ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Monoammonium Porphyrin for Blade-Coating Stable Large-Area Perovskite Solar Cells with >18% Efficiency

  • Congping Li
    Congping Li
    State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
    More by Congping Li
  • Jun Yin
    Jun Yin
    Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P.R. China
    More by Jun Yin
  • Ruihao Chen
    Ruihao Chen
    Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P.R. China
    More by Ruihao Chen
  • Xudong Lv
    Xudong Lv
    State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
    More by Xudong Lv
  • Xiaoxia Feng
    Xiaoxia Feng
    State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
    More by Xiaoxia Feng
  • Yiying Wu
    Yiying Wu
    Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
    More by Yiying Wu
  • , and 
  • Jing Cao*
    Jing Cao
    State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
    *E-mail: [email protected]
    More by Jing Cao
Cite this: J. Am. Chem. Soc. 2019, 141, 15, 6345–6351
Publication Date (Web):March 15, 2019
https://doi.org/10.1021/jacs.9b01305
Copyright © 2019 American Chemical Society

    Article Views

    7662

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Efficient control of crystallization and defects of perovskite films are the key factors toward the performance and stability of perovskite solar cells (PSCs), especially for the preparation of large-area PSCs devices. Herein, we directly embedded surfactant-like monoammonium zinc porphyrin (ZnP) compound into the methylammonium (MA+) lead iodide perovskite film to blade-coat large-area uniform perovskite films as large as 16 cm2. Efficiency as high as 18.3% for blade-coating large-area (1.96 cm2) PSCs with ZnP was unprecedentedly achieved, while the best efficiency of fabricated small-area (0.1 cm2) device was up to 20.5%. The detailed analyses demonstrated the functions of ZnP in crystallization control and defects passivation of perovskite surfaces and grain boundaries. As a consequence, the ZnP-encapsulated devices retained over 90% of its initial efficiency after 1000 h with a humidity of about 45% at 85 °C. This research presents a facile way to achieve the synergistic effect of large-area coating, morphology tailoring, and defect suppression based on the molecular encapsulation strategy for perovskite films, further improving the photovoltaic performance and stability of PSCs.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.9b01305.

    • Synthetic route of porphyrins, SEM images, and photovoltaic performances of the devices (DOCX)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 144 publications.

    1. Zixuan Zhang, Zhuoran Li, Yanfeng Chen, Zhongjin Zhang, Kai Fan, Shiyan Chen, Lihui Liu, Shufen Chen. Progress on Inkjet Printing Technique for Perovskite Films and Their Optoelectronic and Optical Applications. ACS Photonics 2023, 10 (10) , 3435-3450. https://doi.org/10.1021/acsphotonics.3c00897
    2. Xue-Lin Zheng, Hao-Sheng Lin, Bo-Wen Zhang, Shigeo Maruyama, Yutaka Matsuo. Synthesis of Conjugated Donor–Acceptor Antiaromatic Porphyrins and Their Application to Perovskite Solar Cells. The Journal of Organic Chemistry 2022, 87 (9) , 5457-5463. https://doi.org/10.1021/acs.joc.1c01947
    3. Chandra Shakher Pathak, Gopinath Paramasivam, Florian Mathies, Katrin Hirselandt, Vincent Schröder, Oliver Maus, Janardan Dagar, Carola Klimm, Eva Unger, Iris Visoly-Fisher. PTB7 as an Ink-Additive for Spin-Coated Versus Inkjet-Printed Perovskite Solar Cells. ACS Applied Energy Materials 2022, 5 (4) , 4085-4095. https://doi.org/10.1021/acsaem.1c03262
    4. Haoxin Wang, Ming Cheng, Xichuan Yang, Ze Yu, Licheng Sun. Natural Chlorophyll Derivative Assisted Defect Passivation and Hole Extraction for MAPbI3 Perovskite Solar Cells with Efficiency Exceeding 20%. ACS Applied Energy Materials 2022, 5 (2) , 1390-1396. https://doi.org/10.1021/acsaem.1c03392
    5. Zihan Fang, Luyao Wang, Xijiao Mu, Bin Chen, Qiu Xiong, Wei David Wang, Jiaxin Ding, Peng Gao, Yiying Wu, Jing Cao. Grain Boundary Engineering with Self-Assembled Porphyrin Supramolecules for Highly Efficient Large-Area Perovskite Photovoltaics. Journal of the American Chemical Society 2021, 143 (45) , 18989-18996. https://doi.org/10.1021/jacs.1c07518
    6. Ritesh Kant Gupta, Rabindranath Garai, Parameswar Krishnan Iyer. Dual-Passivation Strategy for Improved Ambient Stability of Perovskite Solar Cells. ACS Applied Energy Materials 2021, 4 (9) , 10025-10032. https://doi.org/10.1021/acsaem.1c01973
    7. Amrita Dey, Junzhi Ye, Apurba De, Elke Debroye, Seung Kyun Ha, Eva Bladt, Anuraj S. Kshirsagar, Ziyu Wang, Jun Yin, Yue Wang, Li Na Quan, Fei Yan, Mengyu Gao, Xiaoming Li, Javad Shamsi, Tushar Debnath, Muhan Cao, Manuel A. Scheel, Sudhir Kumar, Julian A. Steele, Marina Gerhard, Lata Chouhan, Ke Xu, Xian-gang Wu, Yanxiu Li, Yangning Zhang, Anirban Dutta, Chuang Han, Ilka Vincon, Andrey L. Rogach, Angshuman Nag, Anunay Samanta, Brian A. Korgel, Chih-Jen Shih, Daniel R. Gamelin, Dong Hee Son, Haibo Zeng, Haizheng Zhong, Handong Sun, Hilmi Volkan Demir, Ivan G. Scheblykin, Iván Mora-Seró, Jacek K. Stolarczyk, Jin Z. Zhang, Jochen Feldmann, Johan Hofkens, Joseph M. Luther, Julia Pérez-Prieto, Liang Li, Liberato Manna, Maryna I. Bodnarchuk, Maksym V. Kovalenko, Maarten B. J. Roeffaers, Narayan Pradhan, Omar F. Mohammed, Osman M. Bakr, Peidong Yang, Peter Müller-Buschbaum, Prashant V. Kamat, Qiaoliang Bao, Qiao Zhang, Roman Krahne, Raquel E. Galian, Samuel D. Stranks, Sara Bals, Vasudevanpillai Biju, William A. Tisdale, Yong Yan, Robert L. Z. Hoye, Lakshminarayana Polavarapu. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano 2021, 15 (7) , 10775-10981. https://doi.org/10.1021/acsnano.0c08903
    8. Hae-Jun Seok, Jin-Hyeok Park, Ahra Yi, Hanbin Lee, Joohoon Kang, Hyo Jung Kim, Han-Ki Kim. Transition of the NiOx Buffer Layer from a p-Type Semiconductor to an Insulator for Operation of Perovskite Solar Cells. ACS Applied Energy Materials 2021, 4 (6) , 5452-5465. https://doi.org/10.1021/acsaem.1c00049
    9. Ritesh Kant Gupta, Rabindranath Garai, Maimur Hossain, Anwesha Choudhury, Parameswar Krishnan Iyer. Halide Engineering for Mitigating Ion Migration and Defect States in Hot-Cast Perovskite Solar Cells. ACS Sustainable Chemistry & Engineering 2021, 9 (23) , 7993-8001. https://doi.org/10.1021/acssuschemeng.1c02537
    10. Jun Guo, Yadong Xu, Wenhui Yang, Bao Xiao, Qihao Sun, Xinlei Zhang, Binbin Zhang, Menghua Zhu, Wanqi Jie. High-Stability Flexible X-ray Detectors Based on Lead-Free Halide Perovskite Cs2TeI6 Films. ACS Applied Materials & Interfaces 2021, 13 (20) , 23928-23935. https://doi.org/10.1021/acsami.1c04252
    11. Hengyi Li, Tongle Bu, Jing Li, Zhipeng Lin, Junye Pan, Qianhui Li, Xiao-Li Zhang, Zhiliang Ku, Yi-Bing Cheng, Fuzhi Huang. Ink Engineering for Blade Coating FA-Dominated Perovskites in Ambient Air for Efficient Solar Cells and Modules. ACS Applied Materials & Interfaces 2021, 13 (16) , 18724-18732. https://doi.org/10.1021/acsami.1c00900
    12. Jonas A. Schwenzer, Tim Hellmann, Bahram Abdollahi Nejand, Hang Hu, Tobias Abzieher, Fabian Schackmar, Ihteaz M. Hossain, Paul Fassl, Thomas Mayer, Wolfram Jaegermann, Uli Lemmer, Ulrich W. Paetzold. Thermal Stability and Cation Composition of Hybrid Organic–Inorganic Perovskites. ACS Applied Materials & Interfaces 2021, 13 (13) , 15292-15304. https://doi.org/10.1021/acsami.1c01547
    13. Weiguang Chi, Sanjay K. Banerjee. Stability Improvement of Perovskite Solar Cells by Compositional and Interfacial Engineering. Chemistry of Materials 2021, 33 (5) , 1540-1570. https://doi.org/10.1021/acs.chemmater.0c04931
    14. Liuwen Tian, Fang Wen, Wenfeng Zhang, Haichuan Zhang, Hua Yu, Puan Lin, Xu Liu, Shenghou Zhou, Xiangqing Zhou, Yutong Jiang, Tao Chen, Zhu Ma, Meng Zhang, Yuelong Huang. Rising from the Ashes: Gaseous Therapy for Robust and Large-Area Perovskite Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (44) , 49648-49658. https://doi.org/10.1021/acsami.0c14746
    15. Meng-Huan Jao, Shun-Hsiang Chan, Ming-Chung Wu, Chao-Sung Lai. Element Code from Pseudopotential as Efficient Descriptors for a Machine Learning Model to Explore Potential Lead-Free Halide Perovskites. The Journal of Physical Chemistry Letters 2020, 11 (20) , 8914-8921. https://doi.org/10.1021/acs.jpclett.0c02393
    16. Venkatesh Piradi, Guangjun Zhang, Tengfei Li, Ming Zhang, Qiang Peng, Xiaowei Zhan, Xunjin Zhu. Side-Chain Engineering of Benzodithiophene-Bridged Dimeric Porphyrin Donors for All-Small-Molecule Organic Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (37) , 41506-41514. https://doi.org/10.1021/acsami.0c11410
    17. Wenyu Zhang, Xiaojie Liu, Benlin He, Jingwei Zhu, Xueke Li, Kaixiang Shen, Haiyan Chen, Yanyan Duan, Qunwei Tang. Enhanced Efficiency of Air-Stable CsPbBr3 Perovskite Solar Cells by Defect Dual Passivation and Grain Size Enlargement with a Multifunctional Additive. ACS Applied Materials & Interfaces 2020, 12 (32) , 36092-36101. https://doi.org/10.1021/acsami.0c08827
    18. Hailin Zhang, Haiyang Xu, Xu Ji, Jingkang Liang, Qiongfen Yu. Progress toward Applications of Perovskite Solar Cells. Energy & Fuels 2020, 34 (6) , 6624-6633. https://doi.org/10.1021/acs.energyfuels.0c00485
    19. Zhongliang Ouyang, Mengjin Yang, James B. Whitaker, Dawen Li, Maikel F. A. M. van Hest. Toward Scalable Perovskite Solar Modules Using Blade Coating and Rapid Thermal Processing. ACS Applied Energy Materials 2020, 3 (4) , 3714-3720. https://doi.org/10.1021/acsaem.0c00180
    20. Qing Lian, Muhamad Z. Mokhtar, Dongdong Lu, Mingning Zhu, Janet Jacobs, Andrew B. Foster, Andrew G. Thomas, Ben F. Spencer, Shanglin Wu, Chen Liu, Nigel W. Hodson, Benjamin Smith, Abdulaziz Alkaltham, Osama M. Alkhudhari, Trystan Watson, Brian R. Saunders. Using Soft Polymer Template Engineering of Mesoporous TiO2 Scaffolds to Increase Perovskite Grain Size and Solar Cell Efficiency. ACS Applied Materials & Interfaces 2020, 12 (16) , 18578-18589. https://doi.org/10.1021/acsami.0c02248
    21. Yanbo Gao, Yanjie Wu, Yue Liu, Cong Chen, Xue Bai, Lili Yang, Zhifeng Shi, William W. Yu, Qilin Dai, Yu Zhang. Dual Functions of Crystallization Control and Defect Passivation Enabled by an Ionic Compensation Strategy for Stable and High-Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (3) , 3631-3641. https://doi.org/10.1021/acsami.9b19538
    22. Jin Hyuck Heo, Kyungmin Im, Jinsoo Kim, Sang Hyuk Im. Efficient Metal Halide Perovskite Solar Cells Prepared by Reproducible Electrospray Coating on Vertically Aligned TiO2 Nanorod Electrodes. ACS Applied Materials & Interfaces 2020, 12 (1) , 886-892. https://doi.org/10.1021/acsami.9b19121
    23. Jin Zhong Zhang. A “Cocktail” Approach to Effective Surface Passivation of Multiple Surface Defects of Metal Halide Perovskites Using a Combination of Ligands. The Journal of Physical Chemistry Letters 2019, 10 (17) , 5055-5063. https://doi.org/10.1021/acs.jpclett.9b01166
    24. Ke Xu, A’Lester C. Allen, Binbin Luo, Evan T. Vickers, Qihui Wang, William R. Hollingsworth, Alexander L. Ayzner, Xueming Li, Jin Zhong Zhang. Tuning from Quantum Dots to Magic Sized Clusters of CsPbBr3 Using Novel Planar Ligands Based on the Trivalent Nitrate Coordination Complex. The Journal of Physical Chemistry Letters 2019, 10 (15) , 4409-4416. https://doi.org/10.1021/acs.jpclett.9b01738
    25. Nayereh Malek Mohammadi, Salar Mehdipour Naiem, Fatemeh Hosseini Alast, Ezeddin Mohajerani, Nasser Safari. Brominated zinc porphyrin assisted grain boundary defects passivation in carbon-based planar perovskite solar cells. Materials Today Sustainability 2024, 25 , 100685. https://doi.org/10.1016/j.mtsust.2024.100685
    26. Linhao Yuan, Xining Chen, Xianming Guo, Shihao Huang, Xiaoxiao Wu, Yunxiu Shen, Hao Gu, Yujin Chen, Guixiang Zeng, Hans‐Joachim Egelhaaf, Christoph J. Brabec, Fu Yang, Yaowen Li, Yongfang Li. Volatile Perovskite Precursor Ink Enables Window Printing of Phase‐Pure FAPbI 3 Perovskite Solar Cells and Modules in Ambient Atmosphere. Angewandte Chemie 2024, 136 (7) https://doi.org/10.1002/ange.202316954
    27. Linhao Yuan, Xining Chen, Xianming Guo, Shihao Huang, Xiaoxiao Wu, Yunxiu Shen, Hao Gu, Yujin Chen, Guixiang Zeng, Hans‐Joachim Egelhaaf, Christoph J. Brabec, Fu Yang, Yaowen Li, Yongfang Li. Volatile Perovskite Precursor Ink Enables Window Printing of Phase‐Pure FAPbI 3 Perovskite Solar Cells and Modules in Ambient Atmosphere. Angewandte Chemie International Edition 2024, 63 (7) https://doi.org/10.1002/anie.202316954
    28. Chen Lu, Zefeng Yu, Jing Cao. Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry 2024, 78 , 100240. https://doi.org/10.1016/j.cjsc.2024.100240
    29. Chandra Shakher Pathak, Hyuntae Choi, Heesu Kim, Jeongin Lim, Seong‐Keun Cho, Dong Seok Ham, Seulki Song. Recent Progress in Coating Methods for Large‐Area Perovskite Solar Module Fabrication. Solar RRL 2024, 8 (4) https://doi.org/10.1002/solr.202300860
