ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Sulfonyl Fluoride Synthesis through Electrochemical Oxidative Coupling of Thiols and Potassium Fluoride

  • Gabriele Laudadio
    Gabriele Laudadio
    Micro Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14 − Helix, 5600 MB Eindhoven, The Netherlands
  • Aloisio de A. Bartolomeu
    Aloisio de A. Bartolomeu
    Micro Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14 − Helix, 5600 MB Eindhoven, The Netherlands
    Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
  • Lucas M. H. M. Verwijlen
    Lucas M. H. M. Verwijlen
    Micro Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14 − Helix, 5600 MB Eindhoven, The Netherlands
  • Yiran Cao
    Yiran Cao
    Micro Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14 − Helix, 5600 MB Eindhoven, The Netherlands
    More by Yiran Cao
  • Kleber T. de Oliveira
    Kleber T. de Oliveira
    Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
  • , and 
  • Timothy Noël*
    Timothy Noël
    Micro Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14 − Helix, 5600 MB Eindhoven, The Netherlands
    *[email protected]
Cite this: J. Am. Chem. Soc. 2019, 141, 30, 11832–11836
Publication Date (Web):July 13, 2019
https://doi.org/10.1021/jacs.9b06126
Copyright © 2019 American Chemical Society
ACS AuthorChoiceACS AuthorChoicewith CC-BY-NC-NDlicense

Article Views

16475

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (1 MB)
Supporting Info (1)»

Abstract

Sulfonyl fluorides are valuable synthetic motifs for a variety of applications, among which sulfur(VI) fluoride exchange-based “click chemistry” is currently the most prominent. Consequently, the development of novel and efficient synthetic methods to access these functional groups is of great interest. Herein, we report a mild and environmentally benign electrochemical approach to prepare sulfonyl fluorides using thiols or disulfides, as widely available starting materials, in combination with KF, as an inexpensive, abundant and safe fluoride source. No additional oxidants nor additional catalysts are required and, due to mild reaction conditions, the reaction displays a broad substrate scope, including a variety of alkyl, benzyl, aryl and heteroaryl thiols or disulfides.

Arguably, sulfonyl fluorides can be considered a “privileged moiety” in chemistry, as they can be adopted in a wide variety of applications. This can be attributed to the unique balance between reactivity and stability of these functional groups, which is in sharp contrast with analogous sulfonyl chlorides (Figure 1A). (1) Hence, sulfonyl fluorides have been used in chemical biology as covalent protein modifiers, strong protease inhibitors and activity-based probes. (2) In addition, sulfonyl fluorides have been successfully applied as fluorinating reagents, (3)18F radiolabeling agents (4) and have been engaged in other useful transformations, (5) including polymerizations. (6) However, the breakthrough application for sulfonyl fluorides is the realization of their utility as stable and robust sulfonyl precursors using sulfur(VI) fluoride exchange “click chemistry” (SuFEx). (1,7)

Figure 1

Figure 1. Development of an electrochemical synthesis of sulfonyl fluorides. (A) Advantages and applications of sulfonyl fluorides. (B) Established synthetic routes to prepare sulfonyl fluorides. (C) Reaction conditions (Entry 1): 2-mercapto-4,6-dimethylpyrimidine (2 mmol), KF (5 equiv), pyridine (1 equiv), CH3CN/1 M HCl (20 mL, 1:1 v/v), C anode/Fe cathode, 20 mA (4.1 mA/cm2), 12 h.

Due to their evident value, efficient syntheses of sulfonyl fluorides starting from abundant starting materials are highly desired. The classical strategy to access these functional groups involves a chloride/fluoride exchange of sulfonyl chlorides using fluoride salts (Figure 1B). (8) However, sulfonyl chlorides are not widely available and need to be prepared from the corresponding thiols using a combination of oxidizing and chlorinating reagents. (9) In order to avoid toxic and unstable sulfonyl chlorides, new synthetic methods have been developed using alternative starting materials, including sulfonyl hydrazides (8b) or sodium sulfonates. (10) Also palladium-based cross-coupling strategies have been developed which utilize aryl halides in combination with 1,4-diazabicyclo[2.2.2]octane bis(sulfur dioxide) (DABSO) and electrophilic fluorinating reagents, such as Selectfluor (11) and N-fluorodibenzenesulfonimide. (12) Kirihara et al. reported a method to transform disulfides and thiols into sulfonyl fluorides using Selectfluor and refluxing conditions. (13) Despite the synthetic value of these approaches, the use of costly and atom-inefficient fluoride sources limits their practicality to small scale applications.

It is, however, evident that the development of a synthetic method which directly uses commodity chemicals, such as thiols and metal alkali fluorides, would be particularly useful given the broad availability and the low cost of these starting materials.

Even so, it is immediately clear that a number of challenges need to be overcome to develop such a hitherto elusive transformation. First, fluoride is poorly soluble in organic solvents and is hardly reactive in its solvated form in aqueous media. Second, combining nucleophilic fluorine reagents with thiols to establish a single S–F bond appears unlikely. (14) Nevertheless, based on our recent success in the electrochemical synthesis of sulfonamides, (15) we speculated that the union of these stubborn starting materials would not only be plausible using electrochemical activation (16) but would also facilitate the subsequent oxidation to sulfonyl fluoride via anodic oxidation. Herein, we report the discovery and optimization of an electrochemical method which meets these design criteria. The method utilizes KF as a readily available, safe and cost-efficient fluoride source. Moreover, anodic oxidation allows to avoid stoichiometric amounts of oxidants and enables the direct use of thiols or disulfides as convenient and widely available starting materials.

Initial experiments on a representative thiol, 2-mercapto-4,6-dimethylpyrimidine, revealed that the combination of 5 equiv of KF, 1 equiv of pyridine in a CH3CN/1 M HCl biphasic reaction mixture using inexpensive graphite/stainless steel electrodes is highly effective, providing the targeted sulfonyl fluoride in 74% isolated yield (Figure 1C, Entry 1). Tetra-n-butylammonium fluoride and other alkali fluorides, such as NaF and CsF, are less effective (see Supporting Information). Selectfluor, an electrophilic fluorine source, is equally potent as KF, but was not further considered due to the unfavorable price difference (KF 8 $/mol vs Selectfluor 407 $/mol). (17) We surmise that KF functions partially as an electrolyte, as the total amount can be lowered when supporting electrolytes are added (see Supporting Information). However, given the low cost of KF in comparison to these supporting electrolytes, we opted to keep a higher concentration of KF. In the absence of acid or at lower concentrations, decreased yields are observed (Figure 1C, Entries 2–4). The addition of one equivalent of pyridine is beneficial (Figure 1C, Entry 5), and is speculated to function as an electron mediator (18) or as a phase transfer catalyst. The reaction was confirmed to be electrochemically driven (Figure 1C, Entry 6).

With the optimal conditions in hand, we next turned our attention to examine the generality of this electrochemical transformation. As shown in Figure 2, a wide variety of structurally and electronically distinct thiols can be transformed into the corresponding sulfonyl fluorides. First, with a diverse set of thiophenols, it was determined that substrates bearing electron-neutral (15), -donating (6, 7) and -withdrawing substituents (810) were all compatible with the reaction conditions; the yields were ranging from 37 to 99%. Due to the volatility of some products, isolated yields were in some cases lower than observed with 19F nuclear magnetic resonance (NMR). This could be partially avoided by converting the obtained volatile sulfonyl fluoride in situ to the corresponding sulfonate through reaction with phenol (e.g., 1). The electrochemical reaction is not particularly sensitive to sterical hindrance as ortho-substituted thiophenols displayed similar yields to unsubstituted variants (1 versus 4). Also, halogenated thiophenols (1113) were suitable reaction partners, providing opportunities to further functionalize the formed sulfonyl fluorides using cross-coupling chemistry. Protected amines (14), previously unreactive in our electrochemical sulfonamide chemistry, were tolerated under the current reaction conditions. Heterocyclic thiols (1517), which are among the most widely used moieties in pharmaceutical and agrochemical syntheses, were also effective. Notably, compound 15 is also known as PyFluor, an effective deoxyfluorination reagent reported by Doyle and co-workers. (3) We next examined a variety of different primary and secondary aliphatic thiol substrates, including methanethiol (18), ethanethiol (19), propanethiol (20), n-octanethiol (21), cyclohexylthiol (22), pyrazineethanethiol (23), benzylthiol (24), p-chlorobenzylthiol (25), 2-phenylethanethiol (26) and cysteine (27). All proved to be competent reaction partners yielding the corresponding sulfonyl fluorides in synthetically useful yields (19–96%). The use of the most volatile and odorous thiols could be avoided by using the corresponding disulfide instead (18,20). Interestingly, we were able to engage cysteine (27) in our electrochemical sulfonyl fluoride protocol, providing opportunities for the preparation of new nonproteinogenic amino acid building blocks.

Figure 2

Figure 2. Synthesis of sulfonyl fluorides. Substrate scope for the electrochemical sulfonyl fluoride synthesis. Reported yields are isolated and reproduced at least two times. Yields between [brackets] are those referring to 19F NMR yields calculated with PhCF3 as internal standard. Reaction conditions (Entry 1): thiol (2 mmol) or disulfide (1 mmol), KF (5 equiv), pyridine (1 equiv), CH3CN/1 M HCl (20 mL, 1:1 v/v), C anode/Fe cathode, 20 mA (4.1 mA/cm2). *3.2 V applied potential. **4.0 V applied potential. #Isolated as a phenyl sulfonate derivative through reaction with phenol. Scale-up reaction conditions: thiophenol (10 mmol), KF (5 equiv), pyridine (1 equiv), CH3CN/1 M HCl (40 mL, 1:1 v/v), C anode/Fe cathode, 3.2 V applied potential.

To obtain insights into the underlying mechanism, a number of additional experiments were carried out (Figure 3). Kinetic experiments revealed a rapid conversion of 4-(trifluoromethyl)thiophenol via anodic oxidation to the corresponding disulfide within 45 min (Figure 3A). (19) Next, the disulfide intermediate is consumed and the corresponding sulfonyl fluoride is formed. The pseudo-zero-order behavior suggests that mass transfer limitations from the bulk to the electrode surface occur during the batch electrochemical transformation.

Figure 3

Figure 3. Mechanistic investigation of the electrochemical sulfonyl fluoride synthesis. (A) 19F NMR Kinetic batch experiment (see Supporting Information). (B) Kinetic experiment carried out in an electrochemical microreactor (gas chromatography flame ionization detector, see Supporting Information). (C) Toroidal vortices in segmented flow result in enhanced mass transport to and from the electrodes. (D) Fluorination step experiments and radical trapping experiments. Gas chromatography yield (biphenyl as internal standard). (E) Proposed mechanism.

Indeed, when the reaction is carried out in an electrochemical microflow reactor with a small interelectrode gap (250 μm), (20) full conversion is observed in only 5 min reaction time (Figure 3B). The reduced reaction times observed in flow can be attributed to (i) the increased electrode surface-to-volume ratio, (ii) a high interfacial area between the organic and the aqueous phase and (iii) an intensified mass transport to and from the electrodes due to multiphase fluid patterns (Figure 3C). (21)

Oxidation of the disulfide results in the formation of a radical cation (22) which can react further with nucleophilic fluoride to yield the corresponding sulfenyl fluoride (Figure 3E). At this point, we still wondered whether a nucleophilic or electrophilic fluorination, with an in situ generated 1-fluoro-pyridinium reagent, (23) was operative under these reaction conditions. Hence, we carried out the reaction in the presence of 1-fluoro-pyridinium tetrafluoroborate and observed only traces of product formation (Figure 3D). In contrast, using either HCl-pyridine or HCl-Et3N in combination with KF allowed us to isolate the corresponding sulfonyl fluoride in good yields, indicating the presence of a nucleophilic fluorination. Adding (2,2,6,6-tetramethylpiperidin-1-yl)oxyl or butylated hydroxytoluene as radical scavengers reduces the efficacy of the electrochemical process, substantiating the presence of radical intermediates. Next, two consecutive oxidations steps resulted in the formation of the targeted sulfonyl fluoride. While we cannot formally rule out a nucleophilic attack of fluoride to S-phenyl benzenethiosulfonate, we found for most substrates no formation of the latter compound. In contrast, during our kinetic experiments, traces of other fluorinated intermediates were observed which are tentatively attributed to sulfenyl fluoride and sulfinyl fluoride intermediates (see Supporting Information). These intermediates could unfortunately not be isolated as they are generally perceived as unstable. (24) The main byproduct formed in the electrochemical sulfonyl fluoride synthesis is sulfonic acid, which originates from anodic oxidation of disulfides or through hydrolysis of sulfonyl fluoride.

The electrochemical approach described herein demonstrates the ability to directly convert thiols into sulfonyl fluorides using KF as an ideal fluoride source in terms of cost, safety and availability. In this context, we believe that this green and mild protocol will be of added value to prepare sulfonyl fluorides in both academic and industrial settings.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.9b06126.

  • Data and materials availability: additional optimization, mechanistic data, experimental procedures and analytical data (1H, 19F and 13C NMR, high resolution mass spectrometry) for all new compounds (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
    • Timothy Noël - Micro Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14 − Helix, 5600 MB Eindhoven, The NetherlandsOrcidhttp://orcid.org/0000-0002-3107-6927 Email: [email protected]
  • Authors
    • Gabriele Laudadio - Micro Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14 − Helix, 5600 MB Eindhoven, The NetherlandsOrcidhttp://orcid.org/0000-0002-2749-8393
    • Aloisio de A. Bartolomeu - Micro Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14 − Helix, 5600 MB Eindhoven, The NetherlandsDepartamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
    • Lucas M. H. M. Verwijlen - Micro Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14 − Helix, 5600 MB Eindhoven, The Netherlands
    • Yiran Cao - Micro Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14 − Helix, 5600 MB Eindhoven, The Netherlands
    • Kleber T. de Oliveira - Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS
Jump To

We acknowledge financial support from the Dutch Science Foundation (NWO) for a VIDI grant for T.N. (SensPhotoFlow, No. 14150). A.A.B. and K.T.O. thank the São Paulo Research Foundation for a FAPESP Fellowship Grant (2018/08772-6).

References

ARTICLE SECTIONS
Jump To

This article references 24 other publications.

  1. 1
    Dong, J.; Krasnova, L.; Finn, M. G.; Sharpless, K. B. Sulfur(VI) Fluoride Exchange (SuFEx): Another Good Reaction for Click Chemistry. Angew. Chem., Int. Ed. 2014, 53, 94309448,  DOI: 10.1002/anie.201309399
  2. 2
    (a) Narayanan, A.; Jones, L. H. Sulfonyl fluorides as privileged warheads in chemical biology. Chem. Sci. 2015, 6, 26502659,  DOI: 10.1039/C5SC00408J .
    (b) Shannon, D. A.; Gu, C.; McLaughlin, C. J.; Kaiser, M.; van der Hoorn, R. A. L.; Weerapana, E. Sulfonyl Fluoride Analogues as Activity-Based Probes for Serine Proteases. ChemBioChem 2012, 13, 23272330,  DOI: 10.1002/cbic.201200531
  3. 3
    Nielsen, M. K.; Ugaz, C. R.; Li, W.; Doyle, A. G. PyFluor: A Low-Cost, Stable, and Selective Deoxyfluorination Reagent. J. Am. Chem. Soc. 2015, 137, 95719574,  DOI: 10.1021/jacs.5b06307
  4. 4
    (a) Matesic, L.; Wyatt, N. A.; Fraser, B. H.; Roberts, M. P.; Pham, T. Q.; Greguric, I. Ascertaining the suitability of aryl sulfonyl fluorides for [18F]radiochemistry applications: A systematic investigation using microfluidics. J. Org. Chem. 2013, 78, 1126211270,  DOI: 10.1021/jo401759z .
    (b) Inkster, J. A. H.; Liu, K.; Ait-Mohand, S.; Schaffer, P.; Guérin, B.; Ruth, T. J.; Storr, T. Sulfonyl Fluoride-Based Prosthetic Compounds as Potential 18F Labelling Agents. Chem. - Eur. J. 2012, 18, 1107911087,  DOI: 10.1002/chem.201103450
  5. 5
    Chinthakindi, P. K.; Arvidsson, P. I. Sulfonyl Fluorides (SFs): More Than Click Reagents?. Eur. J. Org. Chem. 2018, 36483666,  DOI: 10.1002/ejoc.201800464
  6. 6
    (a) Xiao, X.; Zhou, F.; Jiang, J.; Chen, H.; Wang, L.; Chen, D.; Xu, Q.; Lu, J. Highly efficient polymerization via sulfur(VI)-fluoride exchange (SuFEx): novel polysulfates bearing a pyrazoline–naphthylamide conjugated moiety and their electrical memory performance. Polym. Chem. 2018, 9, 10401044,  DOI: 10.1039/C7PY02042B .
    (b) Yang, C.; Flynn, J. P.; Niu, J. Facile Synthesis of Sequence-Regulated Synthetic Polymers Using Orthogonal SuFEx and CuAAC Click Reactions. Angew. Chem., Int. Ed. 2018, 57, 1619416199,  DOI: 10.1002/anie.201811051 .
    (c) Wang, H.; Zhou, F.; Ren, G.; Zheng, Q.; Chen, H.; Gao, B.; Klivansky, L.; Liu, Y.; Wu, B.; Xu, Q.; Lu, J.; Sharpless, K. B.; Wu, P. SuFEx-Based Polysulfonate Formation from Ethenesulfonyl Fluoride–Amine Adducts. Angew. Chem., Int. Ed. 2017, 56, 1120311208,  DOI: 10.1002/anie.201701160
  7. 7
    Abdul Fattah, T.; Saeed, A.; Albericio, F. Recent advances towards sulfur (VI) fluoride exchange (SuFEx) click chemistry. J. Fluorine Chem. 2018, 213, 87112,  DOI: 10.1016/j.jfluchem.2018.07.008
  8. 8
    (a) Talko, A.; Barbasiewicz, M. Nucleophilic Fluorination with Aqueous Bifluoride Solution: Effect of the Phase-Transfer Catalyst. ACS Sustainable Chem. Eng. 2018, 6, 66936701,  DOI: 10.1021/acssuschemeng.8b00489 .
    (b) Tang, L.; Yang, Y.; Wen, L.; Yang, X.; Wang, Z. Catalyst-free radical fluorination of sulfonyl hydrazides in water. Green Chem. 2016, 18, 12241228,  DOI: 10.1039/C5GC02755A .
    (c) Bianchi, T. A.; Cate, L. A. Phase Transfer Catalysis. Preparation of Aliphatic and Aromatic Sulfonyl Fluorides. J. Org. Chem. 1977, 42, 20312032,  DOI: 10.1021/jo00431a054 .
    (d) Davies, W.; Dick, J. H. CCLXXXVI.—Aromatic sulphonyl fluorides. A convenient method of preparation. J. Chem. Soc. 1931, 0, 21042109,  DOI: 10.1039/JR9310002104
  9. 9
    Schmitt, A.-M. D.; Schmitt, D. C., Chapter 13. Synthesis of Sulfonamides. In RSC Drug Discovery Series , 2016; Vol. 2016, pp 123138.
  10. 10
    Brouwer, A. J.; Ceylan, T.; Linden, T. v. d.; Liskamp, R. M. J. Synthesis of β-aminoethanesulfonyl fluorides or 2-substituted taurine sulfonyl fluorides as potential protease inhibitors. Tetrahedron Lett. 2009, 50, 33913393,  DOI: 10.1016/j.tetlet.2009.02.130
  11. 11
    Tribby, A. L.; Rodríguez, I.; Shariffudin, S.; Ball, N. D. Pd-Catalyzed Conversion of Aryl Iodides to Sulfonyl Fluorides Using SO2 Surrogate DABSO and Selectfluor. J. Org. Chem. 2017, 82, 22942299,  DOI: 10.1021/acs.joc.7b00051
  12. 12
    Davies, A. T.; Curto, J. M.; Bagley, S. W.; Willis, M. C. One-pot palladium-catalyzed synthesis of sulfonyl fluorides from aryl bromides. Chem. Sci. 2017, 8, 12331237,  DOI: 10.1039/C6SC03924C
  13. 13
    (a) Kirihara, M.; Naito, S.; Nishimura, Y.; Ishizuka, Y.; Iwai, T.; Takeuchi, H.; Ogata, T.; Hanai, H.; Kinoshita, Y.; Kishida, M.; Yamazaki, K.; Noguchi, T.; Yamashoji, S. Oxidation of disulfides with electrophilic halogenating reagents: concise methods for preparation of thiosulfonates and sulfonyl halides. Tetrahedron 2014, 70, 24642471,  DOI: 10.1016/j.tet.2014.02.013 .
    (b) Kirihara, M.; Naito, S.; Ishizuka, Y.; Hanai, H.; Noguchi, T. Oxidation of disulfides with Selectfluor: concise syntheses of thiosulfonates and sulfonyl fluorides. Tetrahedron Lett. 2011, 52, 30863089,  DOI: 10.1016/j.tetlet.2011.03.132
  14. 14

    For other S-F bond forming transformations leading to SFx species, see:

    (a) Pitts, C. R.; Bornemann, D.; Liebing, P.; Santschi, N.; Togni, A. Making the SF5 Group More Accessible: A Gas-Reagent-Free Approach to Aryl Tetrafluoro-λ 6-sulfanyl Chlorides. Angew. Chem., Int. Ed. 2019, 58, 19501954,  DOI: 10.1002/anie.201812356 .
    (b) Umemoto, T.; Garrick, L. M.; Saito, N. Discovery of practical production processes for arylsulfur pentafluorides and their higher homologues, bis- and tris(sulfur pentafluorides): Beginning of a new era of “super-trifluoromethyl” arene chemistry and its industry. Beilstein J. Org. Chem. 2012, 8, 461471,  DOI: 10.3762/bjoc.8.53 .
    (c) Umemoto, T.; Singh, R. P.; Xu, Y.; Saito, N. Discovery of 4-tert-butyl-2,6-dimethylphenylsulfur trifluoride as a deoxofluorinating agent with high thermal stability as well as unusual resistance to aqueous hydrolysis, and its diverse fluorination capabilities including deoxofluoro-arylsulfinylation with high stereoselectivity. J. Am. Chem. Soc. 2010, 132, 1819918205,  DOI: 10.1021/ja106343h
  15. 15
    Laudadio, G.; Barmpoutsis, E.; Schotten, C.; Struik, L.; Govaerts, S.; Browne, D. L.; Noël, T. Sulfonamide Synthesis through Electrochemical Oxidative Coupling of Amines and Thiols. J. Am. Chem. Soc. 2019, 141, 56645668,  DOI: 10.1021/jacs.9b02266
  16. 16
    (a) Tang, S.; Liu, Y.; Lei, A. Electrochemical Oxidative Cross-coupling with Hydrogen Evolution: A Green and Sustainable Way for Bond Formation. Chem. 2018, 4, 2745,  DOI: 10.1016/j.chempr.2017.10.001 .
    (b) Wiebe, A.; Gieshoff, T.; Möhle, S.; Rodrigo, E.; Zirbes, M.; Waldvogel, S. R. Electrifying Organic Synthesis. Angew. Chem., Int. Ed. 2018, 57, 55945619,  DOI: 10.1002/anie.201711060 .
    (c) Yan, M.; Kawamata, Y.; Baran, P. S. Synthetic Organic Electrochemical Methods Since 2000: On the Verge of a Renaissance. Chem. Rev. 2017, 117, 1323013319,  DOI: 10.1021/acs.chemrev.7b00397
  17. 17
    Pupo, G.; Vicini, A. C.; Ascough, D. M. H.; Ibba, F.; Christensen, K. E.; Thompson, A. L.; Brown, J. M.; Paton, R. S.; Gouverneur, V. Hydrogen Bonding Phase-Transfer Catalysis with Potassium Fluoride: Enantioselective Synthesis of β-Fluoroamines. J. Am. Chem. Soc. 2019, 141, 28782883,  DOI: 10.1021/jacs.8b12568
  18. 18
    Francke, R.; Little, R. D. Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem. Soc. Rev. 2014, 43, 2492,  DOI: 10.1039/c3cs60464k
  19. 19
    Laudadio, G.; Straathof, N. J. W.; Lanting, M. D.; Knoops, B.; Hessel, V.; Noël, T. An environmentally benign and selective electrochemical oxidation of sulfides and thiols in a continuous-flow microreactor. Green Chem. 2017, 19, 40614066,  DOI: 10.1039/C7GC01973D
  20. 20
    Laudadio, G.; De Smet, Wouter; Struik, L.; Cao, Y.; Noël, T. Design and application of a modular and scalable electrochemical flow microreactor. J. Flow Chem. 2018, 8, 157165,  DOI: 10.1007/s41981-018-0024-3
  21. 21
    (a) Pletcher, D.; Green, R. A.; Brown, R. C. D. Flow Electrolysis Cells for the Synthetic Organic Chemistry Laboratory. Chem. Rev. 2018, 118, 45734591,  DOI: 10.1021/acs.chemrev.7b00360 .
    (b) Atobe, M.; Tateno, H.; Matsumura, Y. Applications of Flow Microreactors in Electrosynthetic Processes. Chem. Rev. 2018, 118, 45414572,  DOI: 10.1021/acs.chemrev.7b00353 .
    (c) Mitsudo, K.; Kurimoto, Y.; Yoshioka, K.; Suga, S. Miniaturization and Combinatorial Approach in Organic Electrochemistry. Chem. Rev. 2018, 118, 59855999,  DOI: 10.1021/acs.chemrev.7b00532 .
    (d) Folgueiras-Amador, A. A.; Wirth, T. Perspectives in flow electrochemistry. J. Flow Chem. 2017, 7, 9495,  DOI: 10.1556/1846.2017.00020
  22. 22
    Lam, K.; Geiger, W. E. Anodic oxidation of disulfides: Detection and reactions of disulfide radical cations. J. Org. Chem. 2013, 78, 80208027,  DOI: 10.1021/jo401263z
  23. 23
    Huba, F.; Yeager, E. B.; Olah, G. A. The formation and role of carbocations in electrolytic fluorination using hydrogen fluoride electrolytes in a nafion membrane-divided Teflon cell. Electrochim. Acta 1979, 24, 489494,  DOI: 10.1016/0013-4686(79)85021-5
  24. 24
    Seel, F.; Budenz, R.; Flaccus, R. D.; Staab, R. Zur frage der existenz des phenylschwefelmonofluorids und seines chemischen verhaltens. J. Fluorine Chem. 1978, 12, 437438,  DOI: 10.1016/S0022-1139(00)82986-3

Cited By

This article is cited by 118 publications.

  1. Xueyan Zhao, Dengfeng Chen, Shengzhen Zhu, Jinyue Luo, Saihu Liao, Binnan Zheng, Shenlin Huang. Fluorosulfonylvinylation of Unactivated C(sp3)–H via Electron Donor–Acceptor Photoactivation. Organic Letters 2023, 25 (17) , 3109-3113. https://doi.org/10.1021/acs.orglett.3c00950
  2. Cooper A. Vincent, Maria Irina Chiriac, Ludovic Troian-Gautier, Uttam K. Tambar. Photocatalytic Sulfonyl Fluorination of Alkyl Organoboron Substrates. ACS Catalysis 2023, 13 (6) , 3668-3675. https://doi.org/10.1021/acscatal.3c00107
  3. Matthew C. Leech, Dmitrii Nagornîi, Jamie M. Walsh, Cyrille Kiaku, Darren L. Poole, Joseph Mason, Iain C. A. Goodall, Perry Devo, Kevin Lam. eFluorination Using Cheap and Readily Available Tetrafluoroborate Salts. Organic Letters 2023, 25 (9) , 1353-1358. https://doi.org/10.1021/acs.orglett.2c04305
  4. Eric Holt, Muyuan Wang, Stefan Andrew Harry, Chengkun He, Yuang Wang, Nicolas Henriquez, Michael Richard Xiang, Andrea Zhu, Fereshte Ghorbani, Thomas Lectka. An Electrochemical Approach to Directed Fluorination. The Journal of Organic Chemistry 2023, 88 (4) , 2557-2560. https://doi.org/10.1021/acs.joc.2c01886
  5. Andrew T. King, Lidia Matesic, Sinead T. Keaveney, Joanne F. Jamie. An Investigation into the In Vitro Metabolic Stability of Aryl Sulfonyl Fluorides for their Application in Medicinal Chemistry and Radiochemistry. Molecular Pharmaceutics 2023, 20 (2) , 1061-1071. https://doi.org/10.1021/acs.molpharmaceut.2c00806
  6. Xianqiang Kong, Yiyi Chen, Qianwen Liu, WenJie Wang, Shuangquan Zhang, Qian Zhang, Xiaohui Chen, Yuan-Qing Xu, Zhong-Yan Cao. Selective Fluorosulfonylation of Thianthrenium Salts Enabled by Electrochemistry. Organic Letters 2023, 25 (4) , 581-586. https://doi.org/10.1021/acs.orglett.2c03956
  7. Johannes E. Erchinger, Reece Hoogesteger, Ranjini Laskar, Subhabrata Dutta, Carla Hümpel, Debanjan Rana, Constantin G. Daniliuc, Frank Glorius. EnT-Mediated N–S Bond Homolysis of a Bifunctional Reagent Leading to Aliphatic Sulfonyl Fluorides. Journal of the American Chemical Society 2023, 145 (4) , 2364-2374. https://doi.org/10.1021/jacs.2c11295
  8. Shichen Guo, Myung Jun Kim, Juno C. Siu, Natalia von Windheim, Ken Gall, Song Lin, Benjamin J. Wiley. Eight-Fold Intensification of Electrochemical Azidooxygenation with a Flow-Through Electrode. ACS Sustainable Chemistry & Engineering 2022, 10 (23) , 7648-7657. https://doi.org/10.1021/acssuschemeng.2c01525
  9. Qingyuan Feng, Yuanyuan Fu, Yu Zheng, Saihu Liao, Shenlin Huang. Electrochemical Synthesis of β-Keto Sulfonyl Fluorides via Radical Fluorosulfonylation of Vinyl Triflates. Organic Letters 2022, 24 (20) , 3702-3706. https://doi.org/10.1021/acs.orglett.2c01336
  10. Aline A. N. de Souza, Aloisio de A. Bartolomeu, Timothy J. Brocksom, Timothy Noël, Kleber T. de Oliveira. Direct Synthesis of α-Sulfenylated Ketones under Electrochemical Conditions. The Journal of Organic Chemistry 2022, 87 (9) , 5856-5865. https://doi.org/10.1021/acs.joc.2c00147
  11. Zhi-Da Chen, Xiang Zhou, Ji-Tao Yi, Hong-Juan Diao, Qi-Long Chen, Gui Lu, Jiang Weng. Catalytic Decarboxylative Fluorosulfonylation Enabled by Energy-Transfer-Mediated Photocatalysis. Organic Letters 2022, 24 (13) , 2474-2478. https://doi.org/10.1021/acs.orglett.2c00459
  12. Philip R. D. Murray, James H. Cox, Nicholas D. Chiappini, Casey B. Roos, Elizabeth A. McLoughlin, Benjamin G. Hejna, Suong T. Nguyen, Hunter H. Ripberger, Jacob M. Ganley, Elaine Tsui, Nick Y. Shin, Brian Koronkiewicz, Guanqi Qiu, Robert R. Knowles. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chemical Reviews 2022, 122 (2) , 2017-2291. https://doi.org/10.1021/acs.chemrev.1c00374
  13. Nicholas E. S. Tay, Dan Lehnherr, Tomislav Rovis. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chemical Reviews 2022, 122 (2) , 2487-2649. https://doi.org/10.1021/acs.chemrev.1c00384
  14. Marc Magre, Josep Cornella. Redox-Neutral Organometallic Elementary Steps at Bismuth: Catalytic Synthesis of Aryl Sulfonyl Fluorides. Journal of the American Chemical Society 2021, 143 (51) , 21497-21502. https://doi.org/10.1021/jacs.1c11463
  15. Alfie G. Wills, Sylvain Charvet, Claudio Battilocchio, Christopher C. Scarborough, Katherine M. P. Wheelhouse, Darren L. Poole, Nessa Carson, Julien C. Vantourout. High-Throughput Electrochemistry: State of the Art, Challenges, and Perspective. Organic Process Research & Development 2021, 25 (12) , 2587-2600. https://doi.org/10.1021/acs.oprd.1c00167
  16. Longrui Chen, Lisa M. Barton, Julien C. Vantourout, Yinghua Xu, Chengpu Chu, Eric C. Johnson, Jesse J. Sabatini, Phil S. Baran. Electrochemical Cyclobutane Synthesis in Flow: Scale-Up of a Promising Melt-Castable Energetic Intermediate. Organic Process Research & Development 2021, 25 (12) , 2639-2645. https://doi.org/10.1021/acs.oprd.0c00270
  17. Zhibin Tian, Qihang Gong, Tianzeng Huang, Long Liu, Tieqiao Chen. Practical Electro-Oxidative Sulfonylation of Phenols with Sodium Arenesulfinates Generating Arylsulfonate Esters. The Journal of Organic Chemistry 2021, 86 (22) , 15914-15926. https://doi.org/10.1021/acs.joc.1c00260
  18. Wan-Yin Fang, Shi-Meng Wang, Zai-Wei Zhang, Hua-Li Qin. Clickable Transformation of Nitriles (RCN) to Oxazolyl Sulfonyl Fluoride Warheads. Organic Letters 2020, 22 (22) , 8904-8909. https://doi.org/10.1021/acs.orglett.0c03298
  19. Jinjian Liu, Lingxiang Lu, Devin Wood, Song Lin. New Redox Strategies in Organic Synthesis by Means of Electrochemistry and Photochemistry. ACS Central Science 2020, 6 (8) , 1317-1340. https://doi.org/10.1021/acscentsci.0c00549
  20. Subham Mahapatra, Cristian P. Woroch, Todd W. Butler, Sabrina N. Carneiro, Sabrina C. Kwan, Samuel R. Khasnavis, Junha Gu, Jason K. Dutra, Beth C. Vetelino, Justin Bellenger, Christopher W. am Ende, Nicholas D. Ball. SuFEx Activation with Ca(NTf2)2: A Unified Strategy to Access Sulfamides, Sulfamates, and Sulfonamides from S(VI) Fluorides. Organic Letters 2020, 22 (11) , 4389-4394. https://doi.org/10.1021/acs.orglett.0c01397
  21. Tianxiao Xu, Tianpeng Cao, Mingcheng Yang, Ruting Xu, Xingliang Nie, Saihu Liao. Decarboxylative Thiolation of Redox-Active Esters to Thioesters by Merging Photoredox and Copper Catalysis. Organic Letters 2020, 22 (9) , 3692-3696. https://doi.org/10.1021/acs.orglett.0c01180
  22. Tao Zhong, Meng-Ke Pang, Zhi-Da Chen, Bin Zhang, Jiang Weng, Gui Lu. Copper-free Sandmeyer-type Reaction for the Synthesis of Sulfonyl Fluorides. Organic Letters 2020, 22 (8) , 3072-3078. https://doi.org/10.1021/acs.orglett.0c00823
  23. Yongan Liu, Donghai Yu, Yong Guo, Ji-Chang Xiao, Qing-Yun Chen, Chao Liu. Arenesulfonyl Fluoride Synthesis via Copper-Catalyzed Fluorosulfonylation of Arenediazonium Salts. Organic Letters 2020, 22 (6) , 2281-2286. https://doi.org/10.1021/acs.orglett.0c00484
  24. Xiaobo Wan, Tangpo Yang, Adolfo Cuesta, Xiaming Pang, Trent E. Balius, John J. Irwin, Brian K. Shoichet, Jack Taunton. Discovery of Lysine-Targeted eIF4E Inhibitors through Covalent Docking. Journal of the American Chemical Society 2020, 142 (11) , 4960-4964. https://doi.org/10.1021/jacs.9b10377
  25. Toshio Fuchigami, Shinsuke Inagi. Recent Advances in Electrochemical Systems for Selective Fluorination of Organic Compounds. Accounts of Chemical Research 2020, 53 (2) , 322-334. https://doi.org/10.1021/acs.accounts.9b00520
  26. Mingcheng Yang, Tianpeng Cao, Tianxiao Xu, Saihu Liao. Visible-Light-Induced Deaminative Thioesterification of Amino Acid Derived Katritzky Salts via Electron Donor–Acceptor Complex Formation. Organic Letters 2019, 21 (21) , 8673-8678. https://doi.org/10.1021/acs.orglett.9b03284
  27. Timothy Noël, Yiran Cao, Gabriele Laudadio. The Fundamentals Behind the Use of Flow Reactors in Electrochemistry. Accounts of Chemical Research 2019, 52 (10) , 2858-2869. https://doi.org/10.1021/acs.accounts.9b00412
  28. Cooper A. Vincent, Alexia Ripak, Ludovic Troian-Gautier, Uttam K. Tambar. Photocatalytic conversion of aryl diazonium salts to sulfonyl fluorides. Tetrahedron 2023, 139 , 133364. https://doi.org/10.1016/j.tet.2023.133364
  29. Huang Huang, Lyn H. Jones. Covalent drug discovery using sulfur(VI) fluoride exchange warheads. Expert Opinion on Drug Discovery 2023, 420 , 1-11. https://doi.org/10.1080/17460441.2023.2218642
  30. Reza Kordnezhadian, Armir Zogu, Carlotta Borgarelli, Ruben Van Lommel, Joachim Demaerel, Wim M. De Borggraeve, Ermal Ismalaj. De‐Risking S‐F Bond Formation: A Gas Cylinder‐Free Strategy to Access S(IV) and S(VI) Fluorinated Compounds**. Chemistry – A European Journal 2023, https://doi.org/10.1002/chem.202300361
  31. Lingling Shan, Zhanhu Ma, Caiyun Ou, Yinxia Cai, Yuyang Ma, Yong Guo, Xiaoyu Ma, Chao Liu. Aryl sulfonyl fluoride synthesis via palladium-catalyzed fluorosulfonylation of aryl thianthrenium salts. Organic & Biomolecular Chemistry 2023, 21 (18) , 3789-3793. https://doi.org/10.1039/D3OB00462G
  32. Sebastián Barata-Vallejo, Damian E. Yerien, Al Postigo. Synthetic strategies for fluorosulfonylated compounds: application to click chemistry reactions. Catalysis Science & Technology 2023, 13 (9) , 2597-2617. https://doi.org/10.1039/D2CY01998A
  33. Peng Wang, Shao-Jie Li, Honghai Zhang, Na Yang, Saihu Liao. Photo-organocatalytic Synthesis of β-Keto Sulfonyl Fluorides via Radical Fluorosulfonylation of Vinyl Acetates. Synlett 2023, 34 (05) , 471-476. https://doi.org/10.1055/s-0041-1738692
  34. Sabrina N. Carneiro, Samuel R. Khasnavis, Jisun Lee, Todd W. Butler, Jaimeen D. Majmudar, Christopher W. am Ende, Nicholas D. Ball. Sulfur( vi ) fluorides as tools in biomolecular and medicinal chemistry. Organic & Biomolecular Chemistry 2023, 21 (7) , 1356-1372. https://doi.org/10.1039/D2OB01891H
  35. Hao‐Kuan Lu, Ting Liu, Zhaojiang Shi, Hong Yan, Zhen Li, Ke‐Yin Ye. Electrochemical Bromination of Substituted Thiophenes in Batch and Continuous Flow. European Journal of Organic Chemistry 2023, 26 (7) https://doi.org/10.1002/ejoc.202200963
  36. Ting Zeng, Jianjing Yang, Kelu Yan, Wei Wei, Jiangwei Wen. Controllable cross-coupling of thiophenols with dichloromethane mediated by consecutively paired electrolysis. Green Synthesis and Catalysis 2023, 4 (1) , 35-40. https://doi.org/10.1016/j.gresc.2022.04.001
  37. Huan Xiong, Jianping Wu, Hua-Li Qin. [3 + 2] cycloaddition for the assembly of indolizine-based heterocyclic sulfonyl fluorides. Organic Chemistry Frontiers 2023, 10 (2) , 342-347. https://doi.org/10.1039/D2QO01466A
  38. Brodie J. Thomson, Samuel R. Khasnavis, Emma C. Grigorian, