ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Mechanical Unfolding and Thermal Refolding of Single-Chain Nanoparticles Using Ligand–Metal Bonds

  • Avishai Levy
    Avishai Levy
    Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Haifa 3200008, Israel
    More by Avishai Levy
  • Roi Feinstein
    Roi Feinstein
    Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Haifa 3200008, Israel
  • , and 
  • Charles E. Diesendruck*
    Charles E. Diesendruck
    Schulich Faculty of Chemistry, Technion − Israel Institute of Technology, Haifa 3200008, Israel
    *[email protected]
Cite this: J. Am. Chem. Soc. 2019, 141, 18, 7256–7260
Publication Date (Web):April 24, 2019
https://doi.org/10.1021/jacs.9b01960
Copyright © 2019 American Chemical Society

    Article Views

    2820

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (871 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Covalent macromolecules tend to fragment under mechanical stress through the mechanochemical scission of covalent bonds in the backbone. However, linear polymers that have been intramolecularly collapsed by covalent bonds show greater mechanochemical stability compared to other thermoplastics. Here, rhodium-π bonds are used for intramolecular collapse in order to show that mechanical stress can be removed from the polymer backbone and focused on weaker intramolecular cross-links, leading to polymer unfolding instead of mechanochemical events at the backbone. Moreover, given rhodium-π bonds form spontaneously, by changing the time interval between ultrasound pulses, we demonstrate that entropic spring effects can lead to polymer refolding and reformation of the previously cleaved metal–ligand bonds, effectively repairing the intramolecular noncovalent cross-links. These findings provide the first example of an intramolecular repairing mechanism in synthetic molecules in solution, allowing for restoration of chemical bonds after mechanochemical events.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.9b01960.

    • General information, experimental procedures, additional figures, NMRs, statistics (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 55 publications.

    1. Or Galant, Aseel Aborome, Aaron S. McCalmont, Stuart L. James, Michael Patrascu, Sabrina Spatari. LCA as a Tool to Detect Environmental “Hot Spots” in Early-Stage Mechanochemical Synthesis of Organic Dyes. ACS Sustainable Chemistry & Engineering 2023, 11 (32) , 12155-12165. https://doi.org/10.1021/acssuschemeng.3c03290
    2. Zexiang Han, Shayna L. Hilburg, Alfredo Alexander-Katz. Forced Unfolding of Protein-Inspired Single-Chain Random Heteropolymers. Macromolecules 2022, 55 (4) , 1295-1309. https://doi.org/10.1021/acs.macromol.1c02411
    3. Gregory I. Peterson, Jinkyung Noh, Min Young Ha, Sanghee Yang, Won Bo Lee, Tae-Lim Choi. Influence of Grafting Density on Ultrasound-Induced Backbone and Arm Scission of Graft Copolymers. Macromolecules 2021, 54 (9) , 4219-4226. https://doi.org/10.1021/acs.macromol.1c00334
    4. Qin Wu, Yuan Yuan, Feiyi Chen, Chenxing Sun, Huaping Xu, Yulan Chen. Diselenide-Linked Polymers under Sonication. ACS Macro Letters 2020, 9 (11) , 1547-1551. https://doi.org/10.1021/acsmacrolett.0c00585
    5. Gregory I. Peterson, Wonyoung Ko, Ye-Jin Hwang, Tae-Lim Choi. Mechanochemical Degradation of Amorphous Polymers with Ball-Mill Grinding: Influence of the Glass Transition Temperature. Macromolecules 2020, 53 (18) , 7795-7802. https://doi.org/10.1021/acs.macromol.0c01510
    6. Guillaume De Bo. Polymer Mechanochemistry and the Emergence of the Mechanophore Concept. Macromolecules 2020, 53 (18) , 7615-7617. https://doi.org/10.1021/acs.macromol.0c01683
    7. Danielle J. Mai, Charles M. Schroeder. 100th Anniversary of Macromolecular Science Viewpoint: Single-Molecule Studies of Synthetic Polymers. ACS Macro Letters 2020, 9 (9) , 1332-1341. https://doi.org/10.1021/acsmacrolett.0c00523
    8. Junfeng Chen, Edzna S. Garcia, Steven C. Zimmerman. Intramolecularly Cross-Linked Polymers: From Structure to Function with Applications as Artificial Antibodies and Artificial Enzymes. Accounts of Chemical Research 2020, 53 (6) , 1244-1256. https://doi.org/10.1021/acs.accounts.0c00178
    9. Yuval Vidavsky, Michael R. Buche, Zachary M. Sparrow, Xinyue Zhang, Steven J. Yang, Robert A. DiStasio Jr., Meredith N. Silberstein. Tuning the Mechanical Properties of Metallopolymers via Ligand Interactions: A Combined Experimental and Theoretical Study. Macromolecules 2020, 53 (6) , 2021-2030. https://doi.org/10.1021/acs.macromol.9b02756
    10. Gregory I. Peterson, Jinkyung Noh, Ki-Taek Bang, Hyunji Ma, Kyoung Taek Kim, Tae-Lim Choi. Mechanochemical Degradation of Brush Polymers: Kinetics of Ultrasound-Induced Backbone and Arm Scission. Macromolecules 2020, 53 (5) , 1623-1628. https://doi.org/10.1021/acs.macromol.9b02721
    11. Gregory I. Peterson, Jaeho Lee, Tae-Lim Choi. Multimechanophore Graft Polymers: Mechanochemical Reactions at Backbone–Arm Junctions. Macromolecules 2019, 52 (24) , 9561-9568. https://doi.org/10.1021/acs.macromol.9b01996
    12. Haixiao Wan, Sai Li, Yachen Wang, Zhudan Chen, Junwei He, Chunhua Li, Gengxin Liu, Jun Liu, Xiaodong Wang, Thomas P. Russell, Liqun Zhang. All-polymer nanocomposites having superior strength, toughness and ultralow energy dissipation. Nano Energy 2023, 118 , 108925. https://doi.org/10.1016/j.nanoen.2023.108925
    13. Patrick H. Maag, Florian Feist, Vinh X. Truong, Hendrik Frisch, Peter W. Roesky, Christopher Barner‐Kowollik. Steuerung der reversiblen Faltung von Einzelketten‐Nanopartikeln durch sichtbares Licht. Angewandte Chemie 2023, 135 (37) https://doi.org/10.1002/ange.202309259
    14. Patrick H. Maag, Florian Feist, Vinh X. Truong, Hendrik Frisch, Peter W. Roesky, Christopher Barner‐Kowollik. Visible‐Light‐Induced Control over Reversible Single‐Chain Nanoparticle Folding. Angewandte Chemie International Edition 2023, 62 (37) https://doi.org/10.1002/anie.202309259
    15. Evgeny S. Sorin, Rose K. Baimuratova, Igor E. Uflyand, Evgeniya O. Perepelitsina, Denis V. Anokhin, Dmitry A. Ivanov, Gulzhian I. Dzhardimalieva. New Self-Healing Metallosupramolecular Copolymers with a Complex of Cobalt Acrylate and 4′-Phenyl-2,2′:6′,2″-terpyridine. Polymers 2023, 15 (6) , 1472. https://doi.org/10.3390/polym15061472
    16. Hang Zhang, Charles E. Diesendruck. Off‐center Mechanophore Activation in Block Copolymers. Angewandte Chemie 2023, 135 (2) https://doi.org/10.1002/ange.202213980
    17. Hang Zhang, Charles E. Diesendruck. Off‐center Mechanophore Activation in Block Copolymers. Angewandte Chemie International Edition 2023, 62 (2) https://doi.org/10.1002/anie.202213980
    18. Zichao Wei, Chung-Hao Liu, Qiang Luo, Srinivas Thanneeru, Alfredo M. Angeles-Boza, Mu-Ping Nieh, Jie He. Hydrophobic pockets built in polymer micelles enhance the reactivity of Cu 2+ ions. Materials Chemistry Frontiers 2023, 7 https://doi.org/10.1039/D3QM00110E
    19. Henrik Kalmer, Federica Sbordone, Hendrik Frisch. Peptide based folding and function of single polymer chains. Polymer Chemistry 2022, 13 (38) , 5458-5462. https://doi.org/10.1039/D2PY00717G
    20. Yue Shao, Zhenzhong Yang. Progress in polymer single-chain based hybrid nanoparticles. Progress in Polymer Science 2022, 133 , 101593. https://doi.org/10.1016/j.progpolymsci.2022.101593
    21. Davide Campagna, Robert Göstl. Mechanoresponsive Carbamoyloximes for the Activation of Secondary Amines in Polymers. Angewandte Chemie International Edition 2022, 61 (39) https://doi.org/10.1002/anie.202207557
    22. Davide Campagna, Robert Göstl. Mechanoresponsive Carbamoyloxime für die Aktivierung Sekundärer Amine in Polymeren. Angewandte Chemie 2022, 134 (39) https://doi.org/10.1002/ange.202207557
    23. Marco De Corato, Marino Arroyo. A theory for the flow of chemically responsive polymer solutions: Equilibrium and shear-induced phase separation. Journal of Rheology 2022, 66 (5) , 813-835. https://doi.org/10.1122/8.0000475
    24. Yue Shao, Yong‐Lei Wang, Zian Tang, Zhendong Wen, Chiawei Chang, Chunyu Wang, Dayin Sun, Yilan Ye, Dong Qiu, Yubin Ke, Feng Liu, Zhenzhong Yang. Scalable Synthesis of Photoluminescent Single‐Chain Nanoparticles by Electrostatic‐Mediated Intramolecular Crosslinking. Angewandte Chemie 2022, 134 (27) https://doi.org/10.1002/ange.202205183
    25. Yue Shao, Yong‐Lei Wang, Zian Tang, Zhendong Wen, Chiawei Chang, Chunyu Wang, Dayin Sun, Yilan Ye, Dong Qiu, Yubin Ke, Feng Liu, Zhenzhong Yang. Scalable Synthesis of Photoluminescent Single‐Chain Nanoparticles by Electrostatic‐Mediated Intramolecular Crosslinking. Angewandte Chemie International Edition 2022, 61 (27) https://doi.org/10.1002/anie.202205183
    26. Hang Zhang, Charles E. Diesendruck. Accelerated Mechanochemistry in Helical Polymers. Angewandte Chemie 2022, 134 (14) https://doi.org/10.1002/ange.202115325
    27. Hang Zhang, Charles E. Diesendruck. Accelerated Mechanochemistry in Helical Polymers. Angewandte Chemie International Edition 2022, 61 (14) https://doi.org/10.1002/anie.202115325
    28. Robin Küng, Robert Göstl, Bernd M. Schmidt. Release of Molecular Cargo from Polymer Systems by Mechanochemistry. Chemistry – A European Journal 2022, 28 (17) https://doi.org/10.1002/chem.202103860
    29. Ryosuke Kasori, Takuma Watabe, Daisuke Aoki, Hideyuki Otsuka. Enhancement of Mechanophore Activation by Electrostatic Interaction. Bulletin of the Chemical Society of Japan 2022, https://doi.org/10.1246/bcsj.20220021
    30. Jinkyung Noh, Gregory I. Peterson, Tae‐Lim Choi. Mechanochemical Reactivity of Bottlebrush and Dendronized Polymers: Solid vs. Solution States. Angewandte Chemie International Edition 2021, 60 (34) , 18651-18659. https://doi.org/10.1002/anie.202104447
    31. Jinkyung Noh, Gregory I. Peterson, Tae‐Lim Choi. Mechanochemical Reactivity of Bottlebrush and Dendronized Polymers: Solid vs. Solution States. Angewandte Chemie 2021, 133 (34) , 18799-18807. https://doi.org/10.1002/ange.202104447
    32. Xiang-Meng Jia, Wen-Feng Lin, Huan-Yu Zhao, Hu-Jun Qian, Zhong-Yuan Lu. Supercooled melt structure and dynamics of single-chain nanoparticles: A computer simulation study. The Journal of Chemical Physics 2021, 155 (5) https://doi.org/10.1063/5.0056293
    33. Shuaidong Huo, Yu Zhou, Zhihuan Liao, Pengkun Zhao, Miancheng Zou, Robert Göstl, Andreas Herrmann. Reversible regulation of metallo-base-pair interactions for DNA dehybridization by ultrasound. Chemical Communications 2021, 57 (60) , 7438-7440. https://doi.org/10.1039/D1CC02402G
    34. Mathieu A. Ayer, Ester Verde-Sesto, Cheyenne H. Liu, Christoph Weder, Marco Lattuada, Yoan C. Simon. Modeling ultrasound-induced molecular weight decrease of polymers with multiple scissile azo-mechanophores. Polymer Chemistry 2021, 12 (28) , 4093-4103. https://doi.org/10.1039/D1PY00420D
    35. Robin Küng, Tobias Pausch, Dustin Rasch, Robert Göstl, Bernd M. Schmidt. Mechanochemical Release of Non‐Covalently Bound Guests from a Polymer‐Decorated Supramolecular Cage. Angewandte Chemie International Edition 2021, 60 (24) , 13626-13630. https://doi.org/10.1002/anie.202102383
    36. Robin Küng, Tobias Pausch, Dustin Rasch, Robert Göstl, Bernd M. Schmidt. Mechanochemische Freisetzung nichtkovalent gebundener Gäste aus einem mit Polymerketten dekorierten supramolekularen Käfig. Angewandte Chemie 2021, 133 (24) , 13738-13742. https://doi.org/10.1002/ange.202102383
    37. Tomer Y. Burshtein, Iris Agami, Matan Sananis, Charles E. Diesendruck, David Eisenberg. Template‐Free Formation of Regular Macroporosity in Carbon Materials Made from a Folded Polymer Precursor. Small 2021, 17 (24) https://doi.org/10.1002/smll.202100712
    38. Fabian R. Bloesser, Sarah L. Walden, Ishrath M. Irshadeen, Lewis C. Chambers, Christopher Barner-Kowollik. Chemiluminescent self-reported unfolding of single-chain nanoparticles. Chemical Communications 2021, 57 (42) , 5203-5206. https://doi.org/10.1039/D1CC00068C
    39. Daniel Kodura, Hannes A. Houck, Fabian R. Bloesser, Anja S. Goldmann, Filip E. Du Prez, Hendrik Frisch, Christopher Barner-Kowollik. Light-fueled dynamic covalent crosslinking of single polymer chains in non-equilibrium states. Chemical Science 2021, 12 (4) , 1302-1310. https://doi.org/10.1039/D0SC05818A
    40. Or Galant, Hasan Barca Donmez, Christopher Barner‐Kowollik, Charles E. Diesendruck. Flow Photochemistry for Single‐Chain Polymer Nanoparticle Synthesis. Angewandte Chemie 2021, 133 (4) , 2070-2074. https://doi.org/10.1002/ange.202010429
    41. Or Galant, Hasan Barca Donmez, Christopher Barner‐Kowollik, Charles E. Diesendruck. Flow Photochemistry for Single‐Chain Polymer Nanoparticle Synthesis. Angewandte Chemie International Edition 2021, 60 (4) , 2042-2046. https://doi.org/10.1002/anie.202010429
    42. Gregory I. Peterson, Tae-Lim Choi. The influence of polymer architecture in polymer mechanochemistry. Chemical Communications 2021, 6 https://doi.org/10.1039/D1CC02501E
    43. Giancarlo Cravotto, Katia Martina, Maria Jesus Moran, Pedro Cintas. Sonomechanochemistry. 2021, 467-510. https://doi.org/10.1016/B978-0-12-819009-8.00005-0
    44. Maroun Abi Ghanem, Amrita Basu, Reza Behrou, Nicholas Boechler, Andrew J. Boydston, Stephen L. Craig, Yangju Lin, Brock E. Lynde, Alshakim Nelson, Hang Shen, Duane W. Storti. The role of polymer mechanochemistry in responsive materials and additive manufacturing. Nature Reviews Materials 2021, 6 (1) , 84-98. https://doi.org/10.1038/s41578-020-00249-w
    45. Daniel E. Martínez‐Tong, José A. Pomposo, Ester Verde‐Sesto. Triggering Forces at the Nanoscale: Technologies for Single‐Chain Mechanical Activation and Manipulation. Macromolecular Rapid Communications 2021, 42 (1) https://doi.org/10.1002/marc.202000654
    46. Victoria Kobernik, Inbal Berkovich, Avishai Levy, N. Gabriel Lemcoff, Charles E. Diesendruck. Chemical Communication between Organometallic Single‐Chain Polymer Nanoparticles. Chemistry – A European Journal 2020, 26 (68) , 15835-15838. https://doi.org/10.1002/chem.202003330
    47. Zichao Wei, Hanyi Duan, Gengsheng Weng, Jie He. Metals in polymers: hybridization enables new functions. Journal of Materials Chemistry C 2020, 8 (45) , 15956-15980. https://doi.org/10.1039/D0TC03810E
    48. Gulzhian I. Dzhardimalieva, Bal C. Yadav, Sarkyt E. Kudaibergenov, Igor E. Uflyand. Basic Approaches to the Design of Intrinsic Self-Healing Polymers for Triboelectric Nanogenerators. Polymers 2020, 12 (11) , 2594. https://doi.org/10.3390/polym12112594
    49. Modan Liu, Wolfgang Wenzel, Hendrik Frisch. Photocycloreversions within single polymer chains. Polymer Chemistry 2020, 11 (41) , 6616-6623. https://doi.org/10.1039/D0PY01062F
    50. Xuefeng Yang, Xueyu Jiang, Hongye Yang, Liming Bian, Chunyu Chang, Lina Zhang. Biocompatible cellulose-based supramolecular nanoparticles driven by host–guest interactions for drug delivery. Carbohydrate Polymers 2020, 237 , 116114. https://doi.org/10.1016/j.carbpol.2020.116114
    51. Yongsheng Gao, Dezhong Zhou, Jing Lyu, Sigen A, Qian Xu, Ben Newland, Krzysztof Matyjaszewski, Hongyun Tai, Wenxin Wang. Complex polymer architectures through free-radical polymerization of multivinyl monomers. Nature Reviews Chemistry 2020, 4 (4) , 194-212. https://doi.org/10.1038/s41570-020-0170-7
    52. Gulzhian I. Dzhardimalieva, Bal C. Yadav, Shakti Singh, Igor E. Uflyand. Self-healing and shape memory metallopolymers: state-of-the-art and future perspectives. Dalton Transactions 2020, 49 (10) , 3042-3087. https://doi.org/10.1039/C9DT04360H
    53. Avishai Levy, Hadar Goldstein, Dolev Brenman, Charles E. Diesendruck. Effect of intramolecular crosslinker properties on the mechanochemical fragmentation of covalently folded polymers. Journal of Polymer Science 2020, 58 (5) , 692-703. https://doi.org/10.1002/pol.20190217
    54. Feng Wang, Charles E. Diesendruck. Effect of disulphide loop length on mechanochemical structural stability of macromolecules. Chemical Communications 2020, 56 (14) , 2143-2146. https://doi.org/10.1039/C9CC07439B
    55. Hendrik Frisch, Bryan T. Tuten, Christopher Barner‐Kowollik. Macromolecular Superstructures: A Future Beyond Single Chain Nanoparticles. Israel Journal of Chemistry 2020, 60 (1-2) , 86-99. https://doi.org/10.1002/ijch.201900145

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect