ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Anion Pairs Template a Trigonal Prism with Disilver Vertices

Cite this: J. Am. Chem. Soc. 2019, 141, 29, 11409–11413
Publication Date (Web):July 8, 2019
https://doi.org/10.1021/jacs.9b05432
Copyright © 2019 American Chemical Society
ACS AuthorChoiceACS AuthorChoicewith CC-BYlicense

Article Views

4749

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (2 MB)
Supporting Info (6)»

Abstract

Here we describe the formation of a trigonal prismatic cage, utilizing 2-formyl-1,8-naphthyridine subcomponents to bind pairs of silver(I) ions in close proximity. This cage is the first example of a new class of subcomponent self-assembled polyhedral structures having bimetallic vertices, as opposed to the single metal centers that typically serve as structural elements within such cages. Our new cage self-assembles around a pair of anionic templates, which are shown by crystallographic and solution-phase data to bind within the central cavity of the structure. Many different anions serve as competent templates and guests. Elongated dianions, such as the strong oxidizing agent peroxysulfate, also serve to template and bind within the cavity of the prism. The principle of using subcomponents that have more than one spatially close, but nonchelating, binding site may thus allow access to other higher-order structures with multimetallic vertices.

Self-assembly allows the efficient construction of complex architectures from relatively simple components. Polyhedral metal–organic cages are a class of such architectures that have been the focus of intense recent work. (1−3)

Much effort has gone into the design of multitopic organic ligands for these cages. The symmetries and connection properties of these ligands and their metal-ion partners (typically octahedral (4,5) or square planar (6,7) transition metals) can be used to create structures with diverse functions. (8,9)

A key feature of these cages is the presence of an internal cavity of well-defined shape, size, and charge density. These cavities may offer chemical environments distinct from that of the bulk solvent. They have thus found applications in areas such as molecular sequestration, (10−12) chiral sensing, (13) and the stabilization of reactive species (14) and reaction intermediates. (15,16)

Novel architectures and functions can be obtained through the use of flexible organic building blocks. (17,18) Many systems that incorporate such species form unexpected and often structurally complex architectures, including a range of intricate cages and grids, (19−21) which have been used for catalysis, (22) guest binding, (23) and molecular knot formation. (24,25)

We hypothesized that novel coordination motifs could be used in an analogous way to these flexible ligands. Complexes that contain two metal ions in close proximity are an area of active interest, particularly in catalysis. (26,27) Such bimetallic complexes can adopt a variety of configurations, displaying features such as anion inclusion, (28) the incorporation of different numbers of ligands, (29) or metal–metal bonding. (30)

We reasoned that the nonconverging coordination vectors of commercially available 2-formyl-1,8-naphthyridine, (31,32) along with the flexible coordination sphere of silver(I), (33−35) could lead to the formation of architectures with unprecedented geometries. Here, we report the preparation of a AgI12L6 trigonal prism using the subcomponent self-assembly approach. (36,37) This structure makes use of bimetallic units to define the vertices of a three-dimensional metal–organic structure, opening the door to further investigation of new polyhedral architectures in this class of compounds. It is also the first example of this type of prismatoid constructed with 3-fold symmetric building blocks, to the best of our knowledge.

The reaction of tris(4-aminophenyl)amine A (6 equiv) and 2-formyl-1,8-naphthyridine B (12 equiv) with silver(I) perchlorate (ClO4, 12 equiv) yielded AgI12L6 cage 1 (Figure 1), whose composition was confirmed by both ESI- and HR-MS (Figures S8 and S9). 1H NMR spectroscopy revealed 28 signals, consistent with a distinct environment for each ligand arm, with two of the phenyl rings undergoing rapid rotation on the NMR time scale (Figure 2c).

Figure 1

Figure 1. (a) Synthesis of AgI12L6 trigonal prism 1 from tris(4-aminophenyl)amine A, 2-formyl-1,8-naphthyridine B, and silver(I) perchlorate. (b) Assembly of 1 requires an appropriate template anion. (c) X-ray crystal structure of (ClO4)2⊂1 with the two templating anions included. One pair of ligands is shown in gray to highlight the desymmetrization of the ligand arms. (d) Top-down view depicting the central tubular void of (ClO4)2⊂1. Disorder, nonincluded anions, and solvent molecules have been omitted for clarity.

Figure 2

Figure 2. (a) One vertex of (ClO4)2⊂1. (b) Simplified representation of the same vertex. (c) 1H NMR and DOSY NMR spectra (400 MHz, 298 K, CD3CN) of (ClO4)2⊂1 showing 3-fold desymmetrization of the cage ligands. The units of D are 10–6 cm2 s–1.

Further analysis by diffusion ordered spectroscopy (DOSY) supported the formation of a single product structure in solution, with an observed diffusion coefficient of 4.8 × 10–6 cm2 s–1, corresponding to a hydrodynamic radius of 12 Å (Figure 2c).

Vapor diffusion of diisopropyl ether (iPr2O) into an acetonitrile solution of 1 provided crystals suitable for analysis by X-ray diffraction. The cationic portion of 1 was revealed to have a twisted trigonal prismatic structure (Figure 1c,d) with a pair of silver centers at each vertex.

The vertices of the structure were observed to adopt a new mode of coordination. The two AgI cations at each vertex are coordinated by three distinct naphthyridine-imine arms from different ligands. Two of the arms bridge between AgI centers, using all three N-donors. The third naphthyridine-imine arm only coordinates to the outermost AgI center via two of its N-donors (Figure 2a). The bidentate bridging mode of the napthyridines forces the AgI centers into close proximity, with Ag···Ag distances of 2.816(2)–2.861(3) Å, within the range reported for other naphthyridine-bridged silver complexes. (30,31) All AgI centers are coordinated by four nitrogen donors, with Ag–N bond lengths ranging from 2.227(5)–2.520(7) Å.

The two triangular faces of the trigonal prism, as defined by the locations of the centroids of the disilver centers of each vertex, are twisted by 30 ± 1° with respect to each other. Two tritopic ligands define each rectangular face of the prism, each bridging between three vertices (Figure 1). Two naphthyridine-imine arms of each ligand connect vertices belonging to the same triangular face, while the third arm bridges to a vertex of the opposing triangular face, through the interior of the structure. The connectivity of the structure is thus similar to a D4-symmetric CdII8L8 tetragonal prism with a larger internal cavity and single-metal vertices. (38) In the present case, the overall architecture has D3 symmetry, as well as a much smaller internal cavity.

The three arms of each tritopic ligand thus experience different environments within the overall structure. Further analysis by COSY and NOESY NMR, both 1D and 2D, allowed us to unambiguously assign each of the proton environments in solution. All solution-state structural characterization data for 1 were consistent with the crystal structure (see SI Section 3).

The crystal structure revealed that the triangular prism bound a pair of ClO4 anions within its elongated cavity. Both encapsulated anions benefit from nonclassical hydrogen bonding interactions with internally directed protons of the cage, with CH···anion distances in the range 2.4–2.7 Å. Several other ClO4 anions were found to associate with the periphery of the cage. From this, we inferred that anions may play a crucial role in templating the formation of this architecture.

A series of experiments was carried out to further probe the scope of anion templation. Silver bis(trifluoromethanesulfonyl)imide (AgNTf2) was used as the silver(I) source in all cases. Following treatment of this salt with subcomponents A and B, it was found that no well-defined structure formed in the absence of a competent template ion (Figure S58), even after heating the mixture to 60 °C in an inert atmosphere for 3 days. Molecular modeling, starting from the crystal structure of (ClO4)2⊂1, suggested that the cavity is too small to accommodate NTf2 anions.

Templation of (X)2⊂1 occurred following the addition of two equivalents of trifluoromethanesulfonate (OTf ), tetrafluoroborate (BF4), perrhenate (ReO4), hexafluorophosphate (PF6), ClO4, sulfate (SO42), or bisulfate (HSO4) to the untemplated mixture of A, B, and AgNTf2 (SI Section 4). Cage (X)2⊂1 also formed directly when AgPF6, AgClO4, or AgBF4 was used as the silver(I) source. AgReO4 and Ag2SO4 were not sufficiently soluble in acetonitrile to allow for the reaction to proceed.

The diffusion of diethyl ether into a solution of (OTf)2⊂1 containing excess TBAPF6 furnished crystals of sufficient quality for analysis by X-ray diffraction, confirming formation of a AgI12L6 cage isostructural to (ClO4)2⊂1. A clearly resolved hexafluorophosphate (PF6) anion was observed in one internal site, while the second site contained a disordered mixture of OTf and PF6 (65%/35% occupancy, respectively, see SI Section 8).

Crystals of (HSO4)2⊂1 formed following the diffusion of iPr2O into a concentrated MeCN solution, and the structure was analyzed by single-crystal X-ray diffraction (Figure 3a). The distance between the two encapsulated anions was found to be 4.150(2) Å, as measured between the two sulfur atoms. This value is similar to the 4.112(1) Å distance observed by Flood and co-workers, where a pair of HSO4 anions is stabilized by two cyanostar macrocycles. (39,40) In the case of (ClO4)2⊂1, the Cl···Cl distance was found to be 4.88(2) Å (Figure 3b). These results suggest that hydrogen bonding between the two HSO4 anions within the cage cavity, (41) coupled with interactions between the internally directed protons of the cage and the HSO4, facilitates close proximity between bisulfate anions.

Figure 3

Figure 3. X-ray crystal structures of (a) (HSO4)2⊂1, (b) (ClO4)2⊂1, (c) (PF6)2⊂1, (d) (EDS2–)⊂1 and (e) (S2O82–)⊂1 with side-views of the isolated anionic templates.

Noting that each crystal structure obtained contained two bound anions, we next explored whether two anions were required to template the framework of 1 in solution. Titration of two equivalents of TBAHSO4 into an untemplated mixture of A, B, and AgNTf2 revealed complete formation of (HSO4)2⊂1. Addition of further HSO4 led to no appreciable changes (Figure S58). This result, coupled with the crystallographic evidence, suggested that 1 hosts two anions within its central void in solution.

Having observed these supramolecular interactions holding anions in close proximity within 1, we questioned whether linear, covalently linked dianions could also serve as guests and templates for this host. There are few reported examples of such dianions bound inside cage structures. (42,43) Addition of sodium 1,2-ethanedisulfonate (EDS2–) was found to lead to formation of the templated cage. Crystallization by diffusion of iPr2O into an MeCN solution of (EDS2–)⊂1, followed by X-ray analysis, unambiguously confirmed the formation of a 1:1 host guest complex (Figure 3d), as opposed to the 2:1 complexes described above.

We also found that the addition of potassium persulfate (S2O82), which is known to oxidize AgI to AgII in MeCN solution, (44) led to the formation of cage (S2O82–)⊂1. Diffusion of iPr2O into a solution of (S2O82–)⊂1 in MeCN produced X-ray quality crystals, which revealed a single S2O82 anion bound in the center of the cage’s cavity (Figure 3e). A sulfur–sulfur distance of 4.070(3) Å was measured, shorter than that of the hydrogen-bonded HSO4 dimer. Over the course of 27 days, changes in the 1H NMR spectrum of (S2O82–)⊂1 were observed, consistent with the formation of a new host–guest complex. We thus inferred that the S2O82– was ultimately reduced to other anionic species, which also templated the prism. The 1H NMR spectra of the resulting host–guest species did not match those templated solely by SO42 or HSO4 (see SI Section 6).

The shape and size of cage 1 was observed to adapt to accommodate the different guest anions, as evidenced in the crystallographic data. The volumes of these anions vary from 53 Å3 (for BF4) to 85 Å3 (for OTf). (4) Measuring between the centroids of the disilver vertices, significant variations in the conformation of the cage were noted, depending on the guest. While the length of the cage did not vary (<1% change), the apertures at the ends of the cage were found to contract by up to 12 ± 2% (66.9 ± 0.3 Å2 for (EDS2–)⊂1 to 76.3 ± 0.5 Å2 for (OTf/PF6)2⊂1, see SI Section 9 for details).

The twist angle between the two triangular faces of the prism was also found to vary. With a twist angle of 0° defining a trigonal prism and 60° defining a trigonal antiprism, 1 varied between 27.5 ± 1.0° (for (S2O82–)⊂1) and 31 ± 0.9° (for (OTf/PF6)2⊂1). These twist angles indicate that the geometry of 1 is approximately halfway between an idealized trigonal prism and antiprism.

These changes in the structure of 1 are attributed to two factors: structural tuning of 1 to maximize favorable interactions with the internalized anions and crystal packing effects. Smaller anions led to a contraction of the apertures of the cage, whereas larger anions required the cage to expand to accommodate them. A greater contraction of the triangular apertures corresponds to a greater distortion of the twist angle from that of an ideal prism.

We have thus demonstrated the formation of a desymmetrized trigonal prismatic cage from bimetallic motifs using subcomponent self-assembly. The use of 2-formyl-1,8-naphthyridine allowed the formation of the disilver corners of cage 1, permitting access to this new structure type. The self-assembly process was template-driven, with either two monoanions or an elongated dianion, occupying the central, tubular cavity defined by the cage. The cage flexed and adapted in order to accommodate a broad range of anionic species, including strong oxidants. Further work will look to explore this system in aqueous media and examine the potential uses of its unusual binding pocket. New structures and structure types may also become accessible through the use of other subcomponents that contain spatially close, but nonchelating, binding sites for bimetallic motifs at the vertices of polyhedra.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.9b05432.

  • Detailed descriptions of synthetic procedures; characterization of new compounds; spectroscopic data (PDF)

  • X-ray data for (OTf/PF6)2⊂1 (CCDC 1913634) (CIF), (ClO4)2⊂1 (CCDC 1913631) (CIF), (HSO4)2⊂1 (CCDC 1913633) (CIF), (EDS2–)⊂1 (CCDC 1913632) (CIF), and (S2O82–)⊂1 (CCDC 1913635) (CIF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

Acknowledgments

ARTICLE SECTIONS
Jump To

This work was supported by the European Research Council (695009) and the UK Engineering and Physical Sciences Research Council (EPSRC, EP/P027067/1). We thank the EPSRC National Mass Spectrometry Centre (Swansea, UK) for high resolution mass spectrometry and Diamond Light Source (UK) for synchrotron beamtime on I19 (MT15768). J.P.C. thanks the European Union’s Horizon 2020 research and innovation program, Marie Sklodowska-Curie Grant (642192). C.T.M. thanks the Leverhulme and Isaac Newton Trusts, and Sidney Sussex College, Cambridge for Fellowship support.

References

ARTICLE SECTIONS
Jump To

This article references 44 other publications.

  1. 1
    Chand, D. K.; Biradha, K.; Fujita, M.; Sakamoto, S.; Yamaguchi, K. A Molecular Sphere of Octahedral Symmetry. Chem. Commun. 2002, 24862487,  DOI: 10.1039/B206625B
  2. 2
    Freye, S.; Michel, R.; Stalke, D.; Pawliczek, M.; Frauendorf, H.; Clever, G. H. Template Control over Dimerization and Guest Selectivity of Interpenetrated Coordination Cages. J. Am. Chem. Soc. 2013, 135, 84768479,  DOI: 10.1021/ja403184a
  3. 3
    Yazaki, K.; Sei, Y.; Akita, M.; Yoshizawa, M. A Polyaromatic Molecular Tube That Binds Long Hydrocarbons with High Selectivity. Nat. Commun. 2014, 5, 5179,  DOI: 10.1038/ncomms6179
  4. 4
    Argent, S. P.; Adams, H.; Riis-Johannessen, T.; Jeffery, J. C.; Harding, L. P.; Ward, M. D. High-Nuclearity Homoleptic and Heteroleptic Coordination Cages Based on Tetra-Capped Truncated Tetrahedral and Cuboctahedral Metal Frameworks. J. Am. Chem. Soc. 2006, 128, 7273,  DOI: 10.1021/ja056993o
  5. 5
    Riddell, I. A.; Hristova, Y. R.; Clegg, J. K.; Wood, C. S.; Breiner, B.; Nitschke, J. R. Five Discrete Multinuclear Metal-Organic Assemblies from One Ligand: Deciphering the Effects of Different Templates. J. Am. Chem. Soc. 2013, 135, 27232733,  DOI: 10.1021/ja311285b
  6. 6
    Jansze, S. M.; Wise, M. D.; Vologzhanina, A. V.; Scopelliti, R.; Severin, K. PdII2L4-Type Coordination Cages up to Three Nanometers in Size. Chem. Sci. 2017, 8, 19011908,  DOI: 10.1039/C6SC04732G
  7. 7
    Sun, Q.-F.; Sato, S.; Fujita, M. An M18L24 Stellated Cuboctahedron through Post-Stellation of an M12L24 Core. Nat. Chem. 2012, 4, 330333,  DOI: 10.1038/nchem.1285
  8. 8
    Suzuki, K.; Sato, S.; Fujita, M. Template Synthesis of Precisely Monodisperse Silica Nanoparticles within Self-Assembled Organometallic Spheres. Nat. Chem. 2010, 2, 2529,  DOI: 10.1038/nchem.446
  9. 9
    Yu, F.; Poole, D.; Mathew, S.; Yan, N.; Hessels, J.; Orth, N.; Ivanović-Burmazović, I.; Reek, J. N. H. Control over Electrochemical Water Oxidation Catalysis by Preorganization of Molecular Ruthenium Catalysts in Self-Assembled Nanospheres. Angew. Chem., Int. Ed. 2018, 57, 1124711251,  DOI: 10.1002/anie.201805244
  10. 10
    Zhang, D.; Ronson, T. K.; Mosquera, J.; Martinez, A.; Guy, L.; Nitschke, J. R. Anion Binding in Water Drives Structural Adaptation in an Azaphosphatrane-Functionalized FeII4L4 Tetrahedron. J. Am. Chem. Soc. 2017, 139, 65746577,  DOI: 10.1021/jacs.7b02950
  11. 11
    Custelcean, R.; Bonnesen, P. V.; Duncan, N. C.; Zhang, X.; Watson, L. A.; Van Berkel, G.; Parson, W. B.; Hay, B. P. Urea-Functionalised M4L6 Cage Receptors: Anion-Templated Self-Assembly and Selective Guest Exchange in Aqueous Solutions. J. Am. Chem. Soc. 2012, 134, 85258534,  DOI: 10.1021/ja300677w
  12. 12
    Custelcean, R.; Bonnesen, P. V.; Roach, B. D.; Duncan, N. C. Ion-pair triple helicates and mesocates self-assembled from ditopic 2,2’-bipyridine-bis(urea) ligands and Ni(II) or Fe(II) sulfate salts. Chem. Commun. 2012, 48, 74387440,  DOI: 10.1039/c2cc33062h
  13. 13
    Albrecht, M.; Isaak, E.; Baumert, M.; Gossen, V.; Raabe, G.; Fröhlich, R. Induced Fit” in Chiral Recognition: Epimerization upon Dimerization in the Hierarchical Self-Assembly of Helicate-Type Titanium(IV) Complexes. Angew. Chem., Int. Ed. 2011, 50, 28502853,  DOI: 10.1002/anie.201006448
  14. 14
    Mal, P.; Breiner, B.; Rissanen, K.; Nitschke, J. R. White Phosphorus Is Air-Stable within a Self-Assembled Tetrahedral Capsule. Science 2009, 324, 16971699,  DOI: 10.1126/science.1175313
  15. 15
    Cullen, W.; Misuraca, M. C.; Hunter, C. A.; Williams, N. H.; Ward, M. D. Highly Efficient Catalysis of the Kemp Elimination in the Cavity of a Cubic Coordination Cage. Nat. Chem. 2016, 8, 231236,  DOI: 10.1038/nchem.2452
  16. 16
    Murase, T.; Nishijima, Y.; Fujita, M. Cage-Catalyzed Knoevenagel Condensation under Neutral Conditions in Water. J. Am. Chem. Soc. 2012, 134, 162164,  DOI: 10.1021/ja210068f
  17. 17
    Rizzuto, F. J.; Pröhm, P.; Plajer, A. J.; Greenfield, J. L.; Nitschke, J. R. Hydrogen-Bond-Assisted Symmetry Breaking in a Network of Chiral Metal–Organic Assemblies. J. Am. Chem. Soc. 2019, 141, 17071715,  DOI: 10.1021/jacs.8b12323
  18. 18
    Song, B.; Kandapal, S.; Gu, J.; Zhang, K.; Reese, A.; Ying, Y.; Wang, L.; Wang, H.; Li, Y.; Wang, M.; Lu, S.; Hao, X.-Q.; Li, X.; Xu, B.; Li, X. Self-Assembly of Polycyclic Supramolecules Using Linear Metal-Organic Ligands. Nat. Commun. 2018, 9, 4575,  DOI: 10.1038/s41467-018-07045-9
  19. 19
    Hasenknopf, B.; Lehn, J.-M.; Boumediene, N.; Dupont-Gervais, A.; Van Dorsselaer, A.; Kneisel, B.; Fenske, D. Self-Assembly of Tetra- and Hexanuclear Circular Helicates. J. Am. Chem. Soc. 1997, 119, 1095610962,  DOI: 10.1021/ja971204r
  20. 20
    Hasenknopf, B.; Lehn, J.-M.; Kneisel, B. O.; Baum, G.; Fenske, D. Self-Assembly of a Circular Double Helicate. Angew. Chem., Int. Ed. 1996, 35, 18381840,  DOI: 10.1002/anie.199618381
  21. 21
    Hasenknopf, B.; Lehn, J.-M.; Boumediene, N.; Leize, E.; Van Dorsselaer, A. Kinetic and Thermodynamic Control in Self-Assembly: Sequential Formation of Linear and Circular Helicates. Angew. Chem., Int. Ed. 1998, 37, 32653268,  DOI: 10.1002/(SICI)1521-3773(19981217)37:23<3265::AID-ANIE3265>3.0.CO;2-B
  22. 22
    Cullen, W.; Metherell, A. J.; Wragg, A. B.; Taylor, C. G. P.; Williams, N. H.; Ward, M. D. Catalysis in a Cationic Coordination Cage Using a Cavity-Bound Guest and Surface-Bound Anions: Inhibition, Activation, and Autocatalysis. J. Am. Chem. Soc. 2018, 140, 28212828,  DOI: 10.1021/jacs.7b11334
  23. 23
    Tidmarsh, I. S.; Faust, T. B.; Adams, H.; Harding, L. P.; Russo, L.; Clegg, W.; Ward, M. D. Octanuclear Cubic Coordination Cages. J. Am. Chem. Soc. 2008, 130, 1516715175,  DOI: 10.1021/ja805605y
  24. 24
    Ayme, J.-F.; Beves, J. E.; Leigh, D. A.; McBurney, R. T.; Rissanen, K.; Schultz, D. A Synthetic Molecular Pentafoil Knot. Nat. Chem. 2012, 4, 1520,  DOI: 10.1038/nchem.1193
  25. 25
    Danon, J. J.; Krüger, A.; Leigh, D. A.; Lemonnier, J.-F.; Stephens, A. J.; Vitorica-Yrezabal, I. J.; Woltering, S. L. Braiding a Molecular Knot with Eight Crossings. Science 2017, 355, 159162,  DOI: 10.1126/science.aal1619
  26. 26
    Buchard, A.; Kember, M. R.; Sandeman, K. G.; Williams, C. K. A Bimetallic Iron(III) Catalyst for CO2/Epoxide Coupling. Chem. Commun. 2011, 47, 212214,  DOI: 10.1039/C0CC02205E
  27. 27
    Desai, S. P.; Ye, J.; Zheng, J.; Ferrandon, M. S.; Webber, T. E.; Platero-Prats, A. E.; Duan, J.; Garcia-Holley, P.; Camaioni, D. M.; Chapman, K. W.; Delferro, M.; Farha, O. K.; Fulton, J. L.; Gagliardi, L.; Lercher, J. A.; Penn, R. L.; Stein, A.; Lu, C. C. Well-Defined Rhodium–Gallium Catalytic Sites in a Metal–Organic Framework: Promoter-Controlled Selectivity in Alkyne Semihydrogenation to E-Alkenes. J. Am. Chem. Soc. 2018, 140, 1530915318,  DOI: 10.1021/jacs.8b08550
  28. 28
    Artem’ev, A. V.; Bagryanskaya, I. Y.; Doronina, E. P.; Tolstoy, P. M.; Gushchin, A. L.; Rakhmanova, M. I.; Ivanov, A. Y.; Suturina, A. O. A New Family of Clusters Containing a Silver-Centered Tetracapped [[email protected]43-P)4] Tetrahedron, Inscribed within a N12 Icosahedron. Dalton. Trans. 2017, 46, 1242512429,  DOI: 10.1039/C7DT02597A
  29. 29
    Schenck, T. G.; Downes, J. M.; Milne, C. R. C.; Mackenzie, P. B.; Boucher, T. G.; Whelan, J.; Bosnich, B. Bimetallic Reactivity. Synthesis of Bimetallic Complexes Containing a Bis(Phosphino)Pyrazole Ligand. Inorg. Chem. 1985, 24, 23342337,  DOI: 10.1021/ic00209a003
  30. 30
    Sowa, T.; Kawamura, T.; Shida, T.; Yonezawa, T. Electronic Structure of the Rhodium-Rhodium Bond in Dirhodium Tetracarboxylates by a Study of Electronic Spectra of Neutral Molecules and Their Cation Radicals. Inorg. Chem. 1983, 22, 5661,  DOI: 10.1021/ic00143a014
  31. 31
    Bera, J. K.; Sadhukhan, N.; Majumdar, M. 1,8-Naphthyridine Revisited: Applications in Dimetal Chemistry. Eur. J. Inorg. Chem. 2009, 27, 40234038,  DOI: 10.1002/ejic.200900312
  32. 32
    Giordana, A.; Priola, E.; Bonometti, E.; Benzi, P.; Operti, L.; Diana, E. Structural and Spectroscopic Study of the Asymmetric 2-(2′-Pyridyl)-1,8-Naphthyridine Ligand with Closed-Shell Metals. Polyhedron 2017, 138, 239248,  DOI: 10.1016/j.poly.2017.09.032
  33. 33
    Dong, Y.-B.; Geng, Y.; Ma, J.-P.; Huang, R.-Q. Organometallic Silver(I) Supramolecular Complexes Generated from Multidentate Furan-Containing Symmetric and Unsymmetric Fulvene Ligands and Silver(I) Salts. Inorg. Chem. 2005, 44, 16931703,  DOI: 10.1021/ic048518h
  34. 34
    Yue, N. L. S.; Jennings, M. C.; Puddephatt, R. J. Disilver(I) Macrocycles: Variation of Cavity Size with Anion Binding. Inorg. Chem. 2005, 44, 11251131,  DOI: 10.1021/ic048549c
  35. 35
    Beauchamp, D. A.; Loeb, S. J. Molecular Squares, Rectangles and Infinite Helical Chains Utilising the Simple ‘Corner’ Ligand 4-(2-Pyridyl)-Pyrimidine. Chem. Commun. 2002, 24842485,  DOI: 10.1039/B206989J
  36. 36
    Wiley, C. A.; Holloway, L. R.; Miller, T. F.; Lyon, Y.; Julian, R. R.; Hooley, R. J. Electronic Effects on Narcissistic Self-Sorting in Multicomponent Self-Assembly of Fe-Iminopyridine Meso-Helicates. Inorg. Chem. 2016, 55, 98059815,  DOI: 10.1021/acs.inorgchem.6b01644
  37. 37
    Ronson, T. K.; Zarra, S.; Black, S. P.; Nitschke, J. R. Metal–organic Container Molecules through Subcomponent Self-Assembly. Chem. Commun. 2013, 49, 24762490,  DOI: 10.1039/c2cc36363a
  38. 38
    Mosquera, J.; Ronson, T. K.; Nitschke, J. Subcomponent Flexibility Enables Conversion between D4-Symmetric CdII8L8 and T-Symmetric CdII4L4 Assemblies. J. Am. Chem. Soc. 2016, 138, 18121815,  DOI: 10.1021/jacs.5b12955
  39. 39
    Fatila, E. M.; Twum, E. B.; Karty, J. A.; Flood, A. H. Ion Pairing and Co-Facial Stacking Drive High-Fidelity Bisulfate Assembly with Cyanostar Macrocyclic Hosts. Chem. - Eur. J. 2017, 23, 1065210662,  DOI: 10.1002/chem.201701763
  40. 40
    Dobscha, J. R.; Debnath, S.; Fadler, R. E.; Fatila, E. M.; Pink, M.; Raghavachari, K.; Flood, A. H. Host-Host Interactions Control Self-Assembly and Switching of Triple and Double Decker Stacks of Tricarbazole Macrocycles Co-Assembled with Anti-Electrostatic Bisulfate Dimers. Chem. - Eur. J. 2018, 24, 98419852,  DOI: 10.1002/chem.201800827
  41. 41

    Substantial disorder of the oxygen atoms of the encapsulated HSO4 anions precluded accurate resolution of the hydrogen atom of these anions. However, the observed distance between the disordered HSO4 anions is consistent with the presence of a hydrogen-bonded dimer.

  42. 42
    Bravin, C.; Guidetti, A.; Licini, G.; Zonta, C. Supramolecular Cages as Differential Sensors for Dicarboxylate Anions: Guest Length Sensing Using Principal Component Analysis of ESI-MS and 1H-NMR Raw Data. Chem. Sci. 2019, 10, 35233528,  DOI: 10.1039/C8SC05527K
  43. 43
    Clever, G. H.; Kawamura, W.; Shionoya, M. Encapsulation versus Aggregation of Metal–Organic Cages Controlled by Guest Size Variation. Inorg. Chem. 2011, 50, 46894691,  DOI: 10.1021/ic200517r
  44. 44
    Minisci, F.; Citterio, A.; Giordano, C. Electron-Transfer Processes: Peroxydisulfate, a Useful and Versatile Reagent in Organic Chemistry. Acc. Chem. Res. 1983, 16, 2732,  DOI: 10.1021/ar00085a005

Cited By

This article is cited by 29 publications.

  1. Ranit Banerjee, Debsena Chakraborty, Partha Sarathi Mukherjee. Molecular Barrels as Potential Hosts: From Synthesis to Applications. Journal of the American Chemical Society 2023, 145 (14) , 7692-7711. https://doi.org/10.1021/jacs.3c01084
  2. Kaikai Ma, Yuk Ha Cheung, Haomiao Xie, Xingjie Wang, Michael Evangelopoulos, Kent O. Kirlikovali, Shengyi Su, Xiaoliang Wang, Chad A. Mirkin, John H. Xin, Omar K. Farha. Zirconium-Based Metal–Organic Frameworks as Reusable Antibacterial Peroxide Carriers for Protective Textiles. Chemistry of Materials 2023, 35 (6) , 2342-2352. https://doi.org/10.1021/acs.chemmater.2c03288
  3. Charlie T. McTernan, Jack A. Davies, Jonathan R. Nitschke. Beyond Platonic: How to Build Metal–Organic Polyhedra Capable of Binding Low-Symmetry, Information-Rich Molecular Cargoes. Chemical Reviews 2022, 122 (11) , 10393-10437. https://doi.org/10.1021/acs.chemrev.1c00763
  4. John P. Carpenter, Tanya K. Ronson, Felix J. Rizzuto, Théophile Héliot, Peter Grice, Jonathan R. Nitschke. Incorporation of a Phosphino(pyridine) Subcomponent Enables the Formation of Cages with Homobimetallic and Heterobimetallic Vertices. Journal of the American Chemical Society 2022, 144 (19) , 8467-8473. https://doi.org/10.1021/jacs.2c02261
  5. Magdalena Dolna, Michał Nowacki, Oksana Danylyuk, Artur Brotons-Rufes, Albert Poater, Michał Michalak. NHC–BIAN–Cu(I)-Catalyzed Friedländer-Type Annulation of 2-Amino-3-(per)fluoroacetylpyridines with Alkynes on Water. The Journal of Organic Chemistry 2022, 87 (9) , 6115-6136. https://doi.org/10.1021/acs.joc.2c00380
  6. Liang-Liang Yan, Liao-Yuan Yao, Maggie Ng, Vivian Wing-Wah Yam. Stimuli-Responsive and Structure-Adaptive Three-Dimensional Gold(I) Cluster Cages Constructed via “De-aurophilic” Interaction Strategy. Journal of the American Chemical Society 2021, 143 (45) , 19008-19017. https://doi.org/10.1021/jacs.1c07971
  7. Charlie T. McTernan, Tanya K. Ronson, Jonathan R. Nitschke. Selective Anion Binding Drives the Formation of AgI8L6 and AgI12L6 Six-Stranded Helicates. Journal of the American Chemical Society 2021, 143 (2) , 664-670. https://doi.org/10.1021/jacs.0c11905
  8. Junjuan Shi, Yiming Li, Xin Jiang, Hao Yu, Jiaqi Li, Houyu Zhang, Daniel J. Trainer, Saw Wai Hla, Heng Wang, Ming Wang, Xiaopeng Li. Self-Assembly of Metallo-Supramolecules with Dissymmetrical Ligands and Characterization by Scanning Tunneling Microscopy. Journal of the American Chemical Society 2021, 143 (2) , 1224-1234. https://doi.org/10.1021/jacs.0c12508
  9. Hang Qu, Zheyu Huang, Xue Dong, Xinchang Wang, Xiao Tang, Zhihao Li, Wenbin Gao, Haoliang Liu, Ruishan Huang, Zujin Zhao, Hui Zhang, Liulin Yang, Zhongqun Tian, Xiaoyu Cao. Truncated Face-Rotating Polyhedra Constructed from Pentagonal Pentaphenylpyrrole through Graph Theory. Journal of the American Chemical Society 2020, 142 (38) , 16223-16228. https://doi.org/10.1021/jacs.0c08243
  10. Shu-Jin Bao, Ze-Ming Xu, Yun Ju, Ying-Lin Song, Heng Wang, Zheng Niu, Xiaopeng Li, Pierre Braunstein, Jian-Ping Lang. The Covalent and Coordination Co-Driven Assembly of Supramolecular Octahedral Cages with Controllable Degree of Distortion. Journal of the American Chemical Society 2020, 142 (31) , 13356-13361. https://doi.org/10.1021/jacs.0c07014
  11. Xu-Lang Chen, Yun-Jia Shen, Chao Gao, Jian Yang, Xin Sun, Xin Zhang, Yu-Dong Yang, Gong-Ping Wei, Jun-Feng Xiang, Jonathan L. Sessler, Han-Yuan Gong. Regulating the Structures of Self-Assembled Mechanically Interlocked Moleculecular Constructs via Dianion Precursor Substituent Effects. Journal of the American Chemical Society 2020, 142 (16) , 7443-7455. https://doi.org/10.1021/jacs.9b13473
  12. Heng Wang, Chung-Hao Liu, Kun Wang, Minghui Wang, Hao Yu, Sneha Kandapal, Robert Brzozowski, Bingqian Xu, Ming Wang, Shuai Lu, Xin-Qi Hao, Prahathees Eswara, Mu-Ping Nieh, Jianfeng Cai, Xiaopeng Li. Assembling Pentatopic Terpyridine Ligands with Three Types of Coordination Moieties into a Giant Supramolecular Hexagonal Prism: Synthesis, Self-Assembly, Characterization, and Antimicrobial Study. Journal of the American Chemical Society 2019, 141 (40) , 16108-16116. https://doi.org/10.1021/jacs.9b08484
  13. Xue-Jun Zhang, Lei Wang, Xiu-Du Zhang, Yue Zhao. A novel Ag3L2 coordination cage derived from a tripodal oxazoline ligand: synthesis, structure and catalysis. Inorganic Chemistry Communications 2023, 153 , 110792. https://doi.org/10.1016/j.inoche.2023.110792
  14. Boyang Li, Tianfu Wei, Xiaotong Zhao, Yue Wang, Lizheng Xu, Xiao‐Juan Yang, Biao Wu. Assembly of an A 6 L 6 Anion Trigonal Antiprism and Binding of Glucopyranosides and Polyethylene Glycols (PEGs). Angewandte Chemie International Edition 2023, 62 (20) https://doi.org/10.1002/anie.202301300
  15. Boyang Li, Tianfu Wei, Xiaotong Zhao, Yue Wang, Lizheng Xu, Xiao‐Juan Yang, Biao Wu. Assembly of an A 6 L 6 Anion Trigonal Antiprism and Binding of Glucopyranosides and Polyethylene Glycols (PEGs). Angewandte Chemie 2023, 135 (20) https://doi.org/10.1002/ange.202301300
  16. Samuel E. Clark, Andrew W. Heard, Charlie T. McTernan, Tanya K. Ronson, Barbara Rossi, Petr Rozhin, Silvia Marchesan, Jonathan R. Nitschke. A Double‐Walled Tetrahedron with Ag I 4 Vertices Binds Different Guests in Distinct Sites**. Angewandte Chemie 2023, 135 (16) https://doi.org/10.1002/ange.202301612
  17. Samuel E. Clark, Andrew W. Heard, Charlie T. McTernan, Tanya K. Ronson, Barbara Rossi, Petr Rozhin, Silvia Marchesan, Jonathan R. Nitschke. A Double‐Walled Tetrahedron with Ag I 4 Vertices Binds Different Guests in Distinct Sites**. Angewandte Chemie International Edition 2023, 62 (16) https://doi.org/10.1002/anie.202301612
  18. Aleksandra Sarwa, Agata Białońska, Mateusz Garbicz, Bartosz Szyszko. Plenates: Anion‐Dependent Self‐Assembly of the Pyrrole Cage Encapsulating Silver(I) Clusters. Chemistry – A European Journal 2023, 29 (12) https://doi.org/10.1002/chem.202203850
  19. Tingting Liu, Qingfu Wang, Liandi Wang, Kaikai Wu, Zhengkun Yu. Assembled Porphyrin‐Based Multinuclear Ruthenium(II)‐NNNN Complex Catalysts for Transfer Hydrogenation of Ketones. European Journal of Inorganic Chemistry 2023, 26 (6) https://doi.org/10.1002/ejic.202200610
  20. Anne‐Doriane Manick, Chunyang Li, Elise Antonetti, Muriel Albalat, Yoann Cotelle, Paola Nava, Jean‐Pierre Dutasta, Bastien Chatelet, Alexandre Martinez. Probing the Importance of Host Symmetry on Carbohydrate Recognition. Chemistry – A European Journal 2023, 29 (9) https://doi.org/10.1002/chem.202203212
  21. Sandipan Ghorai, Ramalingam Natarajan. Anion‐Driven Programmable Chiral Self‐Sorting in Metal‐Organic Cages and Structural Transformations between Heterochiral and Homochiral Cages. Chemistry – A European Journal 2023, 29 (6) https://doi.org/10.1002/chem.202203085
  22. Dongwon Kim, Jihun Han, Ok-Sang Jung, Young-A. Lee. Insight into systematic formation of hexafluorosilicate during crystallization via self-assembly in a glass vessel. RSC Advances 2022, 12 (39) , 25118-25122. https://doi.org/10.1039/D2RA04270C
  23. Rachel E. Fadler, Amar H. Flood. Rigidity and Flexibility in Rotaxanes and Their Relatives; On Being Stubborn and Easy-Going. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.856173
  24. Hiroshi Danjo, Kohei Asai, Tomoya Tanaka, Daiki Ono, Masatoshi Kawahata, Satoshi Iwatsuki. Preparation of tricationic tris(pyridylpalladium( ii )) metallacyclophane as an anion receptor. Chemical Communications 2022, 58 (13) , 2196-2199. https://doi.org/10.1039/D1CC05563A
  25. Bin Chen, Julian J. Holstein, André Platzek, Laura Schneider, Kai Wu, Guido H. Clever. Cooperativity of steric bulk and H-bonding in coordination sphere engineering: heteroleptic Pd II cages and bowls by design. Chemical Science 2022, 13 (6) , 1829-1834. https://doi.org/10.1039/D1SC06931D
  26. Shu-Jin Bao, Ze-Ming Xu, Tian-Chen Yu, Ying-Lin Song, Heng Wang, Zheng Niu, Xiaopeng Li, Brendan F. Abrahams, Pierre Braunstein, Jian-Ping Lang. Flexible Vertex Engineers the Controlled Assembly of Distorted Supramolecular Tetrahedral and Octahedral Cages. Research 2022, 2022 https://doi.org/10.34133/2022/9819343
  27. Lauren K. Macreadie, Alexander M. Gilchrist, Daniel A. McNaughton, William G. Ryder, Mohamed Fares, Philip A. Gale. Progress in anion receptor chemistry. Chem 2022, 8 (1) , 46-118. https://doi.org/10.1016/j.chempr.2021.10.029
  28. Mehdi Elsayed Moussa, Pavel A. Shelyganov, Michael Seidl, Eugenia Peresypkina, Nele Berg, Ruth M. Gschwind, Gábor Balázs, Jana Schiller, Manfred Scheer. Mixed Organometallic–Organic Hybrid Assemblies Based on the Diarsene Complex [Cp 2 Mo 2 (CO) 4 (μ,η 2 ‐As 2 )], Ag I Salts and N‐Donor Organic Molecules. Chemistry – A European Journal 2021, 27 (15) , 5028-5034. https://doi.org/10.1002/chem.202100027
  29. Takashi Nakamura, Rui Yun Feng, Tatsuya Nabeshima. A Sandwich‐Shaped Hexanuclear Silver Complex with a Giant Cavity Constructed from a Macrocycle with Inward Chelating Units. European Journal of Inorganic Chemistry 2021, 2021 (4) , 308-313. https://doi.org/10.1002/ejic.202000882
  • Abstract

    Figure 1

    Figure 1. (a) Synthesis of AgI12L6 trigonal prism 1 from tris(4-aminophenyl)amine A, 2-formyl-1,8-naphthyridine B, and silver(I) perchlorate. (b) Assembly of 1 requires an appropriate template anion. (c) X-ray crystal structure of (ClO4)2⊂1 with the two templating anions included. One pair of ligands is shown in gray to highlight the desymmetrization of the ligand arms. (d) Top-down view depicting the central tubular void of (ClO4)2⊂1. Disorder, nonincluded anions, and solvent molecules have been omitted for clarity.

    Figure 2

    Figure 2. (a) One vertex of (ClO4)2⊂1. (b) Simplified representation of the same vertex. (c) 1H NMR and DOSY NMR spectra (400 MHz, 298 K, CD3CN) of (ClO4)2⊂1 showing 3-fold desymmetrization of the cage ligands. The units of D are 10–6 cm2 s–1.

    Figure 3

    Figure 3. X-ray crystal structures of (a) (HSO4)2⊂1, (b) (ClO4)2⊂1, (c) (PF6)2⊂1, (d) (EDS2–)⊂1 and (e) (S2O82–)⊂1 with side-views of the isolated anionic templates.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 44 other publications.

    1. 1
      Chand, D. K.; Biradha, K.; Fujita, M.; Sakamoto, S.; Yamaguchi, K. A Molecular Sphere of Octahedral Symmetry. Chem. Commun. 2002, 24862487,  DOI: 10.1039/B206625B
    2. 2
      Freye, S.; Michel, R.; Stalke, D.; Pawliczek, M.; Frauendorf, H.; Clever, G. H. Template Control over Dimerization and Guest Selectivity of Interpenetrated Coordination Cages. J. Am. Chem. Soc. 2013, 135, 84768479,  DOI: 10.1021/ja403184a
    3. 3
      Yazaki, K.; Sei, Y.; Akita, M.; Yoshizawa, M. A Polyaromatic Molecular Tube That Binds Long Hydrocarbons with High Selectivity. Nat. Commun. 2014, 5, 5179,  DOI: 10.1038/ncomms6179
    4. 4
      Argent, S. P.; Adams, H.; Riis-Johannessen, T.; Jeffery, J. C.; Harding, L. P.; Ward, M. D. High-Nuclearity Homoleptic and Heteroleptic Coordination Cages Based on Tetra-Capped Truncated Tetrahedral and Cuboctahedral Metal Frameworks. J. Am. Chem. Soc. 2006, 128, 7273,  DOI: 10.1021/ja056993o
    5. 5
      Riddell, I. A.; Hristova, Y. R.; Clegg, J. K.; Wood, C. S.; Breiner, B.; Nitschke, J. R. Five Discrete Multinuclear Metal-Organic Assemblies from One Ligand: Deciphering the Effects of Different Templates. J. Am. Chem. Soc. 2013, 135, 27232733,  DOI: 10.1021/ja311285b
    6. 6
      Jansze, S. M.; Wise, M. D.; Vologzhanina, A. V.; Scopelliti, R.; Severin, K. PdII2L4-Type Coordination Cages up to Three Nanometers in Size. Chem. Sci. 2017, 8, 19011908,  DOI: 10.1039/C6SC04732G
    7. 7
      Sun, Q.-F.; Sato, S.; Fujita, M. An M18L24 Stellated Cuboctahedron through Post-Stellation of an M12L24 Core. Nat. Chem. 2012, 4, 330333,  DOI: 10.1038/nchem.1285
    8. 8
      Suzuki, K.; Sato, S.; Fujita, M. Template Synthesis of Precisely Monodisperse Silica Nanoparticles within Self-Assembled Organometallic Spheres. Nat. Chem. 2010, 2, 2529,  DOI: 10.1038/nchem.446
    9. 9
      Yu, F.; Poole, D.; Mathew, S.; Yan, N.; Hessels, J.; Orth, N.; Ivanović-Burmazović, I.; Reek, J. N. H. Control over Electrochemical Water Oxidation Catalysis by Preorganization of Molecular Ruthenium Catalysts in Self-Assembled Nanospheres. Angew. Chem., Int. Ed. 2018, 57, 1124711251,  DOI: 10.1002/anie.201805244
    10. 10
      Zhang, D.; Ronson, T. K.; Mosquera, J.; Martinez, A.; Guy, L.; Nitschke, J. R. Anion Binding in Water Drives Structural Adaptation in an Azaphosphatrane-Functionalized FeII4L4 Tetrahedron. J. Am. Chem. Soc. 2017, 139, 65746577,  DOI: 10.1021/jacs.7b02950
    11. 11
      Custelcean, R.; Bonnesen, P. V.; Duncan, N. C.; Zhang, X.; Watson, L. A.; Van Berkel, G.; Parson, W. B.; Hay, B. P. Urea-Functionalised M4L6 Cage Receptors: Anion-Templated Self-Assembly and Selective Guest Exchange in Aqueous Solutions. J. Am. Chem. Soc. 2012, 134, 85258534,  DOI: 10.1021/ja300677w
    12. 12
      Custelcean, R.; Bonnesen, P. V.; Roach, B. D.; Duncan, N. C. Ion-pair triple helicates and mesocates self-assembled from ditopic 2,2’-bipyridine-bis(urea) ligands and Ni(II) or Fe(II) sulfate salts. Chem. Commun. 2012, 48, 74387440,  DOI: 10.1039/c2cc33062h
    13. 13
      Albrecht, M.; Isaak, E.; Baumert, M.; Gossen, V.; Raabe, G.; Fröhlich, R. Induced Fit” in Chiral Recognition: Epimerization upon Dimerization in the Hierarchical Self-Assembly of Helicate-Type Titanium(IV) Complexes. Angew. Chem., Int. Ed. 2011, 50, 28502853,  DOI: 10.1002/anie.201006448
    14. 14
      Mal, P.; Breiner, B.; Rissanen, K.; Nitschke, J. R. White Phosphorus Is Air-Stable within a Self-Assembled Tetrahedral Capsule. Science 2009, 324, 16971699,  DOI: 10.1126/science.1175313
    15. 15
      Cullen, W.; Misuraca, M. C.; Hunter, C. A.; Williams, N. H.; Ward, M. D. Highly Efficient Catalysis of the Kemp Elimination in the Cavity of a Cubic Coordination Cage. Nat. Chem. 2016, 8, 231236,  DOI: 10.1038/nchem.2452
    16. 16
      Murase, T.; Nishijima, Y.; Fujita, M. Cage-Catalyzed Knoevenagel Condensation under Neutral Conditions in Water. J. Am. Chem. Soc. 2012, 134, 162164,  DOI: 10.1021/ja210068f
    17. 17
      Rizzuto, F. J.; Pröhm, P.; Plajer, A. J.; Greenfield, J. L.; Nitschke, J. R. Hydrogen-Bond-Assisted Symmetry Breaking in a Network of Chiral Metal–Organic Assemblies. J. Am. Chem. Soc. 2019, 141, 17071715,  DOI: 10.1021/jacs.8b12323
    18. 18
      Song, B.; Kandapal, S.; Gu, J.; Zhang, K.; Reese, A.; Ying, Y.; Wang, L.; Wang, H.; Li, Y.; Wang, M.; Lu, S.; Hao, X.-Q.; Li, X.; Xu, B.; Li, X. Self-Assembly of Polycyclic Supramolecules Using Linear Metal-Organic Ligands. Nat. Commun. 2018, 9, 4575,  DOI: 10.1038/s41467-018-07045-9
    19. 19
      Hasenknopf, B.; Lehn, J.-M.; Boumediene, N.; Dupont-Gervais, A.; Van Dorsselaer, A.; Kneisel, B.; Fenske, D. Self-Assembly of Tetra- and Hexanuclear Circular Helicates. J. Am. Chem. Soc. 1997, 119, 1095610962,  DOI: 10.1021/ja971204r
    20. 20
      Hasenknopf, B.; Lehn, J.-M.; Kneisel, B. O.; Baum, G.; Fenske, D. Self-Assembly of a Circular Double Helicate. Angew. Chem., Int. Ed. 1996, 35, 18381840,  DOI: 10.1002/anie.199618381
    21. 21
      Hasenknopf, B.; Lehn, J.-M.; Boumediene, N.; Leize, E.; Van Dorsselaer, A. Kinetic and Thermodynamic Control in Self-Assembly: Sequential Formation of Linear and Circular Helicates. Angew. Chem., Int. Ed. 1998, 37, 32653268,  DOI: 10.1002/(SICI)1521-3773(19981217)37:23<3265::AID-ANIE3265>3.0.CO;2-B
    22. 22
      Cullen, W.; Metherell, A. J.; Wragg, A. B.; Taylor, C. G. P.; Williams, N. H.; Ward, M. D. Catalysis in a Cationic Coordination Cage Using a Cavity-Bound Guest and Surface-Bound Anions: Inhibition, Activation, and Autocatalysis. J. Am. Chem. Soc. 2018, 140, 28212828,  DOI: 10.1021/jacs.7b11334
    23. 23
      Tidmarsh, I. S.; Faust, T. B.; Adams, H.; Harding, L. P.; Russo, L.; Clegg, W.; Ward, M. D. Octanuclear Cubic Coordination Cages. J. Am. Chem. Soc. 2008, 130, 1516715175,  DOI: 10.1021/ja805605y
    24. 24
      Ayme, J.-F.; Beves, J. E.; Leigh, D. A.; McBurney, R. T.; Rissanen, K.; Schultz, D. A Synthetic Molecular Pentafoil Knot. Nat. Chem. 2012, 4, 1520,  DOI: 10.1038/nchem.1193
    25. 25
      Danon, J. J.; Krüger, A.; Leigh, D. A.; Lemonnier, J.-F.; Stephens, A. J.; Vitorica-Yrezabal, I. J.; Woltering, S. L. Braiding a Molecular Knot with Eight Crossings. Science 2017, 355, 159162,  DOI: 10.1126/science.aal1619
    26. 26
      Buchard, A.; Kember, M. R.; Sandeman, K. G.; Williams, C. K. A Bimetallic Iron(III) Catalyst for CO2/Epoxide Coupling. Chem. Commun. 2011, 47, 212214,  DOI: 10.1039/C0CC02205E
    27. 27
      Desai, S. P.; Ye, J.; Zheng, J.; Ferrandon, M. S.; Webber, T. E.; Platero-Prats, A. E.; Duan, J.; Garcia-Holley, P.; Camaioni, D. M.; Chapman, K. W.; Delferro, M.; Farha, O. K.; Fulton, J. L.; Gagliardi, L.; Lercher, J. A.; Penn, R. L.; Stein, A.; Lu, C. C. Well-Defined Rhodium–Gallium Catalytic Sites in a Metal–Organic Framework: Promoter-Controlled Selectivity in Alkyne Semihydrogenation to E-Alkenes. J. Am. Chem. Soc. 2018, 140, 1530915318,  DOI: 10.1021/jacs.8b08550
    28. 28
      Artem’ev, A. V.; Bagryanskaya, I. Y.; Doronina, E. P.; Tolstoy, P. M.; Gushchin, A. L.; Rakhmanova, M. I.; Ivanov, A. Y.; Suturina, A. O. A New Family of Clusters Containing a Silver-Centered Tetracapped [[email protected]43-P)4] Tetrahedron, Inscribed within a N12 Icosahedron. Dalton. Trans. 2017, 46, 1242512429,  DOI: 10.1039/C7DT02597A
    29. 29
      Schenck, T. G.; Downes, J. M.; Milne, C. R. C.; Mackenzie, P. B.; Boucher, T. G.; Whelan, J.; Bosnich, B. Bimetallic Reactivity. Synthesis of Bimetallic Complexes Containing a Bis(Phosphino)Pyrazole Ligand. Inorg. Chem. 1985, 24, 23342337,  DOI: 10.1021/ic00209a003
    30. 30
      Sowa, T.; Kawamura, T.; Shida, T.; Yonezawa, T. Electronic Structure of the Rhodium-Rhodium Bond in Dirhodium Tetracarboxylates by a Study of Electronic Spectra of Neutral Molecules and Their Cation Radicals. Inorg. Chem. 1983, 22, 5661,  DOI: 10.1021/ic00143a014
    31. 31
      Bera, J. K.; Sadhukhan, N.; Majumdar, M. 1,8-Naphthyridine Revisited: Applications in Dimetal Chemistry. Eur. J. Inorg. Chem. 2009, 27, 40234038,  DOI: 10.1002/ejic.200900312
    32. 32
      Giordana, A.; Priola, E.; Bonometti, E.; Benzi, P.; Operti, L.; Diana, E. Structural and Spectroscopic Study of the Asymmetric 2-(2′-Pyridyl)-1,8-Naphthyridine Ligand with Closed-Shell Metals. Polyhedron 2017, 138, 239248,  DOI: 10.1016/j.poly.2017.09.032
    33. 33
      Dong, Y.-B.; Geng, Y.; Ma, J.-P.; Huang, R.-Q. Organometallic Silver(I) Supramolecular Complexes Generated from Multidentate Furan-Containing Symmetric and Unsymmetric Fulvene Ligands and Silver(I) Salts. Inorg. Chem. 2005, 44, 16931703,  DOI: 10.1021/ic048518h
    34. 34
      Yue, N. L. S.; Jennings, M. C.; Puddephatt, R. J. Disilver(I) Macrocycles: Variation of Cavity Size with Anion Binding. Inorg. Chem. 2005, 44, 11251131,  DOI: 10.1021/ic048549c
    35. 35
      Beauchamp, D. A.; Loeb, S. J. Molecular Squares, Rectangles and Infinite Helical Chains Utilising the Simple ‘Corner’ Ligand 4-(2-Pyridyl)-Pyrimidine. Chem. Commun. 2002, 24842485,  DOI: 10.1039/B206989J
    36. 36
      Wiley, C. A.; Holloway, L. R.; Miller, T. F.; Lyon, Y.; Julian, R. R.; Hooley, R. J. Electronic Effects on Narcissistic Self-Sorting in Multicomponent Self-Assembly of Fe-Iminopyridine Meso-Helicates. Inorg. Chem. 2016, 55, 98059815,  DOI: 10.1021/acs.inorgchem.6b01644
    37. 37
      Ronson, T. K.; Zarra, S.; Black, S. P.; Nitschke, J. R. Metal–organic Container Molecules through Subcomponent Self-Assembly. Chem. Commun. 2013, 49, 24762490,  DOI: 10.1039/c2cc36363a
    38. 38
      Mosquera, J.; Ronson, T. K.; Nitschke, J. Subcomponent Flexibility Enables Conversion between D4-Symmetric CdII8L8 and T-Symmetric CdII4L4 Assemblies. J. Am. Chem. Soc. 2016, 138, 18121815,  DOI: 10.1021/jacs.5b12955
    39. 39
      Fatila, E. M.; Twum, E. B.; Karty, J. A.; Flood, A. H. Ion Pairing and Co-Facial Stacking Drive High-Fidelity Bisulfate Assembly with Cyanostar Macrocyclic Hosts. Chem. - Eur. J. 2017, 23, 1065210662,  DOI: 10.1002/chem.201701763
    40. 40
      Dobscha, J. R.; Debnath, S.; Fadler, R. E.; Fatila, E. M.; Pink, M.; Raghavachari, K.; Flood, A. H. Host-Host Interactions Control Self-Assembly and Switching of Triple and Double Decker Stacks of Tricarbazole Macrocycles Co-Assembled with Anti-Electrostatic Bisulfate Dimers. Chem. - Eur. J. 2018, 24, 98419852,  DOI: 10.1002/chem.201800827
    41. 41

      Substantial disorder of the oxygen atoms of the encapsulated HSO4 anions precluded accurate resolution of the hydrogen atom of these anions. However, the observed distance between the disordered HSO4 anions is consistent with the presence of a hydrogen-bonded dimer.

    42. 42
      Bravin, C.; Guidetti, A.; Licini, G.; Zonta, C. Supramolecular Cages as Differential Sensors for Dicarboxylate Anions: Guest Length Sensing Using Principal Component Analysis of ESI-MS and 1H-NMR Raw Data. Chem. Sci. 2019, 10, 35233528,  DOI: 10.1039/C8SC05527K
    43. 43
      Clever, G. H.; Kawamura, W.; Shionoya, M. Encapsulation versus Aggregation of Metal–Organic Cages Controlled by Guest Size Variation. Inorg. Chem. 2011, 50, 46894691,  DOI: 10.1021/ic200517r
    44. 44
      Minisci, F.; Citterio, A.; Giordano, C. Electron-Transfer Processes: Peroxydisulfate, a Useful and Versatile Reagent in Organic Chemistry. Acc. Chem. Res. 1983, 16, 2732,  DOI: 10.1021/ar00085a005
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.9b05432.

    • Detailed descriptions of synthetic procedures; characterization of new compounds; spectroscopic data (PDF)

    • X-ray data for (OTf/PF6)2⊂1 (CCDC 1913634) (CIF), (ClO4)2⊂1 (CCDC 1913631) (CIF), (HSO4)2⊂1 (CCDC 1913633) (CIF), (EDS2–)⊂1 (CCDC 1913632) (CIF), and (S2O82–)⊂1 (CCDC 1913635) (CIF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect