Elucidation of the Reaction Mechanism for High-Temperature Water Gas Shift over an Industrial-Type Copper–Chromium–Iron Oxide Catalyst
- Felipe Polo-GarzonFelipe Polo-GarzonChemical Sciences Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United StatesMore by Felipe Polo-Garzon
- ,
- Victor FungVictor FungChemical Sciences Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United StatesDepartment of Chemistry, University of California, Riverside, California 92521, United StatesMore by Victor Fung
- ,
- Luan NguyenLuan NguyenDepartments of Chemical Engineering and Chemistry, The University of Kansas, Lawrence, Kansas 66047, United StatesMore by Luan Nguyen
- ,
- Yu TangYu TangDepartments of Chemical Engineering and Chemistry, The University of Kansas, Lawrence, Kansas 66047, United StatesMore by Yu Tang
- ,
- Franklin TaoFranklin TaoDepartments of Chemical Engineering and Chemistry, The University of Kansas, Lawrence, Kansas 66047, United StatesMore by Franklin Tao
- ,
- Yongqiang ChengYongqiang ChengNeutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United StatesMore by Yongqiang Cheng
- ,
- Luke L. DaemenLuke L. DaemenNeutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United StatesMore by Luke L. Daemen
- ,
- Anibal J. Ramirez-CuestaAnibal J. Ramirez-CuestaNeutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United StatesMore by Anibal J. Ramirez-Cuesta
- ,
- Guo Shiou FooGuo Shiou FooChemical Sciences Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United StatesMore by Guo Shiou Foo
- ,
- Minghui ZhuMinghui ZhuOperando Molecular Spectroscopy & Catalysis Laboratory, Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United StatesMore by Minghui Zhu
- ,
- Israel E. WachsIsrael E. WachsOperando Molecular Spectroscopy & Catalysis Laboratory, Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United StatesMore by Israel E. Wachs
- ,
- De-en JiangDe-en JiangDepartment of Chemistry, University of California, Riverside, California 92521, United StatesMore by De-en Jiang
- , and
- Zili Wu*Zili Wu*[email protected]Chemical Sciences Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United StatesMore by Zili Wu
Abstract

The water gas shift (WGS) reaction is of paramount importance for the chemical industry, as it constitutes, coupled with methane reforming, the main industrial route to produce hydrogen. Copper–chromium–iron oxide-based catalysts have been widely used for the high-temperature WGS reaction industrially. The WGS reaction mechanism by the CuCrFeOx catalyst has been debated for years, mainly between a “redox” mechanism involving the participation of atomic oxygen from the catalyst and an “associative” mechanism proceeding via a surface formate-like intermediate. In the present work, advanced in situ characterization techniques (infrared spectroscopy, temperature-programmed surface reaction (TPSR), near-ambient pressure XPS (NAP-XPS), and inelastic neutron scattering (INS)) were applied to determine the nature of the catalyst surface and identify surface intermediate species under WGS reaction conditions. The surface of the CuCrFeOx catalyst is found to be dynamic and becomes partially reduced under WGS reaction conditions, forming metallic Cu nanoparticles on Fe3O4. Neither in situ IR not INS spectroscopy detect the presence of surface formate species during WGS. TPSR experiments demonstrate that the evolution of CO2 and H2 from the CO/H2O reactants follows different kinetics than the evolution of CO2 and H2 from HCOOH decomposition (molecule mimicking the associative mechanism). Steady-state isotopic transient kinetic analysis (SSITKA) (CO + H216O → CO + H218O) exhibited significant 16O/18O scrambling, characteristic of a redox mechanism. Computed activation energies for elementary steps for the redox and associative mechanism by density functional theory (DFT) simulations indicate that the redox mechanism is favored over the associative mechanism. The combined spectroscopic, computational, and kinetic evidence in the present study finally resolves the WGS reaction mechanism on the industrial-type high-temperature CuCrFeOx catalyst that is shown to proceed via the redox mechanism.
Cited By
This article is cited by 55 publications.
- Jin-Ying Li, Qiang Fu, Chun-Jiang Jia. First-Principles Simulations of H2O Dissociation at the Interfacial Region Formed by a Molybdenum Oxide Cluster and a Reduced MoO3–x Surface. The Journal of Physical Chemistry C 2023, 127 (29) , 14177-14184. https://doi.org/10.1021/acs.jpcc.3c01923
- Xinbin Yu, Yongqiang Cheng, Yuanyuan Li, Felipe Polo-Garzon, Jue Liu, Eugene Mamontov, Meijun Li, David Lennon, Stewart F. Parker, Anibal J. Ramirez-Cuesta, Zili Wu. Neutron Scattering Studies of Heterogeneous Catalysis. Chemical Reviews 2023, 123 (13) , 8638-8700. https://doi.org/10.1021/acs.chemrev.3c00101
- Hui Wang, Lisha Wei, Yueyue Jiao, Xiaodong Wen, Haijun Jiao. Metal–Support Interaction from Single Atoms to Single Clusters on the Fully Dehydrated Silica Surface. The Journal of Physical Chemistry C 2023, 127 (19) , 8963-8977. https://doi.org/10.1021/acs.jpcc.2c08309
- Yinming Wang, Ziqi Tian, Qihao Yang, Kaicheng Tong, Xuan Tang, Nian Zhang, Jing Zhou, Linjuan Zhang, Qiuju Zhang, Sheng Dai, Yichao Lin, Zhiyi Lu, Liang Chen. Atomically Dispersed Dual Metal Sites Boost the Efficiency of Olefins Epoxidation in Tandem with CO2 Cycloaddition. Nano Letters 2022, 22 (20) , 8381-8388. https://doi.org/10.1021/acs.nanolett.2c03087
- Huayu Gu, Jintong Lan, Yi Liu, Cancan Ling, Kai Wei, Guangming Zhan, Furong Guo, Falong Jia, Zhihui Ai, Lizhi Zhang, Xiao Liu. Water Enables Lattice Oxygen Activation of Transition Metal Oxides for Volatile Organic Compound Oxidation. ACS Catalysis 2022, 12 (18) , 11272-11280. https://doi.org/10.1021/acscatal.2c03552
- Dongjae Shin, Rui Huang, Myeong Gon Jang, Seokhyun Choung, Youngbi Kim, Kiheon Sung, Tae Yong Kim, Jeong Woo Han. Role of an Interface for Hydrogen Production Reaction over Size-Controlled Supported Metal Catalysts. ACS Catalysis 2022, 12 (13) , 8082-8093. https://doi.org/10.1021/acscatal.2c02370
- Yu Jin, Hui Yang, Xin Yu, Pengju Ren, Yong Yang, Hongwei Xiang, Yong-Wang Li, Haijun Jiao, Xiaodong Wen. Unraveling the Synergetic Effect of the FeOx–Cu Model System in Catalyzing the Water–Gas Shift Reaction. The Journal of Physical Chemistry C 2022, 126 (14) , 6241-6248. https://doi.org/10.1021/acs.jpcc.2c00350
- Pan Yin, Jun Yu, Lei Wang, Jian Zhang, Yao Jie, Li-Fang Chen, Xiao-Jie Zhao, Hai-Song Feng, Yu-Sen Yang, Ming Xu, Xin Zhang, Jing-Bin Han, Hong Yan, Min Wei. Water-Gas-Shift Reaction on Au/TiO2–x Catalysts with Various TiO2 Crystalline Phases: A Theoretical and Experimental Study. The Journal of Physical Chemistry C 2021, 125 (37) , 20360-20372. https://doi.org/10.1021/acs.jpcc.1c06381
- Liuqingqing Yang, Laura Pastor-Pérez, Juan Jose Villora-Pico, Antonio Sepúlveda-Escribano, Feixiang Tian, Minghui Zhu, Yi-Fan Han, Tomas Ramirez Reina. Highly Active and Selective Multicomponent Fe–Cu/CeO2–Al2O3 Catalysts for CO2 Upgrading via RWGS: Impact of Fe/Cu Ratio. ACS Sustainable Chemistry & Engineering 2021, 9 (36) , 12155-12166. https://doi.org/10.1021/acssuschemeng.1c03551
- Jiao-Jiao Chen, Xiao-Na Li, Qing-Yu Liu, Gong-Ping Wei, Yuan Yang, Zi-Yu Li, Sheng-Gui He. Water Gas Shift Reaction Catalyzed by Rhodium–Manganese Oxide Cluster Anions. The Journal of Physical Chemistry Letters 2021, 12 (35) , 8513-8520. https://doi.org/10.1021/acs.jpclett.1c02267
- Pengfei Tian, Mengwei Gu, Runfa Qiu, Zixu Yang, Fuzhen Xuan, Minghui Zhu. Tunable Carbon Dioxide Activation Pathway over Iron Oxide Catalysts: Effects of Potassium. Industrial & Engineering Chemistry Research 2021, 60 (24) , 8705-8713. https://doi.org/10.1021/acs.iecr.1c01592
- Minghui Zhu, Pengfei Tian, Michael E. Ford, Jiacheng Chen, Jing Xu, Yi-Fan Han, Israel E. Wachs. Nature of Reactive Oxygen Intermediates on Copper-Promoted Iron–Chromium Oxide Catalysts during CO2 Activation. ACS Catalysis 2020, 10 (14) , 7857-7863. https://doi.org/10.1021/acscatal.0c01311
- James Kammert, Jisue Moon, Yongqiang Cheng, Luke Daemen, Stephan Irle, Victor Fung, Jue Liu, Katharine Page, Xiaohan Ma, Vincent Phaneuf, Jianhua Tong, Anibal J. Ramirez-Cuesta, Zili Wu. Nature of Reactive Hydrogen for Ammonia Synthesis over a Ru/C12A7 Electride Catalyst. Journal of the American Chemical Society 2020, 142 (16) , 7655-7667. https://doi.org/10.1021/jacs.0c02345
- Jiawei Huang, Shuai He, Justin L. Goodsell, Justin R. Mulcahy, Wenxiao Guo, Alexander Angerhofer, Wei David Wei. Manipulating Atomic Structures at the Au/TiO2 Interface for O2 Activation. Journal of the American Chemical Society 2020, 142 (14) , 6456-6460. https://doi.org/10.1021/jacs.9b13453
- Pan Yin, Yu-Sen Yang, Li-Fang Chen, Ming Xu, Chun-Yuan Chen, Xiao-Jie Zhao, Xin Zhang, Hong Yan, Min Wei. DFT Study on the Mechanism of the Water Gas Shift Reaction Over NixPy Catalysts: The Role of P. The Journal of Physical Chemistry C 2020, 124 (12) , 6598-6610. https://doi.org/10.1021/acs.jpcc.9b11142
- Miguel A. Bañares, Marco Daturi. Understanding catalysts by time-/space-resolved operando methodologies. Catalysis Today 2023, 423 , 114255. https://doi.org/10.1016/j.cattod.2023.114255
- Jingjing Li, Sarayute Chansai, Christopher Hardacre, Xiaolei Fan. Non thermal plasma assisted water-gas shift reactions under mild conditions: state of the art and a future perspective. Catalysis Today 2023, 423 , 113956. https://doi.org/10.1016/j.cattod.2022.11.017
- Pilsun Yoo, Peilin Liao. Multiple redox mechanisms for water-gas shift reaction on Fe3O4 (1 1 1) surface: A density functional theory and mean-field microkinetic modeling study. Applied Surface Science 2023, 630 , 157501. https://doi.org/10.1016/j.apsusc.2023.157501
- Tian-Yao Shen, Pan Yin, Ying-Jie Lai, Jia-Ming Xu, Jing-Yi Guo, Wei Zhang, Min Pu, Hong Yan, Min Wei. Water-gas-shift reaction over Au single-atom catalysts with reversible oxide supports: A density functional theory study. International Journal of Hydrogen Energy 2023, 48 (64) , 24951-24960. https://doi.org/10.1016/j.ijhydene.2023.01.017
- Franklin Tao, Yuting Li. A new type of catalysts: catalysts of singly dispersed bimetallic sites. Trends in Chemistry 2023, 5 (6) , 486-499. https://doi.org/10.1016/j.trechm.2023.03.006
- Pan Yin, Yusen Yang, Hong Yan, Min Wei. Theoretical Calculations on Metal Catalysts Toward Water‐Gas Shift Reaction: a Review. Chemistry – A European Journal 2023, 29 (24) https://doi.org/10.1002/chem.202203781
- Andrea Zachariou, Alexander P. Hawkins, Paul Collier, Russell F. Howe, Stewart F. Parker, David Lennon. Neutron scattering studies of the methanol-to-hydrocarbons reaction. Catalysis Science & Technology 2023, 13 (7) , 1976-1990. https://doi.org/10.1039/D2CY02154D
- Anders Holmen, Jia Yang, De Chen. Steady-State Isotopic Transient Kinetic Analysis (SSITKA). 2023, 935-965. https://doi.org/10.1007/978-3-031-07125-6_41
- Huijun Chen, Rui Huang, Myeong Gon Jang, Chaesung Lim, Dongjae Shin, Qiuyu Liu, Heejae Yang, Yan Chen, Jeong Woo Han. Modulating the water gas shift reaction via strong interfacial interaction between a defective oxide matrix and exsolved metal nanoparticles. Journal of Materials Chemistry A 2022, 10 (47) , 24995-25008. https://doi.org/10.1039/D2TA08217A
- Shuang Xiang, Lin Dong, Zhi-Qiang Wang, Xue Han, Luke L. Daemen, Jiong Li, Yongqiang Cheng, Yong Guo, Xiaohui Liu, Yongfeng Hu, Anibal J. Ramirez-Cuesta, Sihai Yang, Xue-Qing Gong, Yanqin Wang. A unique Co@CoO catalyst for hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-31362-9
- Yutao Hu, Xiaolong Liu, Yang Zou, Haijiao Xie, Tingyu Zhu. Nature of support plays vital roles in H2O promoted CO oxidation over Pt catalysts. Journal of Catalysis 2022, 416 , 364-374. https://doi.org/10.1016/j.jcat.2022.11.020
- Shenghong Wang, Changan Zhou, Yongda Cao, Lei Song, Lirong Zheng, Kui Ma, Hairong Yue. Pt-O-Cu Anchored on Fe2O3 Boosting Electrochemical Water-gas Shift Reaction for Highly Efficient H2 Generation. Journal of Catalysis 2022, 130 https://doi.org/10.1016/j.jcat.2022.11.033
- Han Yan, Xuetao Qin, Jin-Cheng Liu, Lihua Cai, Peng Xu, Jian-Jun Song, Chao Ma, Wei-Wei Wang, Zhao Jin, Chun-Jiang Jia. Releasing the limited catalytic activity of CeO2-supported noble metal catalysts via UV-induced deep dechlorination. Journal of Catalysis 2022, 413 , 703-712. https://doi.org/10.1016/j.jcat.2022.07.024
- Pan Yin, Hao Meng, Lei Wang, Yingjie Lai, Yao Jie, Jun Yu, Wei Liu, Xiaojie Zhao, Tianyao Shen, Xin Zhang, Jingbin Han, Yusen Yang, Hong Yan, Min Wei. Theoretical and experimental exploration of NiM(111) (M = Fe, Co, Cu, Zn) bimetallic catalysts for the water-gas shift reaction. Journal of Materials Chemistry A 2022, 10 (31) , 16610-16619. https://doi.org/10.1039/D2TA00991A
- Shule Wang, Hanmin Yang, Ziyi Shi, Ilman Nuran Zaini, Yuming Wen, Jianchun Jiang, Pär Göran Jönsson, Weihong Yang. Renewable hydrogen production from the organic fraction of municipal solid waste through a novel carbon-negative process concept. Energy 2022, 252 , 124056. https://doi.org/10.1016/j.energy.2022.124056
- Yu Meng, Xiaoyan Liu, Yajun Ma, Xinhua Gao, Xiaodong Wen. Investigation of water gas shift reactivity on Fe5C2 (111): A DFT study. Molecular Catalysis 2022, 529 , 112538. https://doi.org/10.1016/j.mcat.2022.112538
- Shangbo Ning, Yanhui Sun, Shuxin Ouyang, Yuhang Qi, Jinhua Ye. Solar light-induced injection of hot electrons and photocarriers for synergistically enhanced photothermocatalysis over Cu-Co/SrTiO3 catalyst towards boosting CO hydrogenation into C2–C4 hydrocarbons. Applied Catalysis B: Environmental 2022, 310 , 121063. https://doi.org/10.1016/j.apcatb.2022.121063
- Eugenio Meloni, Marco Martino, Giuseppina Iervolino, Concetta Ruocco, Simona Renda, Giovanni Festa, Vincenzo Palma. The Route from Green H2 Production through Bioethanol Reforming to CO2 Catalytic Conversion: A Review. Energies 2022, 15 (7) , 2383. https://doi.org/10.3390/en15072383
- Milan Babu Poudel, Miyeon Shin, Han Joo Kim. Interface engineering of MIL-88 derived MnFe-LDH and MnFe2O3 on three-dimensional carbon nanofibers for the efficient adsorption of Cr(VI), Pb(II), and As(III) ions. Separation and Purification Technology 2022, 287 , 120463. https://doi.org/10.1016/j.seppur.2022.120463
- Łukasz Kotyrba, Anna Chrobok, Agnieszka Siewniak. Synthesis of Propylene Carbonate by Urea Alcoholysis—Recent Advances. Catalysts 2022, 12 (3) , 309. https://doi.org/10.3390/catal12030309
- Yifan Sun, Felipe Polo‐Garzon, Zhenghong Bao, Jisue Moon, Zhennan Huang, Hao Chen, Zitao Chen, Zhenzhen Yang, Miaofang Chi, Zili Wu, Jue Liu, Sheng Dai. Manipulating Copper Dispersion on Ceria for Enhanced Catalysis: A Nanocrystal‐Based Atom‐Trapping Strategy. Advanced Science 2022, 9 (8) , 2104749. https://doi.org/10.1002/advs.202104749
- Shenghong Wang, Changan Zhou, Yongda Cao, Lei Song, Lirong Zheng, Kui Ma, Hairong Yue. Pt-O-Cu Anchored on Fe₂O₃ Boosting Electrochemical Water-Gas Shift Reaction for Highly Efficient H₂ Generation. SSRN Electronic Journal 2022, 130 https://doi.org/10.2139/ssrn.4178394
- Longfei Lin, Qingqing Mei, Xue Han, Stewart F. Parker, Sihai Yang. Investigations of Hydrocarbon Species on Solid Catalysts by Inelastic Neutron Scattering. Topics in Catalysis 2021, 64 (9-12) , 593-602. https://doi.org/10.1007/s11244-020-01389-7
- Javier Castells-Gil, Samy Ould-Chikh, Adrian Ramírez, Rafia Ahmad, Gonzalo Prieto, Alberto Rodríguez Gómez, Luis Garzón-Tovar, Selvedin Telalovic, Lingmei Liu, Alessandro Genovese, Natalia M. Padial, Antonio Aguilar-Tapia, Pierre Bordet, Luigi Cavallo, Carlos Martí-Gastaldo, Jorge Gascon. Unlocking mixed oxides with unprecedented stoichiometries from heterometallic metal-organic frameworks for the catalytic hydrogenation of CO2. Chem Catalysis 2021, 1 (2) , 364-382. https://doi.org/10.1016/j.checat.2021.03.010
- Junhao Lin, Shichang Sun, Juan Luo, Chongwei Cui, Rui Ma, Lin Fang, Xiangli Liu. Effects of oxygen vacancy defect on microwave pyrolysis of biomass to produce high-quality syngas and bio-oil: Microwave absorption and in-situ catalytic. Waste Management 2021, 128 , 200-210. https://doi.org/10.1016/j.wasman.2021.05.002
- Tahmin Lais, Liliana Lukashuk, Leon van de Water, Timothy I. Hyde, Matteo Aramini, Gopinathan Sankar. Elucidation of copper environment in a Cu–Cr–Fe oxide catalyst through in situ high-resolution XANES investigation. Physical Chemistry Chemical Physics 2021, 23 (10) , 5888-5896. https://doi.org/10.1039/D0CP06468H
- Milan Babu Poudel, Han Joo Kim. Interface Engineering of MIL-88 Derived MnFe-LDH and MnFe 2O 3 on Three-Dimensional Carbon Nanofibers for the Efficient Adsorption of Cr(VI), Pb(II), and As(III) Ions. SSRN Electronic Journal 2021, 7 https://doi.org/10.2139/ssrn.3974851
- Hirosuke Matsui, Nozomu Ishiguro, Youya Suzuki, Kouhei Wakamatsu, Chiharu Yamada, Kanako Sato, Naoyuki Maejima, Tomoya Uruga, Mizuki Tada. Reversible structural transformation and redox properties of Cr-loaded iron oxide dendrites studied by in situ XANES spectroscopy. Physical Chemistry Chemical Physics 2020, 22 (48) , 28093-28099. https://doi.org/10.1039/D0CP04416D
- Yanting Liu, Dehui Deng, Xinhe Bao. Catalysis for Selected C1 Chemistry. Chem 2020, 6 (10) , 2497-2514. https://doi.org/10.1016/j.chempr.2020.08.026
- Chengcheng Shi, Dachao Yuan, Luping Ma, Yaguang Li, Yangfan Lu, Linjie Gao, Xingyuan San, Shufang Wang, Guangsheng Fu. Outdoor sunlight-driven scalable water-gas shift reaction through novel photothermal device-supported CuO x /ZnO/Al 2 O 3 nanosheets with a hydrogen generation rate of 192 mmol g −1 h −1. Journal of Materials Chemistry A 2020, 8 (37) , 19467-19472. https://doi.org/10.1039/D0TA07190K
- Minghui Zhu, Jiacheng Chen, Liang Shen, Michael E. Ford, Jian Gao, Jing Xu, Israel E. Wachs, Yi-Fan Han. Probing the surface of promoted CuO-Cr2O3-Fe2O3 catalysts during CO2 activation. Applied Catalysis B: Environmental 2020, 271 , 118943. https://doi.org/10.1016/j.apcatb.2020.118943
- Janko Popovic, Lorenz Lindenthal, Raffael Rameshan, Thomas Ruh, Andreas Nenning, Stefan Löffler, Alexander Karl Opitz, Christoph Rameshan. High Temperature Water Gas Shift Reactivity of Novel Perovskite Catalysts. Catalysts 2020, 10 (5) , 582. https://doi.org/10.3390/catal10050582
- Xianglin Liu, Chenxi Cao, Pengfei Tian, Minghui Zhu, Yulong Zhang, Jing Xu, Yun Tian, Yi-Fan Han. Resolving CO2 activation and hydrogenation pathways over iron carbides from DFT investigation. Journal of CO2 Utilization 2020, 38 , 10-15. https://doi.org/10.1016/j.jcou.2019.12.014
- Zhenghong Bao, Victor Fung, Felipe Polo-Garzon, Zachary D. Hood, Shaohong Cao, Miaofang Chi, Lei Bai, De-en Jiang, Zili Wu. The interplay between surface facet and reconstruction on isopropanol conversion over SrTiO3 nanocrystals. Journal of Catalysis 2020, 384 , 49-60. https://doi.org/10.1016/j.jcat.2020.02.014
- Hoang Tran Bui, Song Min Im, Ki-jeong Kim, Wooyul Kim, Hangil Lee. Photocatalytic degradation of phenolic compounds of defect engineered Fe3O4: An alternative approach to solar activation via ligand-to-metal charge transfer. Applied Surface Science 2020, 509 , 144853. https://doi.org/10.1016/j.apsusc.2019.144853
- Yun Lang, Chun Du, Yuanting Tang, Yongjie Chen, Yunkun Zhao, Rong Chen, Xiao Liu, Bin Shan. Highly efficient copper-manganese oxide catalysts with abundant surface vacancies for low-temperature water-gas shift reaction. International Journal of Hydrogen Energy 2020, 45 (15) , 8629-8639. https://doi.org/10.1016/j.ijhydene.2020.01.108
- Sagar Sourav, Israel E. Wachs. Cr-Free, Cu Promoted Fe Oxide-Based Catalysts for High-Temperature Water-Gas Shift (HT-WGS) Reaction. Catalysts 2020, 10 (3) , 305. https://doi.org/10.3390/catal10030305
- Ning Liu, Pan Yin, Ming Xu, Yusen Yang, Shaomin Zhang, Junbo Zhang, Xiaoyu Meng, Jian Zhang, Jun Yu, Yi Man, Xin Zhang, Min Wei. The catalytic mechanism of the Au@TiO 2−x /ZnO catalyst towards a low-temperature water-gas shift reaction. Catalysis Science & Technology 2020, 10 (3) , 768-775. https://doi.org/10.1039/C9CY02077B
- Xiao-Qing Cao, Jun Zhou, Song Li, Gao-Wu Qin. Ultra-stable metal nano-catalyst synthesis strategy: a perspective. Rare Metals 2020, 39 (2) , 113-130. https://doi.org/10.1007/s12598-019-01350-y
- Minghui Zhu, Pengfei Tian, Jiacheng Chen, Michael E. Ford, Jing Xu, Israel E. Wachs, Yi‐Fan Han. Activation and deactivation of the commercial‐type CuO–Cr 2 O 3 –Fe 2 O 3 high temperature shift catalyst. AIChE Journal 2020, 66 (1) https://doi.org/10.1002/aic.16846