ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Catalytic Asymmetric Staudinger–aza-Wittig Reaction for the Synthesis of Heterocyclic Amines

  • Lingchao Cai
    Lingchao Cai
    Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
    More by Lingchao Cai
  • Kui Zhang
    Kui Zhang
    Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
    More by Kui Zhang
  • Shuming Chen
    Shuming Chen
    Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
    More by Shuming Chen
  • Romain J. Lepage
    Romain J. Lepage
    School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
  • K. N. Houk
    K. N. Houk
    Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
    More by K. N. Houk
  • Elizabeth H. Krenske
    Elizabeth H. Krenske
    School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
  • , and 
  • Ohyun Kwon*
    Ohyun Kwon
    Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
    *[email protected]
    More by Ohyun Kwon
Cite this: J. Am. Chem. Soc. 2019, 141, 24, 9537–9542
Publication Date (Web):June 4, 2019
https://doi.org/10.1021/jacs.9b04803
Copyright © 2019 American Chemical Society

    Article Views

    9846

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)
    Supporting Info (2)»

    Abstract

    Abstract Image

    Many natural products and medicinal drugs are heterocyclic amines possessing a chiral quaternary carbon atom in their heterocyclic ring. Herein, we report the first catalytic and asymmetric Staudinger–aza-Wittig reaction for the desymmetrization of ketones. This highly enantioselective transformation proceeds at room temperature to provide high yields—even on multigram scales—of nitrogen heterocycles featuring a chiral quaternary center. The products of this reaction are potential precursors for the synthesis of pharmaceuticals. A commercially available small P-chiral phosphine catalyst, HypPhos, induces the asymmetry and is recycled through in situ reduction of its oxide, mediated by phenylsilane in the presence of a carboxylic acid. The efficiency, selectivity, scalability, mild reaction conditions, and broad substrate scope portend that this process will expedite the syntheses of chiral heterocyclic amines of significance to chemistry, biology, and medicine.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.9b04803.

    • Experimental procedures and analytical data (PDF)

    • Crystallographic data for 2q (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 54 publications.

    1. Jing Xue, Yu-Shan Zhang, Zhen Huan, Jin-Dong Yang, Jin-Pei Cheng. Deoxygenation of Phosphine Oxides by PIII/PV═O Redox Catalysis via Successive Isodesmic Reactions. Journal of the American Chemical Society 2023, 145 (28) , 15589-15599. https://doi.org/10.1021/jacs.3c05270
    2. Gaoyuan Zhao, Sanghyun Lim, Djamaladdin G. Musaev, Ming-Yu Ngai. Expanding Reaction Profile of Allyl Carboxylates via 1,2-Radical Migration (RaM): Visible-Light-Induced Phosphine-Catalyzed 1,3-Carbobromination of Allyl Carboxylates. Journal of the American Chemical Society 2023, 145 (15) , 8275-8284. https://doi.org/10.1021/jacs.2c11867
    3. Jacek G. Sośnicki, Aleksandra Borzyszkowska-Ledwig, Tomasz J. Idzik, Magdalena M. Lubowicz, Gabriela Maciejewska, Łukasz Struk. Divergent Synthesis of Functionalized Indenopyridin-2-ones and 2-Pyridones via Benzyl Group Transfer: Two Cases of Aza-semipinacol-Type Rearrangement. Organic Letters 2022, 24 (46) , 8498-8502. https://doi.org/10.1021/acs.orglett.2c03361
    4. Changmin Xie, Jacob Kim, Binh Khanh Mai, Shixuan Cao, Rong Ye, Xin-Yi Wang, Peng Liu, Ohyun Kwon. Enantioselective Synthesis of Quaternary Oxindoles: Desymmetrizing Staudinger–Aza-Wittig Reaction Enabled by a Bespoke HypPhos Oxide Catalyst. Journal of the American Chemical Society 2022, 144 (46) , 21318-21327. https://doi.org/10.1021/jacs.2c09421
    5. Jake M. Aquilina, Myles W. Smith. Symmetry-Driven Total Synthesis of Myrioneurinol. Journal of the American Chemical Society 2022, 144 (25) , 11088-11093. https://doi.org/10.1021/jacs.2c04487
    6. Siming Jia, Mengmeng Ma, Er-Qing Li, Zheng Duan, Françis Mathey. Design of 1-Phosphanorbornene Derivatives as Chiral Organocatalysts for Enantioselective (4 + 2) Annulation Reactions of γ-Benzyl Allenoates. Organic Letters 2021, 23 (9) , 3337-3342. https://doi.org/10.1021/acs.orglett.1c00833
    7. Changmin Xie, Andrew J. Smaligo, Xian-Rong Song, Ohyun Kwon. Phosphorus-Based Catalysis. ACS Central Science 2021, 7 (4) , 536-558. https://doi.org/10.1021/acscentsci.0c01493
    8. Binmiao Yang, Jun Dai, Yixin Luo, Kai Kiat Lau, Yu Lan, Zhihui Shao, Yu Zhao. Desymmetrization of 1,3-Diones by Catalytic Enantioselective Condensation with Hydrazine. Journal of the American Chemical Society 2021, 143 (11) , 4179-4186. https://doi.org/10.1021/jacs.1c01366
    9. Jeffrey M. Lipshultz, Gen Li, Alexander T. Radosevich. Main Group Redox Catalysis of Organopnictogens: Vertical Periodic Trends and Emerging Opportunities in Group 15. Journal of the American Chemical Society 2021, 143 (4) , 1699-1721. https://doi.org/10.1021/jacs.0c12816
    10. Mookda Pattarawarapan, Dolnapa Yamano, Nittaya Wiriya, Saranphong Yimklan, Wong Phakhodee. Simultaneous Formation and Functionalization of Aryliminophosphoranes Using 1,3-Dihydro-1H-benzimidazol-2-ones as Precursors. The Journal of Organic Chemistry 2020, 85 (20) , 13330-13338. https://doi.org/10.1021/acs.joc.0c01979
    11. Gen Li, Ziyang Qin, Alexander T. Radosevich. P(III)/P(V)-Catalyzed Methylamination of Arylboronic Acids and Esters: Reductive C–N Coupling with Nitromethane as a Methylamine Surrogate. Journal of the American Chemical Society 2020, 142 (38) , 16205-16210. https://doi.org/10.1021/jacs.0c08035
    12. Gen Li, Trevor V. Nykaza, Julian C. Cooper, Antonio Ramirez, Michael R. Luzung, Alexander T. Radosevich. An Improved PIII/PV═O-Catalyzed Reductive C–N Coupling of Nitroaromatics and Boronic Acids by Mechanistic Differentiation of Rate- and Product-Determining Steps. Journal of the American Chemical Society 2020, 142 (14) , 6786-6799. https://doi.org/10.1021/jacs.0c01666
    13. Donovan J. Robinson, Sean P. Spurlin, John D. Gorden, Rashad R. Karimov. Enantioselective Synthesis of Dihydropyridines Containing Quaternary Stereocenters Through Dearomatization of Pyridinium Salts. ACS Catalysis 2020, 10 (1) , 51-55. https://doi.org/10.1021/acscatal.9b03874
    14. Morgan Lecomte, Jeffrey M. Lipshultz, Shin-Ho Kim-Lee, Gen Li, Alexander T. Radosevich. Driving Recursive Dehydration by PIII/PV Catalysis: Annulation of Amines and Carboxylic Acids by Sequential C–N and C–C Bond Formation. Journal of the American Chemical Society 2019, 141 (32) , 12507-12512. https://doi.org/10.1021/jacs.9b06277
    15. Hye Won Moon, Feng Wang, Kalishankar Bhattacharyya, Oriol Planas, Markus Leutzsch, Nils Nöthling, Alexander A. Auer, Josep Cornella. Mechanistic Studies on the Bismuth‐Catalyzed Transfer Hydrogenation of Azoarenes. Angewandte Chemie 2023, 135 (49) https://doi.org/10.1002/ange.202313578
    16. Hye Won Moon, Feng Wang, Kalishankar Bhattacharyya, Oriol Planas, Markus Leutzsch, Nils Nöthling, Alexander A. Auer, Josep Cornella. Mechanistic Studies on the Bismuth‐Catalyzed Transfer Hydrogenation of Azoarenes. Angewandte Chemie International Edition 2023, 62 (49) https://doi.org/10.1002/anie.202313578
    17. Jinlong Qian, Lijin Zhou, Rouxuan Peng, Xiaofeng Tong. (3+2) Annulation of 4‐Acetoxy Allenoate with Aldimine Enabled by AgF‐Assisted P(III)/P(V) Catalysis. Angewandte Chemie International Edition 2023, 5 https://doi.org/10.1002/anie.202315188
    18. Jinlong Qian, Lijin Zhou, Rouxuan Peng, Xiaofeng Tong. (3+2) Annulation of 4‐Acetoxy Allenoate with Aldimine Enabled by AgF‐Assisted P(III)/P(V) Catalysis. Angewandte Chemie 2023, https://doi.org/10.1002/ange.202315188
    19. Pengwei Xu, Feng Zhou, Lei Zhu, Jian Zhou. Catalytic desymmetrization reactions to synthesize all-carbon quaternary stereocentres. Nature Synthesis 2023, 2 (11) , 1020-1036. https://doi.org/10.1038/s44160-023-00406-3
    20. Junqi Su, Jia-Nan Mo, Guofeng Zhang, Ziyu Jiang, Jiannan Zhao. A practical approach for oligopeptide synthesis via synergistic photoredox, cobaloxime and organophosphorus triple catalysis. Organic Chemistry Frontiers 2023, 10 (19) , 4895-4904. https://doi.org/10.1039/D3QO00994G
    21. Daniel Moser, Kalipada Jana, Christof Sparr. Atroposelective P III /P V =O Redox Catalysis for the Isoquinoline‐Forming Staudinger–aza‐Wittig Reaction. Angewandte Chemie 2023, 135 (39) https://doi.org/10.1002/ange.202309053
    22. Daniel Moser, Kalipada Jana, Christof Sparr. Atroposelective P III /P V =O Redox Catalysis for the Isoquinoline‐Forming Staudinger–aza‐Wittig Reaction. Angewandte Chemie International Edition 2023, 62 (39) https://doi.org/10.1002/anie.202309053
    23. B. A. Murray. Reactions of Aldehydes and Ketones and Their Derivatives. 2023, 1-42. https://doi.org/10.1002/9781119608288.ch1
    24. Nabin Parui, Tirtha Mandal, Jyotirmayee Dash. Rapid Access to Substituted Indenones through Grignard Reaction and Its Application in the Synthesis of Fluorenones Using Ring Closing Metathesis. European Journal of Organic Chemistry 2023, 26 (7) https://doi.org/10.1002/ejoc.202201285
    25. Kui Zhang, Yang Chen, Liangliang Song, Lingchao Cai. Progress of Catalytic Mitsunobu Reaction in the Two Decades. Asian Journal of Organic Chemistry 2023, 12 (2) https://doi.org/10.1002/ajoc.202200707
    26. Qin Ouyang, Jing Gu, Rong Zeng. Organic synthetic methodology-based new scaffolds in drug discovery. 2023, 543-564. https://doi.org/10.1016/B978-0-443-18611-0.00025-5
    27. Issa Yavari, Hamed Saffarian, Omid Khaledian. A Synthesis of Furan-2-iminophosphoranes under Appel-Type Reaction Conditions. Synlett 2023, 34 (02) , 133-136. https://doi.org/10.1055/s-0041-1738427
    28. Pan Xu, Chang Shen, Aiqing Xu, Kam‐Hung Low, Zhongxing Huang. Desymmetric Cyanosilylation of Acyclic 1,3‐Diketones. Angewandte Chemie 2022, 134 (37) https://doi.org/10.1002/ange.202208443
    29. Pan Xu, Chang Shen, Aiqing Xu, Kam‐Hung Low, Zhongxing Huang. Desymmetric Cyanosilylation of Acyclic 1,3‐Diketones. Angewandte Chemie International Edition 2022, 61 (37) https://doi.org/10.1002/anie.202208443
    30. Mary E. Bayana, J. Steven Wailes, Stephen P. Marsden. Multicomponent synthesis of substituted pyridines via a catalytic intermolecular aza-Wittig/Diels–Alder sequence. RSC Advances 2022, 12 (40) , 26233-26237. https://doi.org/10.1039/D2RA05018H
    31. Simon B. H. Karnbrock, Christopher Golz, Ricardo A. Mata, Manuel Alcarazo. Durch Liganden ermöglichte Disproportionierung von 1,2‐Diphenylhydrazin an einem P V ‐Zentrum**. Angewandte Chemie 2022, 134 (35) https://doi.org/10.1002/ange.202207450
    32. Simon B. H. Karnbrock, Christopher Golz, Ricardo A. Mata, Manuel Alcarazo. Ligand‐Enabled Disproportionation of 1,2‐Diphenylhydrazine at a P V ‐Center**. Angewandte Chemie International Edition 2022, 61 (35) https://doi.org/10.1002/anie.202207450
    33. Maedeh Bagheri, Shirin Mohammadsaeed, Parisa Gholamzadeh. Annulation of the Ugi Products Using Palladium Catalysts. ChemistrySelect 2022, 7 (28) https://doi.org/10.1002/slct.202104520
    34. Chenshu Dai, Jun Zhu. Predicting dinitrogen activation by borenium and borinium cations. Physical Chemistry Chemical Physics 2022, 24 (23) , 14651-14657. https://doi.org/10.1039/D2CP01233B
    35. A. A. Zagidullin, E. S. Grigoreva, N. I. Shatalova, V. A. Miluykov. P- chiral 1,7-diphosphanorbornenes: synthesis and application in asymmetric allylic alkylation. Phosphorus, Sulfur, and Silicon and the Related Elements 2022, 197 (5-6) , 601-603. https://doi.org/10.1080/10426507.2021.2025055
    36. Yin Xu, Tong-Yi Zhai, Zhou Xu, Long-Wu Ye. Recent advances towards organocatalytic enantioselective desymmetrizing reactions. Trends in Chemistry 2022, 4 (3) , 191-205. https://doi.org/10.1016/j.trechm.2021.12.010
    37. Wentian Zou, Liuzhou Gao, Jia Cao, Zhenxing Li, Guoao Li, Guoqiang Wang, Shuhua Li. Mechanistic Insight into Hydroboration of Imines from Combined Computational and Experimental Studies. Chemistry – A European Journal 2022, 28 (11) https://doi.org/10.1002/chem.202104004
    38. Jiahao Li, Yike Yang, Wenkang Hu, Xiaofeng Xia, Dawei Wang. Catalytic Synthesis of Pyrazine and Ketone Derivatives by Unsymmetrical Triazolyl-Naphthyridinyl-Pyridine Copper. Chinese Journal of Organic Chemistry 2022, 42 (1) , 190. https://doi.org/10.6023/cjoc202107018
    39. Charlotte Lorton, Antoine Roblin, Pascal Retailleau, Arnaud Voituriez. Synthesis of Functionalized Cyclobutenes and Spirocycles via Asymmetric P(III)/P(V) Redox Catalysis. Advanced Synthesis & Catalysis 2021, 363 (20) , 4805-4810. https://doi.org/10.1002/adsc.202100664
    40. Fares Hezam Al-Ostoot, Zabiulla, Salma Salah, Shaukath Ara Khanum. Recent investigations into synthesis and pharmacological activities of phenoxy acetamide and its derivatives (chalcone, indole and quinoline) as possible therapeutic candidates. Journal of the Iranian Chemical Society 2021, 18 (8) , 1839-1875. https://doi.org/10.1007/s13738-021-02172-5
    41. Charlotte Lorton, Nidal Saleh, Arnaud Voituriez. Phosphine‐Catalyzed Synthesis of Chiral N ‐Heterocycles through (Asymmetric) P(III)/P(V) Redox Cycling. European Journal of Organic Chemistry 2021, 2021 (22) , 3340-3344. https://doi.org/10.1002/ejoc.202100404
    42. Rambabu Chegondi, Srilaxmi M. Patel, Sundaram Maurya, Ashok Donthoju. Organocatalytic Enantioselective Desymmetrization of Prochiral 2,2‐Disubstituted Cyclic 1,3‐Diones. Asian Journal of Organic Chemistry 2021, 10 (6) , 1267-1281. https://doi.org/10.1002/ajoc.202100180
    43. Tomohiro Umeno, Kazuteru Usui, Satoru Karasawa. π‐Extended Push‐Pull‐Type Bicyclic Fluorophores Based on Quinoline and Naphthyridine Frameworks with an Iminophosphorane Fragment. Asian Journal of Organic Chemistry 2021, 10 (5) , 1123-1130. https://doi.org/10.1002/ajoc.202100015
    44. Sabrieh Lashkari, Mehdi Shahraki, Mahdieh Darijani, Fatemeh Mahmoudi. A density functional theory study of the synthesis of 3-phospholene oxide through the McCormack cycloaddition reaction. Phosphorus, Sulfur, and Silicon and the Related Elements 2021, 196 (4) , 414-421. https://doi.org/10.1080/10426507.2020.1845682
    45. Hanyuan Li, Zhengjie He. Chiral phosphine-catalyzed asymmetric [4 + 1] annulation of polar dienes with allylic derivatives: Enantioselective synthesis of substituted cyclopentenes. Tetrahedron Letters 2021, 67 , 152863. https://doi.org/10.1016/j.tetlet.2021.152863
    46. Guanjie Wang, Min Zhang, Yezhi Guan, Ye Zhang, Xianfang Hong, Chenlong Wei, Pengcheng Zheng, Donghui Wei, Zhenqian Fu, Yonggui Robin Chi, Wei Huang. Desymmetrization of Cyclic 1,3-Diketones under N -Heterocyclic Carbene Organocatalysis: Access to Organofluorines with Multiple Stereogenic Centers. Research 2021, 2021 https://doi.org/10.34133/2021/9867915
    47. Wei Cai, You Huang. Advances in Organophosphorus Redox Catalysis. Chinese Journal of Organic Chemistry 2021, 41 (10) , 3903. https://doi.org/10.6023/cjoc202106004
    48. Yifan Huang, Jianning Liao, Wei Wang, Honglei Liu, Hongchao Guo. Synthesis of heterocyclic compounds through nucleophilic phosphine catalysis. Chemical Communications 2020, 56 (97) , 15235-15281. https://doi.org/10.1039/D0CC05699E
    49. Santosh J. Gharpure, Sudi Naveen, Rupali S. Chavan, Padmaja. Regioselective Synthesis of Halotriazoles and their Utility in Metal Catalyzed Coupling Reactions. European Journal of Organic Chemistry 2020, 2020 (44) , 6870-6886. https://doi.org/10.1002/ejoc.202000973
    50. Trevor V. Nykaza, Gen Li, Junyu Yang, Michael R. Luzung, Alexander T. Radosevich. P III /P V =O Catalyzed Cascade Synthesis of N‐Functionalized Azaheterocycles. Angewandte Chemie 2020, 132 (11) , 4535-4540. https://doi.org/10.1002/ange.201914851
    51. Trevor V. Nykaza, Gen Li, Junyu Yang, Michael R. Luzung, Alexander T. Radosevich. P III /P V =O Catalyzed Cascade Synthesis of N‐Functionalized Azaheterocycles. Angewandte Chemie International Edition 2020, 59 (11) , 4505-4510. https://doi.org/10.1002/anie.201914851
    52. Péter Bagi, Réka Herbay, Nikolett Péczka, Zoltán Mucsi, István Timári, and György Keglevich. Preparation of 2-phospholene oxides by the isomerization of 3-phospholene oxides. Beilstein Journal of Organic Chemistry 2020, 16 , 818-832. https://doi.org/10.3762/bjoc.16.75
    53. Xia Fan, Rongshun Chen, Jie Han, Zhengjie He. Convergent Synthesis of Polysubstituted Furans via Catalytic Phosphine Mediated Multicomponent Reactions. Molecules 2019, 24 (24) , 4595. https://doi.org/10.3390/molecules24244595
    54. Xiaoming Ma, Xiaofeng Zhang, Guoshu Xie, John Mark Awad, Wei Zhang. One-pot diastereoselective synthesis of tetrahydroepimino-benzo[b]azocines through sequential [3+2]-cycloaddition and Staudinger-aza-Wittig reactions. Tetrahedron Letters 2019, 60 (40) , 151127. https://doi.org/10.1016/j.tetlet.2019.151127

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect