ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Real Time Monitoring of the Dynamic Intracluster Diffusion of Single Gold Atoms into Silver Nanoclusters

  • Kaiyuan Zheng
    Kaiyuan Zheng
    Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
  • Victor Fung
    Victor Fung
    Department of Chemistry, University of California, Riverside, California 92521, United States
    More by Victor Fung
  • Xun Yuan*
    Xun Yuan
    College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
    *[email protected]
    More by Xun Yuan
  • De-en Jiang
    De-en Jiang
    Department of Chemistry, University of California, Riverside, California 92521, United States
    More by De-en Jiang
  • , and 
  • Jianping Xie*
    Jianping Xie
    Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
    Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
    *[email protected]
    More by Jianping Xie
Cite this: J. Am. Chem. Soc. 2019, 141, 48, 18977–18983
Publication Date (Web):October 14, 2019
https://doi.org/10.1021/jacs.9b05776
Copyright © 2019 American Chemical Society

    Article Views

    4166

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (2)»

    Abstract

    Abstract Image

    Alloying metal materials with heterometal atoms is an efficient way to diversify the function of materials, but in-depth understanding of the dynamic heterometallic diffusion inside the alloying materials is rather limited, especially at the atomic level. Here, we report the real-time monitoring of the dynamic diffusion process of a single gold (Au) atom into an atomically precise silver nanocluster (Ag NC), Ag25(MHA)18 (MHA = 6-mercaptohexanoic acid), by using in situ UV–vis absorption spectroscopy in combination with mass and tandem mass spectrometry. We found that the Au heteroatom first replaces the Ag atom at the surface Ag2(MHA)3 motifs of Ag25(MHA)18. After that, the Au atom diffuses into the surface layer of the icosahedral Ag13 kernel and finally occupies the center of the alloy NCs to form the thermodynamically stable Au@Ag24(MHA)18 product. Density functional theory (DFT) calculations reveal that the key thermodynamic driving force is the preference of the Au heteroatom for the central site of alloy NCs. The real-time monitoring approach developed in this study could also be extended to other metal alloy systems to reveal the reaction dynamics of intracluster diffusion of heteroatoms, as well as the formation mechanisms of metal alloy nanomaterials.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.9b05776.

    • Figures of ESI mass spectra, UV–vis absorption, isotope analysis of the fragments, tandem mass spectra, XPS spectra, and energy profiles and transition state structures (PDF)

    • Movie of the reaction process (AVI)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 66 publications.

    1. Yue Tan, Di Huang, Caiming Luo, Jiahao Tang, Ryan T. K. Kwok, Jacky W. Y. Lam, Jianwei Sun, Jinbin Liu, Ben Zhong Tang. In Vivo Aggregation of Clearable Bimetallic Nanoparticles with Interlocked Surface Motifs for Cancer Therapeutics Amplification. Nano Letters 2023, 23 (16) , 7683-7690. https://doi.org/10.1021/acs.nanolett.3c02399
    2. Yu-Ming Tseng, Jian-Hong Liao, Tzu-Hao Chiu, Hao Liang, Samia Kahlal, Jean-Yves Saillard, C. W. Liu. Superatom Pruning by Diphosphine Ligands as a Chemical Scissor. Inorganic Chemistry 2023, 62 (9) , 3866-3874. https://doi.org/10.1021/acs.inorgchem.2c04157
    3. Jiao Peng, Baoyu Huang, Pu Wang, Yong Pei. On the Mechanism of Anti-galvanic Metal Displacement Reaction between [Au25(SR)18]− and Metal-Thiolate Complex. The Journal of Physical Chemistry A 2022, 126 (48) , 8910-8917. https://doi.org/10.1021/acs.jpca.2c04948
    4. Qiaofeng Yao, Qingbo Zhang, Jianping Xie. Atom-Precision Engineering Chemistry of Noble Metal Nanoparticles. Industrial & Engineering Chemistry Research 2022, 61 (22) , 7594-7612. https://doi.org/10.1021/acs.iecr.1c04827
    5. Hao Tan, Huangmei Zhou, Yu Zhao, Xueli Wang, Xiaoxiao He, Jinquan Chen, Kun Zhang, Rodolphe Antoine, Sanjun Zhang, Yang Tian. Regulation of Silver Nanoclusters with 4 Orders of Magnitude Variation of Fluorescence Lifetimes with Solvent-Induced Noncovalent Interaction. The Journal of Physical Chemistry C 2022, 126 (11) , 5198-5205. https://doi.org/10.1021/acs.jpcc.1c10375
    6. Kaiyuan Zheng, Jianping Xie. Cluster Materials as Traceable Antibacterial Agents. Accounts of Materials Research 2021, 2 (11) , 1104-1116. https://doi.org/10.1021/accountsmr.1c00186
    7. Yitao Cao, Tiankai Chen, Qiaofeng Yao, Jianping Xie. Diversification of Metallic Molecules through Derivatization Chemistry of Au25 Nanoclusters. Accounts of Chemical Research 2021, 54 (22) , 4142-4153. https://doi.org/10.1021/acs.accounts.1c00481
    8. Chunwei Dong, Ren-Wu Huang, Cailing Chen, Jie Chen, Saidkhodzha Nematulloev, Xianrong Guo, Atanu Ghosh, Badriah Alamer, Mohamed Nejib Hedhili, Tayirjan T. Isimjan, Yu Han, Omar F. Mohammed, Osman M. Bakr. [Cu36H10(PET)24(PPh3)6Cl2] Reveals Surface Vacancy Defects in Ligand-Stabilized Metal Nanoclusters. Journal of the American Chemical Society 2021, 143 (29) , 11026-11035. https://doi.org/10.1021/jacs.1c03402
    9. Xi Kang, Xiao Wei, Shan Jin, Shuxin Wang, Manzhou Zhu. Controlling the Crystallographic Packing Modes of Pt1Ag28 Nanoclusters: Effects on the Optical Properties and Nitrogen Adsorption–Desorption Performances. Inorganic Chemistry 2021, 60 (7) , 4198-4206. https://doi.org/10.1021/acs.inorgchem.0c02570
    10. Li Tang, Xi Kang, Xiangyu Wang, Xianhui Zhang, Xun Yuan, Shuxin Wang. Dynamic Metal Exchange between a Metalloid Silver Cluster and Silver(I) Thiolate. Inorganic Chemistry 2021, 60 (5) , 3037-3045. https://doi.org/10.1021/acs.inorgchem.0c03269
    11. Jianhang Li, Guanbin Gao, Xintong Tang, Meng Yu, Meng He, Taolei Sun. Isomeric Effect of Nano-Inhibitors on Aβ40 Fibrillation at The Nano-Bio Interface. ACS Applied Materials & Interfaces 2021, 13 (4) , 4894-4904. https://doi.org/10.1021/acsami.0c21906
    12. Esma Khatun, Thalappil Pradeep. New Routes for Multicomponent Atomically Precise Metal Nanoclusters. ACS Omega 2021, 6 (1) , 1-16. https://doi.org/10.1021/acsomega.0c04832
    13. Yingwei Li, Michael J. Cowan, Meng Zhou, Tian-Yi Luo, Yongbo Song, He Wang, Nathaniel L. Rosi, Giannis Mpourmpakis, Rongchao Jin. Atom-by-Atom Evolution of the Same Ligand-Protected Au21, Au22, Au22Cd1, and Au24 Nanocluster Series. Journal of the American Chemical Society 2020, 142 (48) , 20426-20433. https://doi.org/10.1021/jacs.0c09110
    14. Sakiat Hossain, Daiki Suzuki, Takeshi Iwasa, Ryo Kaneko, Taiyo Suzuki, Sayuri Miyajima, Yuki Iwamatsu, Stephan Pollitt, Tokuhisa Kawawaki, Noelia Barrabés, Günther Rupprechter, Yuichi Negishi. Determining and Controlling Cu-Substitution Sites in Thiolate-Protected Gold-Based 25-Atom Alloy Nanoclusters. The Journal of Physical Chemistry C 2020, 124 (40) , 22304-22313. https://doi.org/10.1021/acs.jpcc.0c06858
    15. Kaiyuan Zheng, Jianping Xie. Composition-Dependent Antimicrobial Ability of Full-Spectrum AuxAg25–x Alloy Nanoclusters. ACS Nano 2020, 14 (9) , 11533-11541. https://doi.org/10.1021/acsnano.0c03975
    16. Xi Kang, Xiao Wei, Shuxin Wang, Manzhou Zhu. Controlling the Phosphine Ligands of Pt1Ag28(S-Adm)18(PR3)4 Nanoclusters. Inorganic Chemistry 2020, 59 (13) , 8736-8743. https://doi.org/10.1021/acs.inorgchem.0c00350
    17. Tong Shu, Yanping Sun, Yunlong Bai, Xiangfang Lin, Ziping Zhou, Lei Su, Xueji Zhang. Rational Design of “Three-in-One” Ratiometric Nanoprobes: Protein-Caged Dityrosine, CdS Quantum Dots, and Gold Nanoclusters. ACS Omega 2020, 5 (15) , 8943-8951. https://doi.org/10.1021/acsomega.0c00711
    18. Xuedi Qin, Sanfeng He, Jiasheng Wu, Yaqi Fan, Fang Wang, Songwei Zhang, Siqi Li, Lianshun Luo, Yanhang Ma, Yongjin Lee, Tao Li. Tracking and Visualization of Functional Domains in Stratified Metal–Organic Frameworks Using Gold Nanoparticles. ACS Central Science 2020, 6 (2) , 247-253. https://doi.org/10.1021/acscentsci.9b01205
    19. Wenjun Du, Xi Kang, Shan Jin, Danyu Liu, Shuxin Wang, Manzhou Zhu. Different Types of Ligand Exchange Induced by Au Substitution in a Maintained Nanocluster Template. Inorganic Chemistry 2020, 59 (3) , 1675-1681. https://doi.org/10.1021/acs.inorgchem.9b02792
    20. Esma Khatun, Papri Chakraborty, Betsy Rachel Jacob, Ganesan Paramasivam, Mohammad Bodiuzzaman, Wakeel Ahmed Dar, Thalappil Pradeep. Intercluster Reactions Resulting in Silver-Rich Trimetallic Nanoclusters. Chemistry of Materials 2020, 32 (1) , 611-619. https://doi.org/10.1021/acs.chemmater.9b04530
    21. Yuan Zhong, Jiangwei Zhang, Tingting Li, Wenwu Xu, Qiaofeng Yao, Min Lu, Xue Bai, Zhennan Wu, Jianping Xie, Yu Zhang. Suppression of kernel vibrations by layer-by-layer ligand engineering boosts photoluminescence efficiency of gold nanoclusters. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-36387-2
    22. Ji Soo Kim, Hogeun Chang, Sungsu Kang, Seungwoo Cha, Hanguk Cho, Seung Jae Kwak, Namjun Park, Younhwa Kim, Dohun Kang, Chyan Kyung Song, Jimin Kwag, Ji-Sook Hahn, Won Bo Lee, Taeghwan Hyeon, Jungwon Park. Critical roles of metal–ligand complexes in the controlled synthesis of various metal nanoclusters. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-38955-y
    23. Xuejuan Zou, Xi Kang, Manzhou Zhu. Recent developments in the investigation of driving forces for transforming coinage metal nanoclusters. Chemical Society Reviews 2023, 52 (17) , 5892-5967. https://doi.org/10.1039/D2CS00876A
    24. Rao Aqil Shehzad, Riaz Hussain, Javed Iqbal, Khurshid Ayub. Quantum chemical study of structural, linear, and nonlinear optical response of pure silver clusters Agn (n = 2–10). Materials Science in Semiconductor Processing 2023, 163 , 107558. https://doi.org/10.1016/j.mssp.2023.107558
    25. Caiyun Wei, Wei Xu, Shurui Ji, Ruiyun Huang, Junyang Liu, Wenqiu Su, Jie Bai, Jiale Huang, Wenjing Hong. Single-cluster electronics using metallic clusters: Fabrications, regulations, and applications. Nano Research 2023, 35 https://doi.org/10.1007/s12274-023-5774-z
    26. Megalamane Siddaramappa Bootharaju, Chan Woo Lee, Guocheng Deng, Hyeseung Kim, Kangjae Lee, Sanghwa Lee, Hogeun Chang, Seongbeom Lee, Yung‐Eun Sung, Jong Suk Yoo, Nanfeng Zheng, Taeghwan Hyeon. Atom‐Precise Heteroatom Core‐Tailoring of Nanoclusters for Enhanced Solar Hydrogen Generation. Advanced Materials 2023, 35 (18) https://doi.org/10.1002/adma.202207765
    27. Qiaofeng Yao, Yitao Cao, Tiankai Chen, Jianping Xie. Total Synthesis of Thiolate‐Protected Noble Metal Nanoclusters. 2023, 57-85. https://doi.org/10.1002/9781119788676.ch2
    28. Qiaofeng Yao, Lingmei Liu, Sami Malola, Meng Ge, Hongyi Xu, Zhennan Wu, Tiankai Chen, Yitao Cao, María Francisca Matus, Antti Pihlajamäki, Yu Han, Hannu Häkkinen, Jianping Xie. Supercrystal engineering of atomically precise gold nanoparticles promoted by surface dynamics. Nature Chemistry 2023, 15 (2) , 230-239. https://doi.org/10.1038/s41557-022-01079-9
    29. Li Tang, Bin Wang, Ru Wang, Shuxin Wang. Alloying and dealloying of Au 18 Cu 32 nanoclusters at precise locations via controlling the electronegativity of substituent groups on thiol ligands. Nanoscale 2023, 15 (4) , 1602-1608. https://doi.org/10.1039/D2NR05401A
    30. Kaiyuan Zheng, Jianping Xie. Antimicrobial Properties of Silver and Gold Nanomaterials. 2023, 456-478. https://doi.org/10.1016/B978-0-12-822425-0.00081-6
    31. Manzhou Zhu, Xi Kang. Summary and perspectives. 2023, 373-377. https://doi.org/10.1016/B978-0-323-90474-2.00001-0
    32. . Appendix. 2023, 601-637. https://doi.org/10.1016/B978-0-323-90879-5.00026-3
    33. Amoghavarsha R. Kini, Thalappil Pradeep. Synthesis of atomically precise clusters. 2023, 157-176. https://doi.org/10.1016/B978-0-323-90879-5.00013-5
    34. Cui Zheng Peng, Hang Zhang, Ningning Pi, Xinyu Li, Qingling Yang, Hao Lin Zou, Hong Qun Luo, Nian Bing Li, Bang Lin Li. In situ synthesis of gold nanoclusters in hydrogels for the capillary based portable fluorescence analysis of hypochlorite in environmental samples. Environmental Science: Nano 2023, 141 https://doi.org/10.1039/D3EN00247K
    35. Anna Pniakowska, Krishnadas Kumaranchira Ramankutty, Patryk Obstarczyk, Martina Perić Bakulić, Željka Sanader Maršić, Vlasta Bonačić‐Koutecký, Thomas Bürgi, Joanna Olesiak‐Bańska. Gold‐Doping Effect on Two‐Photon Absorption and Luminescence of Atomically Precise Silver Ligated Nanoclusters. Angewandte Chemie International Edition 2022, 61 (43) https://doi.org/10.1002/anie.202209645
    36. Anna Pniakowska, Krishnadas Kumaranchira Ramankutty, Patryk Obstarczyk, Martina Perić Bakulić, Željka Sanader Maršić, Vlasta Bonačić‐Koutecký, Thomas Bürgi, Joanna Olesiak‐Bańska. Gold‐Doping Effect on Two‐Photon Absorption and Luminescence of Atomically Precise Silver Ligated Nanoclusters. Angewandte Chemie 2022, 134 (43) https://doi.org/10.1002/ange.202209645
    37. Xiaoshuang Ma, Fang Sun, Lubing Qin, Yonggang Liu, Xiongwu Kang, Likai Wang, De-en Jiang, Qing Tang, Zhenghua Tang. Electrochemical CO 2 reduction catalyzed by atomically precise alkynyl-protected Au 7 Ag 8 , Ag 9 Cu 6 , and Au 2 Ag 8 Cu 5 nanoclusters: probing the effect of multi-metal core on selectivity. Chemical Science 2022, 13 (34) , 10149-10158. https://doi.org/10.1039/D2SC02886G
    38. Baoyu Huang, Xiaomei Zhao, Yong Pei. Three-stage alloying of [Ag44(p-MBA)30]4− cluster with [Au2(p-NTP)2Cl]−. Nano Research 2022, 15 (8) , 7742-7751. https://doi.org/10.1007/s12274-022-4364-9
    39. Ya-Ge Wu, Jia-Hong Huang, Chong Zhang, Xiang-Kun Guo, Wei-Na Wu, Xi-Yan Dong, Shuang-Quan Zang. Site-specific sulfur-for-metal replacement in a silver nanocluster. Chemical Communications 2022, 58 (52) , 7321-7324. https://doi.org/10.1039/D2CC00794K
    40. Yingzheng Lin, Yitao Cao, Qiaofeng Yao, Jianping Xie. Revealing the composition-dependent structural evolution fundamentals of bimetallic nanoparticles through an inter-particle alloying reaction. Chemical Science 2022, 13 (16) , 4598-4607. https://doi.org/10.1039/D1SC06296D
    41. Shuyu Qian, Ziping Wang, Zhongxiang Zuo, Xiaomeng Wang, Qing Wang, Xun Yuan. Engineering luminescent metal nanoclusters for sensing applications. Coordination Chemistry Reviews 2022, 451 , 214268. https://doi.org/10.1016/j.ccr.2021.214268
    42. Jianghui Sun, Yiyan Yin, Weixiang Li, Ouyang Jin, Na Na. CHEMICAL REACTION MONITORING BY AMBIENT MASS SPECTROMETRY. Mass Spectrometry Reviews 2022, 41 (1) , 70-99. https://doi.org/10.1002/mas.21668
    43. Subhajit Chakraborty, Saptarshi Mukherjee. Effects of protecting groups on luminescent metal nanoclusters: spectroscopic signatures and applications. Chemical Communications 2021, 58 (1) , 29-47. https://doi.org/10.1039/D1CC05396E
    44. Chunmei Huang, Miriding Mutailipu, Fangfang Zhang, Kent J. Griffith, Cong Hu, Zhihua Yang, John M. Griffin, Kenneth R. Poeppelmeier, Shilie Pan. Expanding the chemistry of borates with functional [BO2]− anions. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-22835-4
    45. Shan-Shan Zhang, Rui-Chen Liu, Xiao-Chen Zhang, Lei Feng, Qing-Wang Xue, Zhi-Yong Gao, Chen-Ho Tung, Di Sun. Core engineering of paired core-shell silver nanoclusters. Science China Chemistry 2021, 64 (12) , 2118-2124. https://doi.org/10.1007/s11426-021-1060-3
    46. Hogeun Chang, Megalamane S. Bootharaju, Sanghwa Lee, Jeong Hyun Kim, Byung Hyo Kim, Taeghwan Hyeon. To inorganic nanoparticles via nanoclusters: Nonclassical nucleation and growth pathway. Bulletin of the Korean Chemical Society 2021, 42 (11) , 1386-1399. https://doi.org/10.1002/bkcs.12388
    47. Yingwei Li, Meng Zhou, Rongchao Jin. Programmable Metal Nanoclusters with Atomic Precision. Advanced Materials 2021, 33 (46) https://doi.org/10.1002/adma.202006591
    48. Kazeem O. Sulaiman, Randy W. Purves, Robert W. J. Scott. Exploring the structure of atom-precise silver–palladium bimetallic clusters prepared via improved single-pot co-reduction synthesis protocol. The Journal of Chemical Physics 2021, 155 (8) https://doi.org/10.1063/5.0060248
    49. Xi Kang, Xiao Wei, Shuxin Wang, Manzhou Zhu. An insight, at the atomic level, into the polarization effect in controlling the morphology of metal nanoclusters. Chemical Science 2021, 12 (33) , 11080-11088. https://doi.org/10.1039/D1SC00632K
    50. Clothilde Comby-Zerbino, Xavier Dagany, Fabien Chirot, Philippe Dugourd, Rodolphe Antoine. The emergence of mass spectrometry for characterizing nanomaterials. Atomically precise nanoclusters and beyond. Materials Advances 2021, 2 (15) , 4896-4913. https://doi.org/10.1039/D1MA00261A
    51. Xiaohang Wu, Ying Lv, Yuyuan Bai, Haizhu Yu, Manzhou Zhu. The pivotal alkyne group in the mutual size-conversion of Au9 with Au10 nanoclusters. Dalton Transactions 2021, 50 (29) , 10113-10118. https://doi.org/10.1039/D1DT01586A
    52. Megalamane S. Bootharaju, Sanghwa Lee, Guocheng Deng, Hogeun Chang, Woonhyuk Baek, Taeghwan Hyeon. High photoluminescence from self-assembled Ag2Cl2(dppe)2 clusters through metallophilic interactions. The Journal of Chemical Physics 2021, 155 (1) https://doi.org/10.1063/5.0057356
    53. Ziping Wang, Xinxin Pan, Shuyu Qian, Ge Yang, Fanglin Du, Xun Yuan. The beauty of binary phases: A facile strategy for synthesis, processing, functionalization, and application of ultrasmall metal nanoclusters. Coordination Chemistry Reviews 2021, 438 , 213900. https://doi.org/10.1016/j.ccr.2021.213900
    54. Tokuhisa Kawawaki, Ayano Ebina, Yasunaga Hosokawa, Shuhei Ozaki, Daiki Suzuki, Sakiat Hossain, Yuichi Negishi. Thiolate‐Protected Metal Nanoclusters: Recent Development in Synthesis, Understanding of Reaction, and Application in Energy and Environmental Field. Small 2021, 17 (27) https://doi.org/10.1002/smll.202005328
    55. Jie Yang, Runqiang Pang, Dongpo Song, Man-Bo Li. Tailoring silver nanoclusters via doping: advances and opportunities. Nanoscale Advances 2021, 3 (9) , 2411-2422. https://doi.org/10.1039/D1NA00077B
    56. Wei‐Miao He, Zhe Zhou, Zhen Han, Si Li, Zhan Zhou, Lu‐Fang Ma, Shuang‐Quan Zang. Ultrafast Size Expansion and Turn‐On Luminescence of Atomically Precise Silver Clusters by Hydrogen Sulfide. Angewandte Chemie 2021, 133 (15) , 8586-8590. https://doi.org/10.1002/ange.202100006
    57. Wei‐Miao He, Zhe Zhou, Zhen Han, Si Li, Zhan Zhou, Lu‐Fang Ma, Shuang‐Quan Zang. Ultrafast Size Expansion and Turn‐On Luminescence of Atomically Precise Silver Clusters by Hydrogen Sulfide. Angewandte Chemie International Edition 2021, 60 (15) , 8505-8509. https://doi.org/10.1002/anie.202100006
    58. Mengfan Xia, Yucun Sui, Ying Guo, Yaodong Zhang. Aggregation-induced emission enhancement of gold nanoclusters in metal–organic frameworks for highly sensitive fluorescent detection of bilirubin. The Analyst 2021, 146 (3) , 904-910. https://doi.org/10.1039/D0AN02076A
    59. Qiaofeng Yao, Zhennan Wu, Zhihe Liu, Yingzheng Lin, Xun Yuan, Jianping Xie. Molecular reactivity of thiolate-protected noble metal nanoclusters: synthesis, self-assembly, and applications. Chemical Science 2021, 12 (1) , 99-127. https://doi.org/10.1039/D0SC04620E
    60. Haru Hirai, Shun Ito, Shinjiro Takano, Kiichirou Koyasu, Tatsuya Tsukuda. Ligand-protected gold/silver superatoms: current status and emerging trends. Chemical Science 2020, 11 (45) , 12233-12248. https://doi.org/10.1039/D0SC04100A
    61. Paulami Bose, Papri Chakraborty, Jyoti Sarita Mohanty, Nonappa, Angshuman Ray Chowdhuri, Esma Khatun, Tripti Ahuja, Ananthu Mahendranath, Thalappil Pradeep. Atom transfer between precision nanoclusters and polydispersed nanoparticles: a facile route for monodisperse alloy nanoparticles and their superstructures. Nanoscale 2020, 12 (43) , 22116-22128. https://doi.org/10.1039/D0NR04033A
    62. Xinyue Dou, Xiangyu Wang, Shuyu Qian, Naiwei Liu, Xun Yuan. From understanding the roles of tetraoctylammonium bromide in the two-phase Brust–Schiffrin method to tuning the size of gold nanoclusters. Nanoscale 2020, 12 (38) , 19855-19860. https://doi.org/10.1039/D0NR04439C
    63. Xi Kang, Yingwei Li, Manzhou Zhu, Rongchao Jin. Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chemical Society Reviews 2020, 49 (17) , 6443-6514. https://doi.org/10.1039/C9CS00633H
    64. Baoyu Huang, Yong Pei. On the mechanism of inter-cluster alloying reactions: two-stage metal exchange of [Au 25 (PET) 18 ] − and [Ag 25 (DMBT) 18 ] − clusters. Journal of Materials Chemistry A 2020, 8 (20) , 10242-10251. https://doi.org/10.1039/D0TA02352C
    65. Xinlei Zhang, Ziping Wang, Shuyu Qian, Naiwei Liu, Lina Sui, Xun Yuan. Effect of subtle changes of isomeric ligands on the synthesis of atomically precise water-soluble gold nanoclusters. Nanoscale 2020, 12 (11) , 6449-6455. https://doi.org/10.1039/D0NR00379D
    66. Guillaume Delaittre, Constantin Hoch, Johanna Heine, Ullrich Jahn, Hajo Kries, Björn Meermann, Andreas Schnepf, Erik Strub, Carl Christoph Tzschucke. Notizen aus der Chemie. Nachrichten aus der Chemie 2020, 68 (1) , 46-49. https://doi.org/10.1002/nadc.20204095297

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect