ACS Publications. Most Trusted. Most Cited. Most Read
A Cobalt–Iron Double-Atom Catalyst for the Oxygen Evolution Reaction
My Activity

Figure 1Loading Img
    Article

    A Cobalt–Iron Double-Atom Catalyst for the Oxygen Evolution Reaction
    Click to copy article linkArticle link copied!

    • Lichen Bai
      Lichen Bai
      Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-ISIC-LSCI, BCH 3305, CH 1015 Lausanne, Switzerland
      More by Lichen Bai
    • Chia-Shuo Hsu
      Chia-Shuo Hsu
      Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
    • Duncan T. L. Alexander
      Duncan T. L. Alexander
      Interdisciplinary Centre for Electron Microscopy (CIME), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
      Electron Spectrometry and Microscopy Laboratory (LSME), Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
    • Hao Ming Chen*
      Hao Ming Chen
      Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
      *[email protected]
    • Xile Hu*
      Xile Hu
      Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-ISIC-LSCI, BCH 3305, CH 1015 Lausanne, Switzerland
      *[email protected]
      More by Xile Hu
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2019, 141, 36, 14190–14199
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.9b05268
    Published August 16, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Single-atom catalysts exhibit well-defined active sites and potentially maximum atomic efficiency. However, they are unsuitable for reactions that benefit from bimetallic promotion such as the oxygen evolution reaction (OER) in an alkaline medium. Here we show that a single-atom Co precatalyst can be in situ transformed into a Co–Fe double-atom catalyst for the OER. This catalyst exhibits one of the highest turnover frequencies among metal oxides. Electrochemical, microscopic, and spectroscopic data, including those from operando X-ray absorption spectroscopy, reveal a dimeric Co–Fe moiety as the active site of the catalyst. This work demonstrates double-atom catalysis as a promising approach for the development of defined and highly active OER catalysts.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.9b05268.

    • Supporting XRD, TEM, SEM, Raman, gas absorption, electrochemical, and XAS data (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 458 publications.

    1. Yuanhui Yao, Kai Wei, Shuang Zhao, Haiqiao Zhou, Bin Kui, Genping Zhu, Wei Wang, Peng Gao, Wei Ye. Highly Efficient Bifunctional NiFe-MOF Array Electrode for Nitrate Reduction to Ammonia and Oxygen Evolution Reactions. ACS Sustainable Chemistry & Engineering 2025, Article ASAP.
    2. Linshu Shan, Yang Liu, Yang Chen, Xinjie Zhang, Haizhong Dai, Dahai Xu, Bingzhe Yu, Yi Zhang, Shaowei Chen, Ting He, Xiaoping Ouyang. High-Density Iron–Nickel Dual Sites in Carbon Aerogels as Effective Alkaline Water/Seawater Oxidation Electrocatalysts. ACS Sustainable Chemistry & Engineering 2025, 13 (1) , 311-320. https://doi.org/10.1021/acssuschemeng.4c07297
    3. Zhengming Hao, Yan Li. Carbon-Based Single-Atom Nanocatalysts for Electrochemical Energy Applications. ACS Applied Nano Materials 2024, 7 (23) , 26468-26488. https://doi.org/10.1021/acsanm.4c00522
    4. Štĕpán Kment, Aristides Bakandritsos, Iosif Tantis, Hana Kmentová, Yunpeng Zuo, Olivier Henrotte, Alberto Naldoni, Michal Otyepka, Rajender S. Varma, Radek Zbořil. Single Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications. Chemical Reviews 2024, 124 (21) , 11767-11847. https://doi.org/10.1021/acs.chemrev.4c00155
    5. Wei Zhang, Xueqi Cheng, Xiongyi Liang, Keke Mao, Xiao Cheng Zeng. Mechanistic Study of Highly Active Bifunctional Double-Atom Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions. The Journal of Physical Chemistry Letters 2024, 15 (44) , 10977-10984. https://doi.org/10.1021/acs.jpclett.4c02759
    6. Alexandria Castillo, Kali Rigby, Jae-Hong Kim, Jorge L. Gardea-Torresdey, Dino Villagrán. Selective Nitrate Reduction to Ammonia at Environmentally Relevant Concentrations with an Iron-Phthalocyanine Polymer. ACS Catalysis 2024, 14 (20) , 15489-15497. https://doi.org/10.1021/acscatal.4c03635
    7. Isabella Bertini, Bipin Lamichhane, Samantha Bell, Keyou Mao, Shyam Kattel, Geoffrey Strouse. Halide-Mediated Phase Control of FexCo1–xCy Nanoparticles. Chemistry of Materials 2024, 36 (16) , 7731-7743. https://doi.org/10.1021/acs.chemmater.4c00701
    8. Jingnan Su, Linke Yu, Bing Han, Fengyu Li, Zhongfang Chen, Xiao Cheng Zeng. Enhanced CO2 Reduction on a Cu-Decorated Single-Atom Catalyst via an Inverse Sandwich M-Graphene-Cu Structure. The Journal of Physical Chemistry Letters 2024, 15 (33) , 8600-8607. https://doi.org/10.1021/acs.jpclett.4c01858
    9. Silambarasan Perumal, Indira Pokhrel, Umair Muhammad, Xiaodong Shao, Yeonsu Han, Minseo Kim, Hyoyoung Lee. Recent Advances in Electrochemical Water Splitting Electrocatalysts: Categorization by Parameters and Catalyst Types. ACS Materials Letters 2024, 6 (8) , 3625-3666. https://doi.org/10.1021/acsmaterialslett.4c00587
    10. Zhitong Li, Xiongwei Zhong, Leyi Gao, Junjie Hu, Wenbo Peng, Xingzhu Wang, Guangmin Zhou, Baomin Xu. Asymmetric Coordination of Bimetallic Fe–Co Single-Atom Pairs toward Enhanced Bifunctional Activity for Rechargeable Zinc–Air Batteries. ACS Nano 2024, 18 (20) , 13006-13018. https://doi.org/10.1021/acsnano.4c01342
    11. Yingying Cheng, Shiqiang Liu, Jiapeng Jiao, Meng Zhou, Yiyong Wang, Xueqing Xing, Zhongjun Chen, Xiaofu Sun, Qinggong Zhu, Qingli Qian, Congyang Wang, Huizhen Liu, Zhimin Liu, Xinchen Kang, Buxing Han. Highly Efficient Electrosynthesis of Glycine over an Atomically Dispersed Iron Catalyst. Journal of the American Chemical Society 2024, 146 (14) , 10084-10092. https://doi.org/10.1021/jacs.4c01093
    12. Dipankar Saha, Hsin-Jung Yu, Jiacheng Wang, Prateek, Xiaobo Chen, Chaoyun Tang, Claire Senger, James Nicolas Pagaduan, Reika Katsumata, Kenneth R. Carter, Guangwen Zhou, Peng Bai, Nianqiang Wu, James J. Watkins. Mesoporous Single Atom-Cluster Fe–N/C Oxygen Evolution Electrocatalysts Synthesized with Bottlebrush Block Copolymer-Templated Rapid Thermal Annealing. ACS Applied Materials & Interfaces 2024, 16 (11) , 13729-13744. https://doi.org/10.1021/acsami.3c18693
    13. Xueqin Mu, Xingyue Zhang, Ziyue Chen, Yun Gao, Min Yu, Ding Chen, Haozhe Pan, Suli Liu, Dingsheng Wang, Shichun Mu. Constructing Symmetry-Mismatched RuxFe3–xO4 Heterointerface-Supported Ru Clusters for Efficient Hydrogen Evolution and Oxidation Reactions. Nano Letters 2024, 24 (3) , 1015-1023. https://doi.org/10.1021/acs.nanolett.3c04690
    14. Adam M. Roth-Zawadzki, Alexander J. Nielsen, Rikke E. Tankard, Jakob Kibsgaard. Dual and Triple Atom Electrocatalysts for Energy Conversion (CO2RR, NRR, ORR, OER, and HER): Synthesis, Characterization, and Activity Evaluation. ACS Catalysis 2024, 14 (2) , 1121-1145. https://doi.org/10.1021/acscatal.3c05000
    15. Yicong Chai, Shunhua Chen, Yang Chen, Fenfei Wei, Liru Cao, Jian Lin, Lin Li, Xiaoyan Liu, Sen Lin, Xiaodong Wang, Tao Zhang. Dual-Atom Catalyst with N-Colligated Zn1Co1 Species as Dominant Active Sites for Propane Dehydrogenation. Journal of the American Chemical Society 2024, 146 (1) , 263-273. https://doi.org/10.1021/jacs.3c08616
    16. Thi Ha My Pham, Tzu-Hsien Shen, Youngdon Ko, Liping Zhong, Loris Lombardo, Wen Luo, Satoshi Horike, Vasiliki Tileli, Andreas Züttel. Elucidating the Mechanism of Fe Incorporation in In Situ Synthesized Co–Fe Oxygen-Evolving Nanocatalysts. Journal of the American Chemical Society 2023, 145 (43) , 23691-23701. https://doi.org/10.1021/jacs.3c08099
    17. Jia Zhang, Hao Chen, Shoujie Liu, Li-Dong Wang, Xue-Feng Zhang, Jun-Xi Wu, Li-Hong Yu, Xiao-Han Zhang, Shengliang Zhong, Zi-Yi Du, Chun-Ting He, Xiao-Ming Chen. Optimizing the Spatial Density of Single Co Sites via Molecular Spacing for Facilitating Sustainable Water Oxidation. Journal of the American Chemical Society 2023, 145 (36) , 20000-20008. https://doi.org/10.1021/jacs.3c06665
    18. Yihang Hu, Tianyang Shen, Ziheng Song, Zhaohui Wu, Sha Bai, Guihao Liu, Xiaoliang Sun, Yuying Wang, Siyu Hu, Lirong Zheng, Yu-Fei Song. Atomic Modulation of Single Dispersed Ir Species on Self-Supported NiFe Layered Double Hydroxides for Efficient Electrocatalytic Overall Water Splitting. ACS Catalysis 2023, 13 (16) , 11195-11203. https://doi.org/10.1021/acscatal.3c02628
    19. Yonggui Zhao, Devi Prasad Adiyeri Saseendran, Chong Huang, Carlos A. Triana, Walker R. Marks, Hang Chen, Han Zhao, Greta R. Patzke. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chemical Reviews 2023, 123 (9) , 6257-6358. https://doi.org/10.1021/acs.chemrev.2c00515
    20. Pawan Kumar, Karthick Kannimuthu, Ali Shayesteh Zeraati, Soumyabrata Roy, Xiao Wang, Xiyang Wang, Subhajyoti Samanta, Kristen A. Miller, Maria Molina, Dhwanil Trivedi, Jehad Abed, M. Astrid Campos Mata, Hasan Al-Mahayni, Jonas Baltrusaitis, George Shimizu, Yimin A. Wu, Ali Seifitokaldani, Edward H. Sargent, Pulickel M. Ajayan, Jinguang Hu, Md Golam Kibria. High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution Reaction. Journal of the American Chemical Society 2023, 145 (14) , 8052-8063. https://doi.org/10.1021/jacs.3c00537
    21. Jingzhong Qin, Bo Han, Xiaomei Lu, Jiabao Nie, Chensheng Xian, Zehui Zhang. Biomass-Derived Single Zn Atom Catalysts: The Multiple Roles of Single Zn Atoms in the Oxidative Cleavage of C–N Bonds. JACS Au 2023, 3 (3) , 801-812. https://doi.org/10.1021/jacsau.2c00605
    22. Jiazhan Li, Chang Chen, Lekai Xu, Yu Zhang, Wei Wei, Erbo Zhao, Yue Wu, Chen Chen. Challenges and Perspectives of Single-Atom-Based Catalysts for Electrochemical Reactions. JACS Au 2023, 3 (3) , 736-755. https://doi.org/10.1021/jacsau.3c00001
    23. Renyu Wang, Gong Zhang, Kai Zhang, Huachun Lan, Huijuan Liu. Key Role of NiCoP Arrays as an Electron Reservoir in a Membrane-Free Electrochemical Reactor for Energy-Saving Hydrogen Recovery and Ammonia Decomposition. ACS ES&T Water 2023, 3 (3) , 733-742. https://doi.org/10.1021/acsestwater.2c00509
    24. Siyu Chen, Yongqi Gao, Wugang Wang, Oleg V. Prezhdo, Lai Xu. Prediction of Three-Metal Cluster Catalysts on Two-Dimensional W2N3 Support with Integrated Descriptors for Electrocatalytic Nitrogen Reduction. ACS Nano 2023, 17 (2) , 1522-1532. https://doi.org/10.1021/acsnano.2c10607
    25. Jieqiong Shan, Chao Ye, Chongzhi Zhu, Juncai Dong, Wenjie Xu, Ling Chen, Yan Jiao, Yunling Jiang, Li Song, Yaning Zhang, Mietek Jaroniec, Yihan Zhu, Yao Zheng, Shi-Zhang Qiao. Integrating Interactive Noble Metal Single-Atom Catalysts into Transition Metal Oxide Lattices. Journal of the American Chemical Society 2022, 144 (50) , 23214-23222. https://doi.org/10.1021/jacs.2c11374
    26. Junming Zhang, Hong Bin Yang, Daojin Zhou, Bin Liu. Adsorption Energy in Oxygen Electrocatalysis. Chemical Reviews 2022, 122 (23) , 17028-17072. https://doi.org/10.1021/acs.chemrev.1c01003
    27. Tatiana Priamushko, Patrick Guggenberger, Andreas Mautner, John Lee, Ryong Ryoo, Freddy Kleitz. Enhancing OER Activity of Ni/Co Oxides via Fe/Mn Substitution within Tailored Mesoporous Frameworks. ACS Applied Energy Materials 2022, 5 (11) , 13385-13397. https://doi.org/10.1021/acsaem.2c02055
    28. Hongwei Zhang, Xindie Jin, Jong-Min Lee, Xin Wang. Tailoring of Active Sites from Single to Dual Atom Sites for Highly Efficient Electrocatalysis. ACS Nano 2022, 16 (11) , 17572-17592. https://doi.org/10.1021/acsnano.2c06827
    29. Nan Yang, Hongmei Qin, De Ding, Yin Chen. Surface-Modified Ultrathin Metal–Organic Framework Nanosheets as a Single-Site Iron Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Nano Materials 2022, 5 (10) , 15021-15029. https://doi.org/10.1021/acsanm.2c03223
    30. Soumita Chakraborty, Shivanna Marappa, Sakshi Agarwal, Debabrata Bagchi, Ankit Rao, Chathakudath P. Vinod, Sebastian C. Peter, Abhishek Singh, Muthusamy Eswaramoorthy. Improvement in Oxygen Evolution Performance of NiFe Layered Double Hydroxide Grown in the Presence of 1T-Rich MoS2. ACS Applied Materials & Interfaces 2022, 14 (28) , 31951-31961. https://doi.org/10.1021/acsami.2c06210
    31. Longbin Li, Kai Yuan, Yiwang Chen. Breaking the Scaling Relationship Limit: From Single-Atom to Dual-Atom Catalysts. Accounts of Materials Research 2022, 3 (6) , 584-596. https://doi.org/10.1021/accountsmr.1c00264
    32. Jinzhi Tang, Zhihao Zeng, Haikuan Liang, Zhihao Wang, Wei Nong, Zhen Yang, Chenze Qi, Zhengping Qiao, Yan Li, Chengxin Wang. Simultaneously Enhancing Catalytic Performance and Increasing Density of Bifunctional CuN3 Active Sites in Dopant-Free 2D C3N3Cu for Oxygen Reduction/Evolution Reactions. ACS Omega 2022, 7 (23) , 19794-19803. https://doi.org/10.1021/acsomega.2c01562
    33. Wenkai Zhao, Cheng Luo, Yue Lin, Guan-Bo Wang, Hao Ming Chen, Panyong Kuang, Jiaguo Yu. Pt–Ru Dimer Electrocatalyst with Electron Redistribution for Hydrogen Evolution Reaction. ACS Catalysis 2022, 12 (9) , 5540-5548. https://doi.org/10.1021/acscatal.2c00851
    34. Ce Liu, Teng Li, Xingchao Dai, Jian Zhao, Dongcheng He, Guomin Li, Bin Wang, Xinjiang Cui. Catalytic Activity Enhancement on Alcohol Dehydrogenation via Directing Reaction Pathways from Single- to Double-Atom Catalysis. Journal of the American Chemical Society 2022, 144 (11) , 4913-4924. https://doi.org/10.1021/jacs.1c12705
    35. Chuanyi Jia, Qian Wang, Jing Yang, Ke Ye, Xiyu Li, Wenhui Zhong, Hujun Shen, Edward Sharman, Yi Luo, Jun Jiang. Toward Rational Design of Dual-Metal-Site Catalysts: Catalytic Descriptor Exploration. ACS Catalysis 2022, 12 (6) , 3420-3429. https://doi.org/10.1021/acscatal.1c06015
    36. Xiaoli Zhang, Xu Han, Fengyuan Zhu, Chengyan Zhou, Xueqin Cao, Jianping Lang, Hongwei Gu. Route to the Structure-Controlled Synthesis of Fe Nanobelts and Their Oxygen Evolution Reaction Application. Inorganic Chemistry 2022, 61 (7) , 3024-3028. https://doi.org/10.1021/acs.inorgchem.1c04011
    37. Masafumi Harada, Fukue Kotegawa, Masako Kuwa. Structural Changes of Spinel MCo2O4 (M = Mn, Fe, Co, Ni, and Zn) Electrocatalysts during the Oxygen Evolution Reaction Investigated by In Situ X-ray Absorption Spectroscopy. ACS Applied Energy Materials 2022, 5 (1) , 278-294. https://doi.org/10.1021/acsaem.1c02824
    38. Yuting He, Xiaoxuan Yang, Yunsong Li, Liting Liu, Shengwu Guo, Chengyong Shu, Feng Liu, Yongning Liu, Qiang Tan, Gang Wu. Atomically Dispersed Fe–Co Dual Metal Sites as Bifunctional Oxygen Electrocatalysts for Rechargeable and Flexible Zn–Air Batteries. ACS Catalysis 2022, 12 (2) , 1216-1227. https://doi.org/10.1021/acscatal.1c04550
    39. Jaehyun Kim, Sungkyun Choi, Jinhyuk Cho, Soo Young Kim, Ho Won Jang. Toward Multicomponent Single-Atom Catalysis for Efficient Electrochemical Energy Conversion. ACS Materials Au 2022, 2 (1) , 1-20. https://doi.org/10.1021/acsmaterialsau.1c00041
    40. Ruijie Gao, Jisheng Xu, Jian Wang, Jongwoo Lim, Chong Peng, Lun Pan, Xiangwen Zhang, Huaming Yang, Ji-Jun Zou. Pd/Fe2O3 with Electronic Coupling Single-Site Pd–Fe Pair Sites for Low-Temperature Semihydrogenation of Alkynes. Journal of the American Chemical Society 2022, 144 (1) , 573-581. https://doi.org/10.1021/jacs.1c11740
    41. Qing’e Huang, Binli Wang, Sheng Ye, Hua Liu, Haibo Chi, Xiaoyan Liu, Hongjun Fan, Mingrun Li, Chunmei Ding, Zheng Li, Can Li. Relation between Water Oxidation Activity and Coordination Environment of C,N-Coordinated Mononuclear Co Catalyst. ACS Catalysis 2022, 12 (1) , 491-496. https://doi.org/10.1021/acscatal.1c04644
    42. Yao Li, Le Xin Song, Wei Ping Wang, Yue Teng, Juan Xia, Nan Ning Liu. Controlled Morphological Transformation, Photocatalytic Properties, and Electrocatalytic OER Performance of Fe-MOF Nanopolyhedra. The Journal of Physical Chemistry C 2021, 125 (49) , 27207-27220. https://doi.org/10.1021/acs.jpcc.1c07710
    43. N. Clament Sagaya Selvam, Seung Jae Kwak, Gwan H. Choi, Min Jun Oh, Hyunwoo Kim, Won-Sub Yoon, Won Bo Lee, Pil J. Yoo. Unveiling the Impact of Fe Incorporation on Intrinsic Performance of Reconstructed Water Oxidation Electrocatalyst. ACS Energy Letters 2021, 6 (12) , 4345-4354. https://doi.org/10.1021/acsenergylett.1c01983
    44. Xue Bai, Qiang Wang, Jingqi Guan. Bimetallic Iron–Cobalt Nanoparticles Coated with Amorphous Carbon for Oxygen Evolution. ACS Applied Nano Materials 2021, 4 (11) , 12663-12671. https://doi.org/10.1021/acsanm.1c03208
    45. Qi Wang, Zhe Zhang, Chao Cai, Maoyu Wang, Zhi Liang Zhao, Menghao Li, Xiang Huang, Shaobo Han, Hua Zhou, Zhenxing Feng, Lei Li, Jun Li, Hu Xu, Joseph S. Francisco, Meng Gu. Single Iridium Atom Doped Ni2P Catalyst for Optimal Oxygen Evolution. Journal of the American Chemical Society 2021, 143 (34) , 13605-13615. https://doi.org/10.1021/jacs.1c04682
    46. Han Yang, Mengwei Yuan, Di Wang, Zemin Sun, Huifeng Li, Genban Sun. 3D Cross-Linked Structure of Manganese Nickel Phosphide Ultrathin Nanosheets: Electronic Structure Optimization for Efficient Bifunctional Electrocatalysts. ACS Applied Energy Materials 2021, 4 (8) , 8563-8571. https://doi.org/10.1021/acsaem.1c01756
    47. Yanan Zhang, Wenlong Ye, Jinchen Fan, Volkan Cecen, Penghui Shi, Yulin Min, Qunjie Xu. Cobalt-Nanoparticle-Decorated Cobalt–Molybdenum Bimetal Oxides Embedded in Flower-like N-Doped Carbon as a Durable and Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2021, 9 (33) , 11052-11061. https://doi.org/10.1021/acssuschemeng.1c02472
    48. Meiling Xiao, Jianbing Zhu, Shuang Li, Gaoran Li, Wenwen Liu, Ya-Ping Deng, Zhengyu Bai, Lu Ma, Ming Feng, Tianpin Wu, Dong Su, Jun Lu, Aiping Yu, Zhongwei Chen. 3d-Orbital Occupancy Regulated Ir-Co Atomic Pair Toward Superior Bifunctional Oxygen Electrocatalysis. ACS Catalysis 2021, 11 (14) , 8837-8846. https://doi.org/10.1021/acscatal.1c02165
    49. Xuning Li, Yaqiong Zeng, Ching-Wei Tung, Ying-Rui Lu, Sambath Baskaran, Sung-Fu Hung, Shifu Wang, Cong-Qiao Xu, Junhu Wang, Ting-Shan Chan, Hao Ming Chen, Jianchao Jiang, Qi Yu, Yanqiang Huang, Jun Li, Tao Zhang, Bin Liu. Unveiling the In Situ Generation of a Monovalent Fe(I) Site in the Single-Fe-Atom Catalyst for Electrochemical CO2 Reduction. ACS Catalysis 2021, 11 (12) , 7292-7301. https://doi.org/10.1021/acscatal.1c01621
    50. Wenpeng Ni, Yang Gao, Yue Lin, Chao Ma, Xiaoguang Guo, Shuangyin Wang, Shiguo Zhang. Nonnitrogen Coordination Environment Steering Electrochemical CO2-to-CO Conversion over Single-Atom Tin Catalysts in a Wide Potential Window. ACS Catalysis 2021, 11 (9) , 5212-5221. https://doi.org/10.1021/acscatal.0c05514
    51. Dahong Huang, Ning He, Qianhong Zhu, Chiheng Chu, Seunghyun Weon, Kali Rigby, Xuechen Zhou, Lei Xu, Junfeng Niu, Eli Stavitski, Jae-Hong Kim. Conflicting Roles of Coordination Number on Catalytic Performance of Single-Atom Pt Catalysts. ACS Catalysis 2021, 11 (9) , 5586-5592. https://doi.org/10.1021/acscatal.1c00627
    52. Yang Hai, Li Liu, Yun Gong. Iron Coordination Polymer, Fe(oxalate)(H2O)2 Nanorods Grown on Nickel Foam via One-Step Electrodeposition as an Efficient Electrocatalyst for Oxygen Evolution Reaction. Inorganic Chemistry 2021, 60 (7) , 5140-5152. https://doi.org/10.1021/acs.inorgchem.1c00170
    53. Selvasundarasekar Sam Sankar, Govindaraj Keerthana, Karthikeyan Manjula, Jeyashankararaj Hirithya Sharad, Subrata Kundu. Electrospun Fe-Incorporated ZIF-67 Nanofibers for Effective Electrocatalytic Water Splitting. Inorganic Chemistry 2021, 60 (6) , 4034-4046. https://doi.org/10.1021/acs.inorgchem.1c00097
    54. Fan Wu, Shaoqi Zhan, Li Yang, Zhiwen Zhuo, Xijun Wang, Xiyu Li, Yi Luo, Jun Jiang. Spatial Confinement of a Carbon Nanocone for an Efficient Oxygen Evolution Reaction. The Journal of Physical Chemistry Letters 2021, 12 (9) , 2252-2258. https://doi.org/10.1021/acs.jpclett.1c00267
    55. Hojin Jeong, Sangyong Shin, Hyunjoo Lee. Heterogeneous Atomic Catalysts Overcoming the Limitations of Single-Atom Catalysts. ACS Nano 2020, 14 (11) , 14355-14374. https://doi.org/10.1021/acsnano.0c06610
    56. Feifei Wang, Jing Li, Juan Zhao, Yixiao Yang, Chenliang Su, Yu Lin Zhong, Quan-Hong Yang, Jiong Lu. Single-Atom Electrocatalysts for Lithium Sulfur Batteries: Progress, Opportunities, and Challenges. ACS Materials Letters 2020, 2 (11) , 1450-1463. https://doi.org/10.1021/acsmaterialslett.0c00396
    57. Wenchao Wan, Carlos A. Triana, Jinggang Lan, Jingguo Li, Christopher S. Allen, Yonggui Zhao, Marcella Iannuzzi, Greta R. Patzke. Bifunctional Single Atom Electrocatalysts: Coordination–Performance Correlations and Reaction Pathways. ACS Nano 2020, 14 (10) , 13279-13293. https://doi.org/10.1021/acsnano.0c05088
    58. Bingzhang Lu, Qiming Liu, Shaowei Chen. Electrocatalysis of Single-Atom Sites: Impacts of Atomic Coordination. ACS Catalysis 2020, 10 (14) , 7584-7618. https://doi.org/10.1021/acscatal.0c01950
    59. Chia-Jui Chang, Sheng-Chih Lin, Hsiao-Chien Chen, Jiali Wang, Kai Jen Zheng, Yanping Zhu, Hao Ming Chen. Dynamic Reoxidation/Reduction-Driven Atomic Interdiffusion for Highly Selective CO2 Reduction toward Methane. Journal of the American Chemical Society 2020, 142 (28) , 12119-12132. https://doi.org/10.1021/jacs.0c01859
    60. Silu Zhu, Guoyi Duan, Cuiping Chang, Yongmei Chen, Yanzhi Sun, Yang Tang, Pingyu Wan, Junqing Pan. Fast Electrodeposited Nickel–Iron Hydroxide Nanosheets on Sintered Stainless Steel Felt as Bifunctional Electrocatalyts for Overall Water Splitting. ACS Sustainable Chemistry & Engineering 2020, 8 (26) , 9885-9895. https://doi.org/10.1021/acssuschemeng.0c03017
    61. Lujie Cao, Yangfan Shao, Hui Pan, Zhouguang Lu. Designing Efficient Dual-Metal Single-Atom Electrocatalyst TMZnN6 (TM = Mn, Fe, Co, Ni, Cu, Zn) for Oxygen Reduction Reaction. The Journal of Physical Chemistry C 2020, 124 (21) , 11301-11307. https://doi.org/10.1021/acs.jpcc.0c01045
    62. Yanping Zhu, Jiali Wang, Hang Chu, You-Chiuan Chu, Hao Ming Chen. In Situ/Operando Studies for Designing Next-Generation Electrocatalysts. ACS Energy Letters 2020, 5 (4) , 1281-1291. https://doi.org/10.1021/acsenergylett.0c00305
    63. Qiaoqiao Zhang, Ning Liu, Jingqi Guan. Charge-Transfer Effects in Fe–Co and Fe–Co–Y Oxides for Electrocatalytic Water Oxidation Reaction. ACS Applied Energy Materials 2019, 2 (12) , 8903-8911. https://doi.org/10.1021/acsaem.9b01938
    64. Yan Yan, Rui Yu, Mingkai Liu, Zehua Qu, Jifeng Yang, Siyuan He, Hongliang Li, Jie Zeng. General synthesis of neighboring dual-atomic sites with a specific pre-designed distance via an interfacial-fixing strategy. Nature Communications 2025, 16 (1) https://doi.org/10.1038/s41467-024-55630-y
    65. Yifan Yang, Jingtong Guo, Lixiong Xu, Chenyue Li, Rongqian Ning, Jun Ma, Shuo Geng. Bond engineering: weakening Ru–O covalency for efficient and stable water oxidation in acidic solutions. Journal of Energy Chemistry 2025, 102 , 1-9. https://doi.org/10.1016/j.jechem.2024.09.070
    66. Chen-Shuang Yin, Hui-Jian Zou, Yan Leng, Xikun Yang, Chun-Gang Min, Feng Tan, Ai-Min Ren. Understanding of the synergetic effect of FeCoN8C dual active centers catalyst for oxygen reduction reaction and oxygen evolution reaction: A density functional theory study. Applied Surface Science 2025, 685 , 162055. https://doi.org/10.1016/j.apsusc.2024.162055
    67. Li Yan, Yu Mao, Yingxin Li, Qihao Sha, Kai Sun, Panpan Li, Geoffrey I. N. Waterhouse, Ziyun Wang, Shubo Tian, Xiaoming Sun. Sublimation Transformation Synthesis of Dual‐Atom Fe Catalysts for Efficient Oxygen Reduction Reaction. Angewandte Chemie International Edition 2025, 64 (1) https://doi.org/10.1002/anie.202413179
    68. Shanshan Lu, Zhipu Zhang, Chuanqi Cheng, Bin Zhang, Yanmei Shi. Unveiling the Aggregation of M−N−C Single Atoms into Highly Efficient MOOH Nanoclusters during Alkaline Water Oxidation. Angewandte Chemie International Edition 2025, 64 (1) https://doi.org/10.1002/anie.202413308
    69. Li Yan, Yu Mao, Yingxin Li, Qihao Sha, Kai Sun, Panpan Li, Geoffrey I. N. Waterhouse, Ziyun Wang, Shubo Tian, Xiaoming Sun. Sublimation Transformation Synthesis of Dual‐Atom Fe Catalysts for Efficient Oxygen Reduction Reaction. Angewandte Chemie 2025, 137 (1) https://doi.org/10.1002/ange.202413179
    70. Shanshan Lu, Zhipu Zhang, Chuanqi Cheng, Bin Zhang, Yanmei Shi. Unveiling the Aggregation of M−N−C Single Atoms into Highly Efficient MOOH Nanoclusters during Alkaline Water Oxidation. Angewandte Chemie 2025, 137 (1) https://doi.org/10.1002/ange.202413308
    71. Yiqiao Wang, Liling Liao, Gangqiang Zhu, Weiqiang Xie, Qian Zhou, Fang Yu, Hongpeng Zhou, Haiqing Zhou. Metal-nitrogen coordinated single atomic photocatalysts for solar energy conversion. Coordination Chemistry Reviews 2025, 523 , 216254. https://doi.org/10.1016/j.ccr.2024.216254
    72. Xiaoqin Xu, Jingqi Guan. Metal-organic-framework-derived dual-atom catalysts: from synthesis to electrocatalytic applications. Materials Science and Engineering: R: Reports 2025, 162 , 100886. https://doi.org/10.1016/j.mser.2024.100886
    73. Zixuan Han, Yanmei Shi, Bin Zhang, Lingjun Kong. Dynamic evolution of metal−nitrogen−codoped carbon catalysts in electrocatalytic reactions. Chemical Communications 2025, https://doi.org/10.1039/D4CC04664A
    74. Ce Liu, Teng Li, Xingchao Dai, Jian Zhao, Liping Zhang, Xinjiang Cui. Mechanism regulation over dual-atom catalyst enables high-performance oxidative alcohol esterification. Science Bulletin 2025, 70 (1) , 78-89. https://doi.org/10.1016/j.scib.2024.08.038
    75. Jiangli Gong, Qianglong Qi, Zhiyuan Wang, Guangxin Zhao, Jianliang Yuan, Chengxu Zhang, Jue Hu. Controlled Reconstruction of Metal-Organic Frameworks via Coordination Environment Tuning as Oxygen Evolution Electrocatalysts. Dalton Transactions 2025, https://doi.org/10.1039/D4DT03348E
    76. Shaowei Yang, Ying Guo, Jie Yang, Runze Gao, Zhibei Liao, Haidong Shen, Haoxi Wang, Lifeng Jiang, Buxing Han, Qiuyu Zhang, Hepeng Zhang. Stabilizing * OH intermediate by fabricating Ni 3 N ‐ MoN for scalable 5‐hydroxymethylfurfural electrooxidation. AIChE Journal 2024, 2020 https://doi.org/10.1002/aic.18690
    77. Shuangshuang Cha, Xueting Cao, Wei Du, Hanlin Jin, Yujia Liu, Ran Wang, Yizhou Yang, Bing Sun, Xuejing Yang, Ming Gong. The ion effect on electrocatalytic oxidation reactions. Journal of Materials Chemistry A 2024, 12 (47) , 32548-32565. https://doi.org/10.1039/D4TA04113E
    78. Yizhe Li, Yajie Li, Hao Sun, Liyao Gao, Xiangrong Jin, Yaping Li, Zhi LV, Lijun Xu, Wen Liu, Xiaoming Sun. Current Status and Perspectives of Dual-Atom Catalysts Towards Sustainable Energy Utilization. Nano-Micro Letters 2024, 16 (1) https://doi.org/10.1007/s40820-024-01347-y
    79. Lili Zhang, Ning Zhang, Huishan Shang, Zhiyi Sun, Zihao Wei, Jingtao Wang, Yuanting Lei, Xiaochen Wang, Dan Wang, Yafei Zhao, Zhongti Sun, Fang Zhang, Xu Xiang, Bing Zhang, Wenxing Chen. High-density asymmetric iron dual-atom sites for efficient and stable electrochemical water oxidation. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-53871-5
    80. Xinyu Zhan, Xinyi Fan, Weixiang Li, Xinyi Tan, Alex W. Robertson, Umer Muhammad, Zhenyu Sun. Coupled metal atomic pairs for synergistic electrocatalytic CO2 reduction. Matter 2024, 7 (12) , 4206-4232. https://doi.org/10.1016/j.matt.2024.09.013
    81. Haryeong Choi, Jiseung Kim, Taehee Kim, Vinayak G. Parale, Wonjun Lee, Hyun Jee Heo, Hyung-Ho Park. Morphological modulation of Co-based Zeolitic imidazolate framework for oxygen evolution reaction. Journal of Materials Science & Technology 2024, 488 https://doi.org/10.1016/j.jmst.2024.11.036
    82. Lan Wu, Yongchao Liu, Ze Wang, Xinyu Ye, Zhenhua Li, Yaozong Liu, Zhengping Dong. Preparation of mesoporous chitosan cobalt supported nano-catalyst for the catalyzed reduction of quinoline to quinoline aldehyde. 2024https://doi.org/10.21203/rs.3.rs-5391338/v1
    83. Hengqi Liu, Jinzhen Huang, Kun Feng, Rui Xiong, Shengyu Ma, Ran Wang, Qiang Fu, Moniba Rafique, Zhiguo Liu, Jiecai Han, Daxing Hua, Jiajie Li, Jun Zhong, Xianjie Wang, Zhonglong Zhao, Tai Yao, Sida Jiang, Ping Xu, Zhihua Zhang, Bo Song. Reconstructing the Coordination Environment of Fe/Co Dual‐atom Sites towards Efficient Oxygen Electrocatalysis for Zn–Air Batteries. Angewandte Chemie International Edition 2024, 57 https://doi.org/10.1002/anie.202419595
    84. Hengqi Liu, Jinzhen Huang, Kun Feng, Rui Xiong, Shengyu Ma, Ran Wang, Qiang Fu, Moniba Rafique, Zhiguo Liu, Jiecai Han, Daxing Hua, Jiajie Li, Jun Zhong, Xianjie Wang, Zhonglong Zhao, Tai Yao, Sida Jiang, Ping Xu, Zhihua Zhang, Bo Song. Reconstructing the Coordination Environment of Fe/Co Dual‐atom Sites towards Efficient Oxygen Electrocatalysis for Zn–Air Batteries. Angewandte Chemie 2024, https://doi.org/10.1002/ange.202419595
    85. Shengmei Chen, Chao Peng, Daming Zhu, Chunyi Zhi. Bifunctionally Electrocatalytic Bromine Redox Reaction by Single‐Atom Catalysts for High‐Performance Zinc Batteries. Advanced Materials 2024, 36 (46) https://doi.org/10.1002/adma.202409810
    86. Jiayong Xiao, Jofrey J. Masana, Ming Qiu, Ying Yu. Cu−based bimetallic sites' p-d orbital hybridization promotes CO asymmetric coupling conversion to C2 products. Materials Today Physics 2024, 48 , 101565. https://doi.org/10.1016/j.mtphys.2024.101565
    87. Yao Wang, Fengya Ma, Guoqing Zhang, Jiawei Zhang, Hui Zhao, Yuming Dong, Dingsheng Wang. Precise synthesis of dual atom sites for electrocatalysis. Nano Research 2024, 17 (11) , 9397-9427. https://doi.org/10.1007/s12274-024-6940-7
    88. Yinglin Zhang, Bo Yan, Chenchen Ji, Tingting Wei, Wenbin Niu, He Lin, Yulin Shi. Heteronuclear FeN3-CuN3 atom pairs coordination engineering of single-atom catalysts for water splitting and Zn-Air batteries. Chemical Engineering Journal 2024, 500 , 157182. https://doi.org/10.1016/j.cej.2024.157182
    89. Pai Wang, Kunyu Li, Tongwei Wu, Wei Ji, Yanning Zhang. Asymmetric electron occupation of transition metals for the oxygen evolution reaction via a ligand–metal synergistic strategy. Physical Chemistry Chemical Physics 2024, 26 (42) , 27209-27215. https://doi.org/10.1039/D4CP03185G
    90. Dong Guo, Xiong-Xiong Xue, Menggai Jiao, Jinhui Liu, Tian Wu, Xiandi Ma, Die Lu, Rui Zhang, Shaojun Zhang, Gonglei Shao, Zhen Zhou. Coordination engineering of single-atom ruthenium in 2D MoS 2 for enhanced hydrogen evolution. Chemical Science 2024, 15 (39) , 16281-16290. https://doi.org/10.1039/D4SC04905E
    91. Pardis Daghooghi, Hossein Tavakol. Theoretical study of the efficiencies of graphyne supported Mo single-atom catalyst (SAC) and Mo-Ni dual-atom catalyst (DAC) on hydrogen evolution reaction. Fullerenes, Nanotubes and Carbon Nanostructures 2024, , 1-15. https://doi.org/10.1080/1536383X.2024.2409765
    92. Qun Li, Li-Gang Wang, Jia-Bin Wu. Recent advances in dual-atom catalysts for energy catalysis. Rare Metals 2024, 13 https://doi.org/10.1007/s12598-024-02911-6
    93. Xiaohui Sun, Peng Zhang, Bangyan Zhang, Chunming Xu. Electronic Structure Regulated Carbon‐Based Single‐Atom Catalysts for Highly Efficient and Stable Electrocatalysis. Small 2024, 8 https://doi.org/10.1002/smll.202405624
    94. Anqi Li, Xiaoyu Qian, Mengyan Han, Zhichun Li, Xiaobo He, Guofeng Wang. Pyrolysis of ZIF-Co assisted by a small amount of KNO3: Tuning of Co-CoOx@N, O co-doped carbon hybrid nanostructures for accelerating water splitting. Fuel 2024, 371 , 131969. https://doi.org/10.1016/j.fuel.2024.131969
    95. Umer Younas, Fizza Mobeen, Aimon Saleem, Faisal Ali, Maryam Al Huwayz, Adnan Ashraf, Awais Ahmad, Norah Alwadai, Muhammad Pervaiz, Munawar Iqbal. Efficient hydrogen production via overall water splitting using CuO/ZnO decorated reduced graphene oxide as bifunctional electrocatalyst. Ceramics International 2024, 50 (17) , 30570-30578. https://doi.org/10.1016/j.ceramint.2024.05.355
    96. Hao Chen, Yan-Qin Wang, Rong Ding, Zhi-Wei Zeng, Bo-Wen Liu, Fu-Rong Zeng, Yu-Zhong Wang, Hai-Bo Zhao. Satellite-like shielding for dual single-atom catalysis, boosting ampere-level alkaline seawater splitting. Matter 2024, 7 (9) , 3189-3204. https://doi.org/10.1016/j.matt.2024.05.034
    97. Yuebin Lian, Weilong Xu, Xiaojiao Du, Yannan Zhang, Weibai Bian, Yuan Liu, Jin Xiao, Likun Xiong, Jirong Bai. Unveiling the Dynamic Evolution of Catalytic Sites in N-Doped Leaf-like Carbon Frames Embedded with Co Particles for Rechargeable Zn–Air Batteries. Molecules 2024, 29 (18) , 4494. https://doi.org/10.3390/molecules29184494
    98. Lei Lei, Xinghua Guo, Xu Han, Ling Fei, Xiao Guo, De‐Gao Wang. From Synthesis to Mechanisms: In‐Depth Exploration of the Dual‐Atom Catalytic Mechanisms Toward Oxygen Electrocatalysis. Advanced Materials 2024, 36 (37) https://doi.org/10.1002/adma.202311434
    99. Jitendra N. Tiwari, Krishan Kumar, Moein Safarkhani, Muhammad Umer, A. T. Ezhil Vilian, Ana Beloqui, Gokul Bhaskaran, Yun Suk Huh, Young‐Kyu Han. Materials Containing Single‐, Di‐, Tri‐, and Multi‐Metal Atoms Bonded to C, N, S, P, B, and O Species as Advanced Catalysts for Energy, Sensor, and Biomedical Applications. Advanced Science 2024, 11 (33) https://doi.org/10.1002/advs.202403197
    100. Shuang Zhao, Minjie Liu, Zehua Qu, Yan Yan, Zhirong Zhang, Jifeng Yang, Siyuan He, Zhou Xu, Yiquan Zhu, Laihao Luo, Kwun Nam Hui, Mingkai Liu, Jie Zeng. Cascade Synthesis of Fe‐N 2 ‐Fe Dual‐Atom Catalysts for Superior Oxygen Catalysis. Angewandte Chemie 2024, https://doi.org/10.1002/ange.202408914
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2019, 141, 36, 14190–14199
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.9b05268
    Published August 16, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    23k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.