021/acs.jmedchem.1c01459
    30. Peng Zhang, Zhihui Min, Yang Gao, Jiang Bian, Xin Lin, Jie He, Deyong Ye, Yilin Li, Chao Peng, Yunfeng Cheng, Yong Chu. Discovery of Novel Benzothiazepinones as Irreversible Covalent Glycogen Synthase Kinase 3β Inhibitors for the Treatment of Acute Promyelocytic Leukemia. Journal of Medicinal Chemistry 2021, 64 (11) , 7341-7358. https://doi.org/10.1021/acs.jmedchem.0c02254
    31. Luca Gambini, Parima Udompholkul, Carlo Baggio, Aruljothi Muralidharan, Nikola Kenjić, Zahra Assar, J. Jefferson P. Perry, Maurizio Pellecchia. Design, Synthesis, and Structural Characterization of Lysine Covalent BH3 Peptides Targeting Mcl-1. Journal of Medicinal Chemistry 2021, 64 (8) , 4903-4912. https://doi.org/10.1021/acs.jmedchem.1c00005
    32. Neha Verma, Jack A. Henderson, Jana Shen. Proton-Coupled Conformational Activation of SARS Coronavirus Main Proteases and Opportunity for Designing Small-Molecule Broad-Spectrum Targeted Covalent Inhibitors. Journal of the American Chemical Society 2020, 142 (52) , 21883-21890. https://doi.org/10.1021/jacs.0c10770
    33. Florian Hofer, Johannes Kraml, Ursula Kahler, Anna S. Kamenik, Klaus R. Liedl. Catalytic Site pKa Values of Aspartic, Cysteine, and Serine Proteases: Constant pH MD Simulations. Journal of Chemical Information and Modeling 2020, 60 (6) , 3030-3042. https://doi.org/10.1021/acs.jcim.0c00190
    34. Robert C. Harris, Ruibin Liu, Jana Shen. Predicting Reactive Cysteines with Implicit-Solvent-Based Continuous Constant pH Molecular Dynamics in Amber. Journal of Chemical Theory and Computation 2020, 16 (6) , 3689-3698. https://doi.org/10.1021/acs.jctc.0c00258
    35. Chunlin Zhuang, Fener Chen. Small-Molecule Inhibitors of Necroptosis: Current Status and Perspectives. Journal of Medicinal Chemistry 2020, 63 (4) , 1490-1510. https://doi.org/10.1021/acs.jmedchem.9b01317
    36. Adolfo Cuesta, Xiaobo Wan, Alma L. Burlingame, Jack Taunton. Ligand Conformational Bias Drives Enantioselective Modification of a Surface-Exposed Lysine on Hsp90. Journal of the American Chemical Society 2020, 142 (7) , 3392-3400. https://doi.org/10.1021/jacs.9b09684
    37. Xingye Chen, Haichun Liu, Wuchen Xie, Yan Yang, Yuchen Wang, Yuanrong Fan, Yi Hua, Lu Zhu, Junnan Zhao, Tao Lu, Yadong Chen, Yanmin Zhang. Investigation of Crystal Structures in Structure-Based Virtual Screening for Protein Kinase Inhibitors. Journal of Chemical Information and Modeling 2019, 59 (12) , 5244-5262. https://doi.org/10.1021/acs.jcim.9b00684
    38. Xinyuan Wang, Xiuxuan Wang, Xinghua Pu, Wenchen Pu, Yuqi Wang, Yu Liu, Yanqiu Gong, Xiuxiu Jin, Yong Peng, Lunzhi Dai. An Unbiased Immunoaffinity-Based Strategy for Profiling Covalent Drug Targets In Vivo. Analytical Chemistry 2019, 91 (24) , 15818-15825. https://doi.org/10.1021/acs.analchem.9b04118
    39. Robert C. Harris, Jana Shen. GPU-Accelerated Implementation of Continuous Constant pH Molecular Dynamics in Amber: pKa Predictions with Single-pH Simulations. Journal of Chemical Information and Modeling 2019, 59 (11) , 4821-4832. https://doi.org/10.1021/acs.jcim.9b00754
    40. Carlo Baggio, Parima Udompholkul, Luca Gambini, Ahmed F. Salem, Jennifer Jossart, J. Jefferson P. Perry, Maurizio Pellecchia. Aryl-fluorosulfate-based Lysine Covalent Pan-Inhibitors of Apoptosis Protein (IAP) Antagonists with Cellular Efficacy. Journal of Medicinal Chemistry 2019, 62 (20) , 9188-9200. https://doi.org/10.1021/acs.jmedchem.9b01108
    41. Cheng-Chieh Tsai, Zhi Yue, Jana Shen. How Electrostatic Coupling Enables Conformational Plasticity in a Tyrosine Kinase. Journal of the American Chemical Society 2019, 141 (38) , 15092-15101. https://doi.org/10.1021/jacs.9b06064
    42. Lyn H. Jones. Advances in sulfonyl exchange chemical biology: expanding druggable target space. Chemical Science 2025, 16 (23) , 10119-10140. https://doi.org/10.1039/D5SC02647D
    43. Ti-Ti Ying, Hao-Qiang Hu, Xiao-Wen Wu, Xu-Liang Xu, Jian Lv, Shu-Ning Zhang, Hong Wang, Wei Hou, Bin Wei, Guo-Wu Rao. Optimized ebselen derivatives as novel potent Escherichia coli β-glucuronidase covalent allosteric inhibitors. European Journal of Medicinal Chemistry 2025, 290 , 117571. https://doi.org/10.1016/j.ejmech.2025.117571
    44. Menghua Xiang, Fen Yang, Peng Chen, Jiaoyu Chen, Jianzhong Zhang, Jiayi Yang, Yilin Liu, Qianqian Zhang, Jiang Pi, Peiyan Yuan, Shao Q Yao, Liqian Gao. Tumor microenvironment-responsive self-assembled nanomedicine for reversible covalent targeting of BCR-ABL kinase. Chinese Chemical Letters 2025, 21 , 111423. https://doi.org/10.1016/j.cclet.2025.111423
    45. Changxing Hu, Rui Wang, Yuhao An, Chuan Wan, Feng Yin, Fei Lu, Zigang Li. Sulfonium-Based Activity-Based Probes for Lysine-Selective Protein Profiling under Alkaline Conditions. Synlett 2025, 36 (06) , 729-733. https://doi.org/10.1055/s-0042-1751571
    46. Anna Pawlik, Radosław Drozd, Grzegorz Janusz. Altering the Properties of Laccases from Ensifer meliloti (Sinorhizobium meliloti) and Cerrena unicolor by Chemical Modifications of Proteins. Biomolecules 2025, 15 (4) , 531. https://doi.org/10.3390/biom15040531
    47. Majlen A. Dilweg, Marina Gorostiola González, Martijn D. de Ruiter, Nadine J. Meijboom, Jacobus P. D. van Veldhoven, Rongfang Liu, Willem Jespers, Gerard J. P. van Westen, Laura H. Heitman, Adriaan P. IJzerman, Daan van der Es. Exploring novel dilazep derivatives as hENT1 inhibitors and potentially covalent molecular tools. Purinergic Signalling 2025, 21 (2) , 289-316. https://doi.org/10.1007/s11302-024-10026-x
    48. Sudipta Panja, Johanna Rankenberg, Cole Michel, Grace Cooksley, Marcus A. Glomb, Ram H. Nagaraj. Proximal cysteine residues in proteins promote Nε-carboxyalkylation of lysine residues by α-dicarbonyl compounds. Journal of Biological Chemistry 2025, 301 (4) , 108377. https://doi.org/10.1016/j.jbc.2025.108377
    49. Guiqun Wang, Nico J. Seidler, Sandra Röhm, Yufeng Pan, Xiaojun Julia Liang, Lisa Haarer, Benedict‐Tilman Berger, Saran Aswathaman Sivashanmugam, Valentin R. Wydra, Michael Forster, Stefan A. Laufer, Apirat Chaikuad, Matthias Gehringer, Stefan Knapp. Untersuchung der Adressierbarkeit des Cysteinoms der Proteinkinasen durch Kovalente Fragmente. Angewandte Chemie 2025, 137 (8) https://doi.org/10.1002/ange.202419736
    50. Guiqun Wang, Nico J. Seidler, Sandra Röhm, Yufeng Pan, Xiaojun Julia Liang, Lisa Haarer, Benedict‐Tilman Berger, Saran Aswathaman Sivashanmugam, Valentin R. Wydra, Michael Forster, Stefan A. Laufer, Apirat Chaikuad, Matthias Gehringer, Stefan Knapp. Probing the Protein Kinases′ Cysteinome by Covalent Fragments. Angewandte Chemie International Edition 2025, 64 (8) https://doi.org/10.1002/anie.202419736
    51. Diego M. Martins., Philipe O. Fernandes, Lucas A. Vieira, Vinícius G. Maltarollo, Adolfo H. Moraes. Structure‐Guided Drug Design Targeting Abl Kinase: How Structure and Regulation Can Assist in Designing New Drugs. ChemBioChem 2024, 25 (23) https://doi.org/10.1002/cbic.202400296
    52. Chengcheng Wang, Mackenzie J. Taylor, Chandler D. Stafford, David S. Dang, Sulaiman K. Matarneh, David E. Gerrard, Jinglu Tan. Analysis of phosphofructokinase-1 activity as affected by pH and ATP concentration. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-72028-4
    53. Jie Sun, Liang Lou, Chengjun Zhu, Peng Chen, Guanghui Tang, Mingxi Gu, Shu Xia, Xiao Dong, Zhi-Min Zhang, Liqian Gao, Shao Q. Yao, Qicai Xiao. Rationally designed BCR-ABL kinase inhibitors for improved leukemia treatment via covalent and pro-/dual-drug targeting strategies. Journal of Advanced Research 2024, 319 https://doi.org/10.1016/j.jare.2024.09.008
    54. Xuan Wang, Jie Sun, Huisi Huang, Guanghui Tang, Peng Chen, Menghua Xiang, Lin Li, Zhi‐Min Zhang, Liqian Gao, Shao Q. Yao. Kinase Inhibition via Small Molecule‐Induced Intramolecular Protein Cross‐Linking. Angewandte Chemie International Edition 2024, 63 (28) https://doi.org/10.1002/anie.202404195
    55. Xuan Wang, Jie Sun, Huisi Huang, Guanghui Tang, Peng Chen, Menghua Xiang, Lin Li, Zhi‐Min Zhang, Liqian Gao, Shao Q. Yao. Kinase Inhibition via Small Molecule‐Induced Intramolecular Protein Cross‐Linking. Angewandte Chemie 2024, 136 (28) https://doi.org/10.1002/ange.202404195
    56. Kirill P. Cheremnykh, Dmitry S. Baev, Elizaveta A. Nacharova, Mikhail A. Pokrovskii, Victor A. Savelyev, Yulia V. Meshkova, Mariya K. Marenina, Tatyana G. Tolstikova, Andrey G. Pokrovskii, Elvira E. Shults. Aminocarbonylation of 2-(N-substituted) 5-iodobenzoates: synthesis of glyoxylamido-anthranilates, their cytotoxicity and molecular modeling study. Chemical Papers 2024, 78 (9) , 5639-5656. https://doi.org/10.1007/s11696-024-03508-0
    57. Ana Koperniku, Nicholas A. Meanwell. Tying the knot with lysine. Nature Reviews Chemistry 2024, 8 (4) , 235-237. https://doi.org/10.1038/s41570-024-00592-4
    58. Chuan Wan, Dongyan Yang, Xiaochun Guo, Tuanjie Zhang, Zhijun Ruan, Chuan Dai, Yun Xing, Feng Yin, Rui Wang, Zigang Li. β-Carbonyl sulfonium enables cysteine-specific bioconjugation for activity-based protein profiling in live cells. Chemical Communications 2024, 60 (27) , 3725-3728. https://doi.org/10.1039/D4CC00295D
    59. Guanghui Tang, Wei Wang, Chengjun Zhu, Huisi Huang, Peng Chen, Xuan Wang, Manyi Xu, Jie Sun, Chong‐Jing Zhang, Qicai Xiao, Liqian Gao, Zhi‐Min Zhang, Shao Q. Yao. Global Reactivity Profiling of the Catalytic Lysine in Human Kinome for Covalent Inhibitor Development. Angewandte Chemie 2024, 136 (12) https://doi.org/10.1002/ange.202316394
    60. Guanghui Tang, Wei Wang, Chengjun Zhu, Huisi Huang, Peng Chen, Xuan Wang, Manyi Xu, Jie Sun, Chong‐Jing Zhang, Qicai Xiao, Liqian Gao, Zhi‐Min Zhang, Shao Q. Yao. Global Reactivity Profiling of the Catalytic Lysine in Human Kinome for Covalent Inhibitor Development. Angewandte Chemie International Edition 2024, 63 (12) https://doi.org/10.1002/anie.202316394
    61. Lang Zheng, Yang Li, Defa Wu, Huan Xiao, Shilong Zheng, Guan Wang, Qiu Sun. Development of covalent inhibitors: Principle, design, and application in cancer. MedComm – Oncology 2023, 2 (4) https://doi.org/10.1002/mog2.56
    62. Brett Cosgrove, Emma K. Grant, Sophie Bertrand, Kenneth D. Down, Don O. Somers, John P. Evans, Nicholas C. O. Tomkinson, Michael D. Barker. Covalent targeting of non-cysteine residues in PI4KIIIβ. RSC Chemical Biology 2023, 4 (12) , 1111-1122. https://doi.org/10.1039/D3CB00142C
    63. Lijuan Xu, Chunlin Zhuang. Profiling of small‐molecule necroptosis inhibitors based on the subpockets of kinase–ligand interactions. Medicinal Research Reviews 2023, 43 (6) , 1974-2024. https://doi.org/10.1002/med.21968
    64. Guanghui Tang, Wei Wang, Xuan Wang, Ke Ding, SoFong Cam Ngan, Jiao-Yu Chen, Siu Kwan Sze, Liqian Gao, Peiyan Yuan, Xiaoyun Lu, Shao Q. Yao. Cell-active, irreversible covalent inhibitors that selectively target the catalytic lysine of EGFR by using fluorosulfate-based SuFEx chemistry. European Journal of Medicinal Chemistry 2023, 259 , 115671. https://doi.org/10.1016/j.ejmech.2023.115671
    65. Brian Anderson, Peter Rosston, Han Wee Ong, Mohammad Anwar Hossain, Zachary W. Davis-Gilbert, David H. Drewry. How many kinases are druggable? A review of our current understanding. Biochemical Journal 2023, 480 (16) , 1331-1363. https://doi.org/10.1042/BCJ20220217
    66. Upendra P. Dahal, Jan L. Wahlstrom. Drug development of covalent inhibitors. 2023, 51-62. https://doi.org/10.1016/B978-0-12-817134-9.00009-X
    67. Tahereh Damghani, Florian Wittlinger, Tyler S. Beyett, Michael J. Eck, Stefan A. Laufer, David E. Heppner. Structural elements that enable specificity for mutant EGFR kinase domains with next-generation small-molecule inhibitors. 2023, 171-198. https://doi.org/10.1016/bs.mie.2023.03.013
    68. Fang-Fang Luo, Zhi-Tao Cai, Yan-Dong Huang, . Progress in protein p<i>K</i><sub>a</sub> prediction. Acta Physica Sinica 2023, 72 (24) , 248704. https://doi.org/10.7498/aps.72.20231356
    69. Vinicius Martins de Oliveira, Ruibin Liu, Jana Shen. Constant pH molecular dynamics simulations: Current status and recent applications. Current Opinion in Structural Biology 2022, 77 , 102498. https://doi.org/10.1016/j.sbi.2022.102498
    70. Marta Bon, Alan Bilsland, Justin Bower, Kirsten McAulay. Fragment‐based drug discovery—the importance of high‐quality molecule libraries. Molecular Oncology 2022, 16 (21) , 3761-3777. https://doi.org/10.1002/1878-0261.13277
    71. Kirsten McAulay, Alan Bilsland, Marta Bon. Reactivity of Covalent Fragments and Their Role in Fragment Based Drug Discovery. Pharmaceuticals 2022, 15 (11) , 1366. https://doi.org/10.3390/ph15111366
    72. Peng Chen, Jie Sun, Chengjun Zhu, Guanghui Tang, Wei Wang, Manyi Xu, Menghua Xiang, Chong‐Jing Zhang, Zhi‐Min Zhang, Liqian Gao, Shao Q. Yao. Cell‐Active, Reversible, and Irreversible Covalent Inhibitors That Selectively Target the Catalytic Lysine of BCR‐ABL Kinase. Angewandte Chemie 2022, 134 (26) https://doi.org/10.1002/ange.202203878
    73. Peng Chen, Jie Sun, Chengjun Zhu, Guanghui Tang, Wei Wang, Manyi Xu, Menghua Xiang, Chong‐Jing Zhang, Zhi‐Min Zhang, Liqian Gao, Shao Q. Yao. Cell‐Active, Reversible, and Irreversible Covalent Inhibitors That Selectively Target the Catalytic Lysine of BCR‐ABL Kinase. Angewandte Chemie International Edition 2022, 61 (26) https://doi.org/10.1002/anie.202203878
    74. Hongfei Jiang, Qing Zhang, Yue Zhang, Huxin Feng, Hao Jiang, Fan Pu, Rilei Yu, Zheng Zhong, Chaoming Wang, Yi Man Eva Fung, Pilar Blasco, Yongxin Li, Tao Jiang, Xuechen Li. Triazine-pyridine chemistry for protein labelling on tyrosine. Chemical Communications 2022, 58 (50) , 7066-7069. https://doi.org/10.1039/D2CC01528E
    75. Ruibin Liu, Neha Verma, Jack A. Henderson, Shaoqi Zhan, Jana Shen. Profiling MAP kinase cysteines for targeted covalent inhibitor design. RSC Medicinal Chemistry 2022, 13 (1) , 54-63. https://doi.org/10.1039/D1MD00277E
    76. Dibyendu Dana, Tuhin Das, Athena Choi, Ashif I. Bhuiyan, Tirtha K. Das, Tanaji T. Talele, Sanjai K. Pathak. Nek2 Kinase Signaling in Malaria, Bone, Immune and Kidney Disorders to Metastatic Cancers and Drug Resistance: Progress on Nek2 Inhibitor Development. Molecules 2022, 27 (2) , 347. https://doi.org/10.3390/molecules27020347
    77. Hongyan Du, Dejun Jiang, Junbo Gao, Xujun Zhang, Lingxiao Jiang, Yundian Zeng, Zhenxing Wu, Chao Shen, Lei Xu, Dongsheng Cao, Tingjun Hou, Peichen Pan. Proteome-Wide Profiling of the Covalent-Druggable Cysteines with a Structure-Based Deep Graph Learning Network. Research 2022, 2022 https://doi.org/10.34133/2022/9873564
    78. Francesca Ferlenghi, Laura Scalvini, Federica Vacondio, Riccardo Castelli, Nicole Bozza, Giuseppe Marseglia, Silvia Rivara, Alessio Lodola, Silvia La Monica, Roberta Minari, Pier Giorgio Petronini, Roberta Alfieri, Marcello Tiseo, Marco Mor. A sulfonyl fluoride derivative inhibits EGFRL858R/T790M/C797S by covalent modification of the catalytic lysine. European Journal of Medicinal Chemistry 2021, 225 , 113786. https://doi.org/10.1016/j.ejmech.2021.113786
    79. Volkan Fındık, Manuel F. Ruiz-López, Safiye Sag Erdem. Mechanistic insights into lysine-targeting covalent inhibition through a theoretical study of ester aminolysis. Organic & Biomolecular Chemistry 2021, 19 (45) , 9996-10004. https://doi.org/10.1039/D1OB01963E
    80. Li Li, Nannan Chen, Dandan Xia, Shicheng Xu, Wei Dai, Yuanyuan Tong, Lei Wang, Zhengyu Jiang, Qidong You, Xiaoli Xu. Discovery of a covalent inhibitor of heat shock protein 90 with antitumor activity that blocks the co-chaperone binding via C-terminal modification. Cell Chemical Biology 2021, 28 (10) , 1446-1459.e6. https://doi.org/10.1016/j.chembiol.2021.03.016
    81. David Quach, Guanghui Tang, Jothi Anantharajan, Nithya Baburajendran, Anders Poulsen, John L. K. Wee, Priya Retna, Rong Li, Boping Liu, Doris H. Y. Tee, Perlyn Z. Kwek, Joma K. Joy, Wan‐Qi Yang, Chong‐Jing Zhang, Klement Foo, Thomas H. Keller, Shao Q. Yao. Strategic Design of Catalytic Lysine‐Targeting Reversible Covalent BCR‐ABL Inhibitors**. Angewandte Chemie 2021, 133 (31) , 17268-17274. https://doi.org/10.1002/ange.202105383
    82. David Quach, Guanghui Tang, Jothi Anantharajan, Nithya Baburajendran, Anders Poulsen, John L. K. Wee, Priya Retna, Rong Li, Boping Liu, Doris H. Y. Tee, Perlyn Z. Kwek, Joma K. Joy, Wan‐Qi Yang, Chong‐Jing Zhang, Klement Foo, Thomas H. Keller, Shao Q. Yao. Strategic Design of Catalytic Lysine‐Targeting Reversible Covalent BCR‐ABL Inhibitors**. Angewandte Chemie International Edition 2021, 60 (31) , 17131-17137. https://doi.org/10.1002/anie.202105383
    83. Kaitlyn A. Maffuid, Maria Koyioni, Chad D. Torrice, William A. Murphy, Heemaja K. Mewada, Panayiotis A. Koutentis, Daniel J. Crona, Christopher R.M. Asquith. Design and evaluation of 1,2,3-dithiazoles and fused 1,2,4-dithiazines as anti-cancer agents. Bioorganic & Medicinal Chemistry Letters 2021, 43 , 128078. https://doi.org/10.1016/j.bmcl.2021.128078
    84. Wenchao Lu, Milka Kostic, Tinghu Zhang, Jianwei Che, Matthew P. Patricelli, Lyn H. Jones, Edward T. Chouchani, Nathanael S. Gray. Fragment-based covalent ligand discovery. RSC Chemical Biology 2021, 2 (2) , 354-367. https://doi.org/10.1039/D0CB00222D
    85. Kevin Litwin, Vincent M. Crowley, Radu M. Suciu, Dale L. Boger, Benjamin F. Cravatt. Chemical proteomic identification of functional cysteines with atypical electrophile reactivities. Tetrahedron Letters 2021, 67 , 152861. https://doi.org/10.1016/j.tetlet.2021.152861
    86. Paweł Łukasik, Irena Baranowska-Bosiacka, Katarzyna Kulczycka, Izabela Gutowska. Inhibitors of Cyclin-Dependent Kinases: Types and Their Mechanism of Action. International Journal of Molecular Sciences 2021, 22 (6) , 2806. https://doi.org/10.3390/ijms22062806
    87. László Petri, Péter Ábrányi‐Balogh, Imre Tímea, Gyula Pálfy, András Perczel, Damijan Knez, Martina Hrast, Martina Gobec, Izidor Sosič, Kinga Nyíri, Beáta G. Vértessy, Niklas Jänsch, Charlotte Desczyk, Franz‐Josef Meyer‐Almes, Iza Ogris, Simona Golič Grdadolnik, Luca Giacinto Iacovino, Claudia Binda, Stanislav Gobec, György M. Keserű. Assessment of Tractable Cysteines for Covalent Targeting by Screening Covalent Fragments. ChemBioChem 2021, 22 (4) , 743-753. https://doi.org/10.1002/cbic.202000700
    88. Koji Umezawa, Isao Kii. Druggable Transient Pockets in Protein Kinases. Molecules 2021, 26 (3) , 651. https://doi.org/10.3390/molecules26030651
    89. Richard A. Ward. Modeling Covalent Protein-Ligand Interactions. 2021, 174-189. https://doi.org/10.1016/B978-0-12-801238-3.11519-3
    90. Ernest Awoonor-Williams, Jacob Kennedy, Christopher N. Rowley. Measuring and predicting warhead and residue reactivity. 2021, 203-227. https://doi.org/10.1016/bs.armc.2020.09.001
    91. Lyn H. Jones. Design of next-generation covalent inhibitors: Targeting residues beyond cysteine. 2021, 95-134. https://doi.org/10.1016/bs.armc.2020.10.001
    92. László Petri, Attila Egyed, Dávid Bajusz, Tímea Imre, Anasztázia Hetényi, Tamás Martinek, Péter Ábrányi-Balogh, György M. Keserű. An electrophilic warhead library for mapping the reactivity and accessibility of tractable cysteines in protein kinases. European Journal of Medicinal Chemistry 2020, 207 , 112836. https://doi.org/10.1016/j.ejmech.2020.112836
    93. Ronen Gabizon, Efrat Resnick, Nir London. Best Practices for Design and Characterization of Covalent Chemical Probes. 2020, 69-99. https://doi.org/10.1039/9781839160745-00069
    94. Luca Gambini, Parima Udompholkul, Ahmed F. Salem, Carlo Baggio, Maurizio Pellecchia. Stability and Cell Permeability of Sulfonyl Fluorides in the Design of Lys‐Covalent Antagonists of Protein‐Protein Interactions. ChemMedChem 2020, 15 (22) , 2176-2184. https://doi.org/10.1002/cmdc.202000355
    95. Jack A. Henderson, Neha Verma, Robert C. Harris, Ruibin Liu, Jana Shen. Assessment of proton-coupled conformational dynamics of SARS and MERS coronavirus papain-like proteases: Implication for designing broad-spectrum antiviral inhibitors. The Journal of Chemical Physics 2020, 153 (11) https://doi.org/10.1063/5.0020458
    96. Andrés Felipe Vásquez, Alejandro Reyes Muñoz, Jorge Duitama, Andrés González Barrios. Discovery of new potential CDK2/VEGFR2 type II inhibitors by fragmentation and virtual screening of natural products. Journal of Biomolecular Structure and Dynamics 2020, 10 , 1-15. https://doi.org/10.1080/07391102.2020.1763839
    97. Binbin Nian, Guangfu Liao, Ying Song, YingZhu Su, Chen Cao, Yuanfa Liu. Ionic hydrogen-bonding interaction controlled electrophilicity and nucleophilicity: Mechanistic insights into the synergistic catalytic effect of lipase and natural deep eutectic solvents in amidation reaction. Journal of Catalysis 2020, 384 , 159-168. https://doi.org/10.1016/j.jcat.2020.02.011
    98. Antti Poso. Molecular Modeling of Protein Kinases: Current Status and Challenges. 2020, 25-41. https://doi.org/10.1007/7355_2020_106
    99. Ramon Martinez, Amy Defnet, Paul Shapiro. Avoiding or Co-Opting ATP Inhibition: Overview of Type III, IV, V, and VI Kinase Inhibitors. 2020, 29-59. https://doi.org/10.1007/978-3-030-48283-1_3
    100. Arduino Mangoni, Jean Eynde, Josef Jampilek, Dimitra Hadjipavlou-Litina, Hong Liu, Jóhannes Reynisson, Maria Sousa, Paula Gomes, Katalin Prokai-Tatrai, Tiziano Tuccinardi, Jean-Marc Sabatier, F. Luque, Jarkko Rautio, Rafik Karaman, M. Vasconcelos, Sandra Gemma, Stefania Galdiero, Christopher Hulme, Simona Collina, Michael Gütschow, George Kokotos, Carlo Siciliano, Raffaele Capasso, Luigi Agrofoglio, Rino Ragno, Diego Muñoz-Torrero. Breakthroughs in Medicinal Chemistry: New Targets and Mechanisms, New Drugs, New Hopes–5. Molecules 2019, 24 (13) , 2415. https://doi.org/10.3390/molecules24132415

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2019, 141, 16, 6553–6560
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.8b13248
    Published April 4, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    7925

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.