    30. Adamu Ahmed Goje, Norasikin Ahmad Ludin, Puteri Nor Aznie Fahsyar, Ubaidah Syafiq, Puvaneswaran Chelvanathan, Abu Dzar Al-Ghiffari Syakirin, Mohd Asri Teridi, Mohd Adib Ibrahim, Mohd Sukor Su’ait, Suhaila Sepeai, Ahmad Shah Hizam Md Yasir. Review of flexible perovskite solar cells for indoor and outdoor applications. Materials for Renewable and Sustainable Energy 2024, 17 https://doi.org/10.1007/s40243-024-00257-8
    31. Qiaoyun Chen, Xudong Yang, Jiajia Zhang, Jianfei Fu, Zhixuan Jiang, Bo Song, Pan Xu, Yi Zhou. Defect passivation by a betaine-based zwitterionic molecule for high-performance p-i-n methylammonium-based perovskite solar cells. Solar Energy Materials and Solar Cells 2024, 264 , 112615. https://doi.org/10.1016/j.solmat.2023.112615
    32. Mazhar Abbas, Xiaowei Xu, Muhammad Rauf, Aung Ko Ko Kyaw. A Comprehensive Review on Defects-Induced Voltage Losses and Strategies toward Highly Efficient and Stable Perovskite Solar Cells. Photonics 2024, 11 (1) , 87. https://doi.org/10.3390/photonics11010087
    33. Jaquelina Camacho-Cáceres, Mario A. Millán-Franco, Melvia Carinne Mejía-Vázquez, Carlos Fabián Arias-Ramos, Asiel N. Corpus-Mendoza, Mario A. Rodríguez-Rivera, María Elena Nicho, Mérida Sotelo-Lerma, Hailin Hu. Ionic surfactants of different dipole moments as anti-solvent additives for air-processing MAPbI3−xClx perovskite thin films. Journal of Materials Science: Materials in Electronics 2023, 34 (36) https://doi.org/10.1007/s10854-023-11670-6
    34. Phutri Milana, Maulida Septiyana, Dewi Noviany, Nunik Nurhayati, Natalita Maulani Nursam, Ciptati, Veinardi Suendo. Preparation of Symmetric and Asymmetric Porphyrin as a Passivating Agent for Perovskite Solar Cells. 2023, 273-278. https://doi.org/10.1109/ICRAMET60171.2023.10366721
    35. Randi Azmi, Shynggys Zhumagali, Helen Bristow, Shanshan Zhang, Aren Yazmaciyan, Anil Reddy Pininti, Drajad Satrio Utomo, Anand S. Subbiah, Stefaan De Wolf. Moisture‐Resilient Perovskite Solar Cells for Enhanced Stability. Advanced Materials 2023, 8 https://doi.org/10.1002/adma.202211317
    36. Fengzhu Li, Francis R. Lin, Alex K.‐Y. Jen. Current State and Future Perspectives of Printable Organic and Perovskite Solar Cells. Advanced Materials 2023, 4 https://doi.org/10.1002/adma.202307161
    37. Chieh‐Ming Hung, Chi‐Lun Mai, Chi‐Chi Wu, Bo‐Han Chen, Chih‐Hsuan Lu, Che‐Chun Chu, Meng‐Chuan Wang, Shang‐Da Yang, Hsieh‐Chih Chen, Chen‐Yu Yeh, Pi‐Tai Chou. Self‐Assembled Monolayers of Bi‐Functionalized Porphyrins: A Novel Class of Hole‐Layer‐Coordinating Perovskites and Indium Tin Oxide in Inverted Solar Cells. Angewandte Chemie 2023, 135 (40) https://doi.org/10.1002/ange.202309831
    38. Chieh‐Ming Hung, Chi‐Lun Mai, Chi‐Chi Wu, Bo‐Han Chen, Chih‐Hsuan Lu, Che‐Chun Chu, Meng‐Chuan Wang, Shang‐Da Yang, Hsieh‐Chih Chen, Chen‐Yu Yeh, Pi‐Tai Chou. Self‐Assembled Monolayers of Bi‐Functionalized Porphyrins: A Novel Class of Hole‐Layer‐Coordinating Perovskites and Indium Tin Oxide in Inverted Solar Cells. Angewandte Chemie International Edition 2023, 62 (40) https://doi.org/10.1002/anie.202309831
    39. Thanh‐Hai Le, Honora Driscoll, Cheng‐Hung Hou, Angelique Montgomery, Wayne Li, Joshua S. Stein, Wanyi Nie. Perovskite Solar Module: Promise and Challenges in Efficiency, Meta‐Stability, and Operational Lifetime. Advanced Electronic Materials 2023, 9 (10) https://doi.org/10.1002/aelm.202300093
    40. Fei Han, Lingling Wang, Gang Cheng, Lei Yang, Yuan Lin. Conjugated small molecule inhibiting intrinsic ion migration and enriching electron transfer channels for stable and efficient perovskite solar cells. Journal of Power Sources 2023, 580 , 233364. https://doi.org/10.1016/j.jpowsour.2023.233364
    41. Mingfa Xie, Jinyuan Liu, Lianghong Dai, Hongjian Peng, Youqing Xie. Advances and prospects of porphyrin derivatives in the energy field. RSC Advances 2023, 13 (35) , 24699-24730. https://doi.org/10.1039/D3RA04345B
    42. Taorui Liu, Yajun Liu, Xingbang Gao, Jing Cao. Self-assembly of porphyrins on perovskite film for blade-coating stable large-area methylammonium-free solar cells. Chinese Chemical Letters 2023, 34 (8) , 107883. https://doi.org/10.1016/j.cclet.2022.107883
    43. Zeyang Zhang, Jiahui Shang, Henghang Ge, Yunlong Zhang, Long Zhou, Weidong Zhu, Dazheng Chen, Jincheng Zhang, Chunfu Zhang, Yue Hao. Fabrication of high-efficiency perovskite solar cells and mini-modules by expanding the processing window with KSCN additive. Materials Today Energy 2023, 36 , 101343. https://doi.org/10.1016/j.mtener.2023.101343
    44. Desiré Molina, Jorge Follana-Berná, Ángela Sastre-Santos. Phthalocyanines, porphyrins and other porphyrinoids as components of perovskite solar cells. Journal of Materials Chemistry C 2023, 11 (24) , 7885-7919. https://doi.org/10.1039/D2TC04441B
    45. Pramod Baral, Xinwen Zhang, Kelsey Garden, Nilave Chakraborty, Lening Shen, Zikun Cao, Xiong Gong, Luisa Whittaker-Brooks, He Wang. Efficient and stable perovskite solar cells based on blade-coated CH3NH3PbI3 thin films fabricated using “green” solvents under ambient conditions. Organic Electronics 2023, 116 , 106763. https://doi.org/10.1016/j.orgel.2023.106763
    46. Fabian Schackmar, Felix Laufer, Roja Singh, Ahmed Farag, Helge Eggers, Saba Gharibzadeh, Bahram Abdollahi Nejand, Uli Lemmer, Gerardo Hernandez‐Sosa, Ulrich W. Paetzold. In Situ Process Monitoring and Multichannel Imaging for Vacuum‐Assisted Growth Control of Inkjet‐Printed and Blade‐Coated Perovskite Thin‐Films. Advanced Materials Technologies 2023, 8 (5) https://doi.org/10.1002/admt.202201331
    47. Md. Helal Miah, Md. Bulu Rahman, Mohammad Nur‐E‐Alam, Narottam Das, Norhayati Binti Soin, Sharifah Fatmadiana Wan Muhammad Hatta, Mohammad Aminul Islam. Understanding the Degradation Factors, Mechanism and Initiatives for Highly Efficient Perovskite Solar Cells. ChemNanoMat 2023, 9 (3) https://doi.org/10.1002/cnma.202200471
    48. Zihao Guan, Hui Li, Zhiyuan Wei, Naying Shan, Yan Fang, Yang Zhao, Lulu Fu, Zhipeng Huang, Mark G. Humphrey, Chi Zhang. Enhanced nonlinear optical performance of perovskite films passivated by porphyrin derivatives. Journal of Materials Chemistry C 2023, 11 (4) , 1509-1521. https://doi.org/10.1039/D2TC04200B
    49. Artem Mikhailov, Nikita Korobeynikov, Andrey Usoltsev, Sergey A. Adonin, Gennadiy A. Kostin, Dominik Schaniel. Bismuth and antimony halometalates containing photoswitchable ruthenium nitrosyl complexes. Dalton Transactions 2023, 52 (4) , 919-927. https://doi.org/10.1039/D2DT03497B
    50. Zuhong Li, Jiaxin Feng, Jinguo Cao, Jiaren Jin, Yijun Zhou, Duoling Cao, Zihui Liang, Bicheng Zhu, Ming Li, Li Zhao, Shimin Wang. New Carbon Nitride C 3 N 3 Additive for Improving Cationic Defects of Perovskite Solar Cells. ENERGY & ENVIRONMENTAL MATERIALS 2023, 6 (1) https://doi.org/10.1002/eem2.12283
    51. Baohua Zhao, Teng Zhang, Wenwen Liu, Fansong Meng, Chengben Liu, Nuo Chen, Zhi Li, Zhaobin Liu, Xiyou Li. Recent Progress of Surface Passivation Molecules for Perovskite Solar Cell Applications. Journal of Renewable Materials 2023, 11 (4) , 1533-1554. https://doi.org/10.32604/jrm.2022.023192
    52. Sidra Khatoon, Satish Kumar Yadav, Vishwadeep Chakravorty, Jyotsna Singh, Rajendra Bahadur Singh, Md Saquib Hasnain, S.M. Mozammil Hasnain. Perovskite solar cell’s efficiency, stability and scalability: A review. Materials Science for Energy Technologies 2023, 6 , 437-459. https://doi.org/10.1016/j.mset.2023.04.007
    53. Yongqing Duan, Guannan Zhang, Rui Yu, Hanyuan Zhang, Guangda Niu, YongAn Huang, Zhouping Yin. Inkjet printing for scalable and patterned fabrication of halide perovskite-based optoelectronic devices. Journal of Materials Chemistry C 2022, 10 (39) , 14379-14398. https://doi.org/10.1039/D2TC02553A
    54. Yanbo Gao, Yue Liu, Fujun Zhang, Xinyu Bao, Zehua Xu, Xue Bai, Min Lu, Yanjie Wu, Zhennan Wu, Ye Zhang, Quan Wang, Xiujun Gao, Yinghui Wang, Zhifeng Shi, Junhua Hu, William W. Yu, Yu Zhang. High‐Performance Perovskite Light‐Emitting Diodes Enabled by Passivating Defect and Constructing Dual Energy‐Transfer Pathway through Functional Perovskite Nanocrystals. Advanced Materials 2022, 34 (43) https://doi.org/10.1002/adma.202207445
    55. Pengfei Wu, Fei Zhang. Recent Advances in Lead Chemisorption for Perovskite Solar Cells. Transactions of Tianjin University 2022, 28 (5) , 341-357. https://doi.org/10.1007/s12209-022-00316-z
    56. Jun Guo, Sixin Chen, Yadong Xu, Fangpei Li, Wanqi Jie, Menghua Zhu. Oriented preparation of Large-Area uniform Cs2TeI6 perovskite film for high performance X-ray detector. Journal of Colloid and Interface Science 2022, 624 , 629-636. https://doi.org/10.1016/j.jcis.2022.06.003
    57. Chi‐Lun Mai, Qiu Xiong, Xiong Li, Jiann‐Yeu Chen, Jung‐Yao Chen, Ching‐Chin Chen, Jianbin Xu, Chunming Liu, Chen‐Yu Yeh, Peng Gao. Thermally Stable D 2h Symmetric Donor‐π‐Donor Porphyrins as Hole‐Transporting Materials for Perovskite Solar Cells. Angewandte Chemie 2022, 134 (39) https://doi.org/10.1002/ange.202209365
    58. Chi‐Lun Mai, Qiu Xiong, Xiong Li, Jiann‐Yeu Chen, Jung‐Yao Chen, Ching‐Chin Chen, Jianbin Xu, Chunming Liu, Chen‐Yu Yeh, Peng Gao. Thermally Stable D 2h Symmetric Donor‐π‐Donor Porphyrins as Hole‐Transporting Materials for Perovskite Solar Cells. Angewandte Chemie International Edition 2022, 61 (39) https://doi.org/10.1002/anie.202209365
    59. Yunfa Si, Huihui Jin, Qiong Zhang, Dewen Xu, Renxin Xu, Anxin Ding, Dan Liu. Roll-to-roll processable MXene-rGO-PVA composite films with enhanced mechanical properties and environmental stability for electromagnetic interference shielding. Ceramics International 2022, 48 (17) , 24898-24905. https://doi.org/10.1016/j.ceramint.2022.05.143
    60. Qingze Pan, Zhuoran Xia, Lingfeng Zhen, Jiangli Fan. Frontier progress and challenges based on excited-state porphyrins and their derivatives. SCIENTIA SINICA Chimica 2022, 52 (9) , 1547-1556. https://doi.org/10.1360/SSC-2022-0117
    61. Liang Chu, Shuaibo Zhai, Waqar Ahmad, Jing Zhang, Yue Zang, Wensheng Yan, Yongfang Li. High-performance large-area perovskite photovoltaic modules. Nano Research Energy 2022, 1 , e9120024. https://doi.org/10.26599/NRE.2022.9120024
    62. Lei Zhang, Wenguang Hu, Shaofeng Shao. Dye-modified halide perovskite materials. Organic Electronics 2022, 107 , 106545. https://doi.org/10.1016/j.orgel.2022.106545
    63. Hongyu Lai, Ning Wang, Yuliang Li. Porphyrin and phthalocyanine: from molecular materials to aggregates. SCIENTIA SINICA Chimica 2022, 52 (8) , 1259-1277. https://doi.org/10.1360/SSC-2022-0017
    64. Yixi Wang, Hairong Zhao, Marek Piotrowski, Xiao Han, Zhongsheng Ge, Lizhuang Dong, Chengjie Wang, Sowjanya Krishna Pinisetty, Praveen Kumar Balguri, Anil Kumar Bandela, Udayabhaskararao Thumu. Cesium Lead Iodide Perovskites: Optically Active Crystal Phase Stability to Surface Engineering. Micromachines 2022, 13 (8) , 1318. https://doi.org/10.3390/mi13081318
    65. Shuangtong Wu, Jing Cao. Perovskite modifiers with porphyrin/phthalocyanine complexes for efficient photovoltaics. Journal of Coordination Chemistry 2022, 75 (11-14) , 1494-1519. https://doi.org/10.1080/00958972.2022.2079410
    66. Jinxin Yang, Eng Liang Lim, Li Tan, Zhanhua Wei. Ink Engineering in Blade‐Coating Large‐Area Perovskite Solar Cells. Advanced Energy Materials 2022, 12 (28) https://doi.org/10.1002/aenm.202200975
    67. Selvam Ramasamy, Muthuraaman Bhagavathiachari, Samuel Austin Suthanthiraraj, Maruthamuthu Pichai. Mini review on the molecular engineering of photosensitizer: Current status and prospects of metal-free/porphyrin frameworks at the interface of dye-sensitized solar cells. Dyes and Pigments 2022, 203 , 110380. https://doi.org/10.1016/j.dyepig.2022.110380
    68. Ethan Berger, Mohammad Bagheri, Somayyeh Asgari, Jin Zhou, Mikko Kokkonen, Parisa Talebi, Jingshan Luo, Ana Flávia Nogueira, Trystan Watson, Syed Ghufran Hashmi. Recent developments in perovskite-based precursor inks for scalable architectures of perovskite solar cell technology. Sustainable Energy & Fuels 2022, 6 (12) , 2879-2900. https://doi.org/10.1039/D2SE00162D
    69. Gizachew Belay Adugna, Seid Yimer Abate, Yu-Tai Tao. High-Efficiency and scalable Solution-Sheared perovskite solar cells using green solvents. Chemical Engineering Journal 2022, 437 , 135477. https://doi.org/10.1016/j.cej.2022.135477
    70. Hyun-Jung Lee, Seok-In Na. Efficient mixed-cation perovskite photovoltaic cells via additive-assisted slot-die deposition. Materials Research Bulletin 2022, 149 , 111728. https://doi.org/10.1016/j.materresbull.2022.111728
    71. Kuo Su, Wentao Chen, Yuqiong Huang, Guang Yang, Keith Gregory Brooks, Bao Zhang, Yaqing Feng, Mohammad Khaja Nazeeruddin, Yi Zhang. In Situ Graded Passivation via Porphyrin Derivative with Enhanced Photovoltage and Fill Factor in Perovskite Solar Cells. Solar RRL 2022, 6 (4) https://doi.org/10.1002/solr.202100964
    72. Yameen Ahmed, Bilawal Khan, M. Bilal Faheem, Keqing Huang, Yuanji Gao, Junliang Yang. Organic additives in all-inorganic perovskite solar cells and modules: from moisture endurance to enhanced efficiency and operational stability. Journal of Energy Chemistry 2022, 67 , 361-390. https://doi.org/10.1016/j.jechem.2021.09.047
    73. Pengfei Wu, Shirong Wang, Xianggao Li, Fei Zhang. Beyond efficiency fever: Preventing lead leakage for perovskite solar cells. Matter 2022, 5 (4) , 1137-1161. https://doi.org/10.1016/j.matt.2022.02.012
    74. Jia‐Hui Zhao, Xijiao Mu, Luyao Wang, Zihan Fang, Xiaoxin Zou, Jing Cao. Homogeneously Large Polarons in Aromatic Passivators Improves Charge Transport between Perovskite Grains for >24 % Efficiency in Photovoltaics. Angewandte Chemie 2022, 134 (14) https://doi.org/10.1002/ange.202116308
    75. Jia‐Hui Zhao, Xijiao Mu, Luyao Wang, Zihan Fang, Xiaoxin Zou, Jing Cao. Homogeneously Large Polarons in Aromatic Passivators Improves Charge Transport between Perovskite Grains for >24 % Efficiency in Photovoltaics. Angewandte Chemie International Edition 2022, 61 (14) https://doi.org/10.1002/anie.202116308
    76. Rui Guo, Li Rao, Qianjin Liu, Hongyu Wang, Chenxiang Gong, Baojin Fan, Zhi Xing, Xiangchuan Meng, Xiaotian Hu. Atmospheric stable and flexible Sn-based perovskite solar cells via a bio-inspired antioxidative crystal template. Journal of Energy Chemistry 2022, 66 , 612-618. https://doi.org/10.1016/j.jechem.2021.09.013
    77. Ligang Xu, Di Wu, Wenxuan Lv, Yuan Xiang, Yan Liu, Ye Tao, Jun Yin, Mengyuan Qian, Ping Li, Liuquan Zhang, Shufen Chen, Omar F. Mohammed, Osman M. Bakr, Zheng Duan, Runfeng Chen, Wei Huang. Resonance‐Mediated Dynamic Modulation of Perovskite Crystallization for Efficient and Stable Solar Cells. Advanced Materials 2022, 34 (6) https://doi.org/10.1002/adma.202107111
    78. Shicheng Tang, Jingan Chen, Chi Li, Ziwen Mao, Zhibin Cheng, Jindan Zhang, Mengqi Zhu, Shengchang Xiang, Zhangjing Zhang. Mixing halogens improves the passivation effects of amine halide on perovskite. Electrochimica Acta 2022, 405 , 139782. https://doi.org/10.1016/j.electacta.2021.139782
    79. Nazila Zarabinia, Giulia Lucarelli, Reza Rasuli, Francesca De Rossi, Babak Taheri, Hamed Javanbakht, Francesca Brunetti, Thomas M. Brown. Simple and effective deposition method for solar cell perovskite films using a sheet of paper. iScience 2022, 25 (2) , 103712. https://doi.org/10.1016/j.isci.2021.103712
    80. Shindume Lomboleni Hamukwaya, Huiying Hao, Zengying Zhao, Jingjing Dong, Tingting Zhong, Jie Xing, Liu Hao, Melvin Mununuri Mashingaidze. A Review of Recent Developments in Preparation Methods for Large-Area Perovskite Solar Cells. Coatings 2022, 12 (2) , 252. https://doi.org/10.3390/coatings12020252
    81. Chen Lu, Jing Yu, Hao Sheng, Yongjian Jiang, Fengyang Zhao, Jingang Wang. Linear and Nonlinear Photon-Induced Cross Bridge/Space Charge Transfer in STC Molecular Crystals. Nanomaterials 2022, 12 (3) , 535. https://doi.org/10.3390/nano12030535
    82. Ajay Kumar Jena, Somayeh Gholipour, Yaser Abdi, Michael Saliba. Perovskite Photovoltaics. 2022, 1267-1303. https://doi.org/10.1007/978-3-030-63713-2_41
    83. Bhaskar Parida, Abdul Kareem Kalathil Soopy, Hiba Shahulhameed, Adel Najar. Zn-Porphyrin Blended Anti-Solvent Treatment for Grain Boundary Passivation of Perovskite Solar Cells. 2022, JTu4A.39. https://doi.org/10.1364/FIO.2022.JTu4A.39
    84. Cuc Mai Thi Kim, Lahoucine Atourki, Mouad Ouafi, Syed Ghufran Hashmi. A synopsis of progressive transition in precursor inks development for metal halide perovskites-based photovoltaic technology. Journal of Materials Chemistry A 2021, 9 (47) , 26650-26668. https://doi.org/10.1039/D1TA06556D
    85. Shenghou Zhou, Wenfeng Zhang, Puan Lin, Liuwen Tian, Xinyi Li, Yutong Jiang, Lin Du, Xiangqing Zhou, Fang Wen, Gongtao Duan, Lang Yu, Tao Chen, Zhu Ma, Yuelong Huang. Controllable perovskite crystallization via platelet-like PbI2 films from water processing for efficient perovskite solar cells. Journal of Alloys and Compounds 2021, 885 , 160900. https://doi.org/10.1016/j.jallcom.2021.160900
    86. JinKiong Ling, Pradeep Kumar Koyadan Kizhakkedath, Trystan M. Watson, Iván Mora-Seró, Lukas Schmidt-Mende, Thomas M. Brown, Rajan Jose. A Perspective on the Commercial Viability of Perovskite Solar Cells. Solar RRL 2021, 5 (11) https://doi.org/10.1002/solr.202100401
    87. Hongqiao Wang, Yunfan Wang, Zhipeng Xuan, Tingting Chen, Jingquan Zhang, Xia Hao, Lili Wu, Iordania Constantinou, Dewei Zhao. Progress in Perovskite Solar Cells towards Commercialization—A Review. Materials 2021, 14 (21) , 6569. https://doi.org/10.3390/ma14216569
    88. Tianhao Wu, Xing Li, Yabing Qi, Yiqiang Zhang, Liyuan Han. Defect Passivation for Perovskite Solar Cells: from Molecule Design to Device Performance. ChemSusChem 2021, 14 (20) , 4354-4376. https://doi.org/10.1002/cssc.202101573
    89. Natalia B. Morozova, Marina A. Pavlova, Anna D. Plyutinskaya, Andrey A. Pankratov, Kanamat T. Efendiev, Alevtina S. Semkina, Dmitriy A. Pritmov, Andrey F. Mironov, Pavel A. Panchenko, Olga A. Fedorova. Photodiagnosis and photodynamic effects of bacteriochlorin-naphthalimide conjugates on tumor cells and mouse model. Journal of Photochemistry and Photobiology B: Biology 2021, 223 , 112294. https://doi.org/10.1016/j.jphotobiol.2021.112294
    90. Carlos Pereyra, Haibing Xie, Mónica Lira-Cantu. Additive engineering for stable halide perovskite solar cells. Journal of Energy Chemistry 2021, 60 , 599-634. https://doi.org/10.1016/j.jechem.2021.01.037
    91. Qiaoyun Chen, Xudong Yang, Yi Zhou, Bo Song. Zwitterions: promising interfacial/doping materials for organic/perovskite solar cells. New Journal of Chemistry 2021, 45 (34) , 15118-15130. https://doi.org/10.1039/D1NJ01605A
    92. Jian Cheng, Fan Liu, Zhengqiang Tang, Yuelong Li. Scalable Blade Coating: A Technique Accelerating the Commercialization of Perovskite‐Based Photovoltaics. Energy Technology 2021, 9 (8) https://doi.org/10.1002/ente.202100204
    93. Helin Wang, Jiatao Wu, Jun Song, Junle Qu, Jiarong Lian, Peng-Cheng Qian, Wai-Yeung Wong. Conjugated polyelectrolyte doped perovskite films with enhanced photovoltaic performance and stability. Chemical Engineering Journal 2021, 417 , 128068. https://doi.org/10.1016/j.cej.2020.128068
    94. Yuanhang Yang, Zexu Xue, Long Chen, Cho Fai Jonathan Lau, Zhiping Wang. Large-area perovskite films for PV applications: A perspective from nucleation and crystallization. Journal of Energy Chemistry 2021, 59 , 626-641. https://doi.org/10.1016/j.jechem.2020.12.001
    95. Zhong-En Shi, Shu-Hao Liu, Chih-Hung Tsai, Chia-Wei Li, Chih-Ping Chen, Yuan-Hsiang Yu. Enhancing charge transport performance of perovskite solar cells by using reduced graphene oxide-cysteine/nanogold hybrid material in the active layer. FlatChem 2021, 28 , 100254. https://doi.org/10.1016/j.flatc.2021.100254
    96. Tongle Bu, Jing Li, Hengyi Li, Congcong Tian, Jie Su, Guoqing Tong, Luis K. Ono, Chao Wang, Zhipeng Lin, Nianyao Chai, Xiao-Li Zhang, Jingjing Chang, Jianfeng Lu, Jie Zhong, Wenchao Huang, Yabing Qi, Yi-Bing Cheng, Fuzhi Huang. Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science 2021, 372 (6548) , 1327-1332. https://doi.org/10.1126/science.abh1035
    97. Chi Li, Shanshan Guo, Jingan Chen, Zhibin Cheng, Mengqi Zhu, Jindan Zhang, Shengchang Xiang, Zhangjing Zhang. Mitigation of vacancy with ammonium salt-trapped ZIF-8 capsules for stable perovskite solar cells through simultaneous compensation and loss inhibition. Nanoscale Advances 2021, 3 (12) , 3554-3562. https://doi.org/10.1039/D1NA00173F
    98. Yifan Xiao, Chuantian Zuo, Jun‐Xing Zhong, Wu‐Qiang Wu, Liang Shen, Liming Ding. Large‐Area Blade‐Coated Solar Cells: Advances and Perspectives. Advanced Energy Materials 2021, 11 (21) https://doi.org/10.1002/aenm.202100378
    99. Penji Yan, Jing Cao, Jing Pang, Zirong Yang, Xiulin Wang, Xiaoqiang Yao. Chemical encapsulation of perovskite film by tetra-thiol copper(II) porphyrin for stable and clean photovoltaics. Organic Electronics 2021, 93 , 106158. https://doi.org/10.1016/j.orgel.2021.106158
    100. Abyl Muradov, Daria Frolushkina, Vadim Samusenkov, Gulsara Zhamanbayeva, Sebastian Kot. Methods of Stability Control of Perovskite Solar Cells for High Efficiency. Energies 2021, 14 (10) , 2918. https://doi.org/10.3390/en14102918
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect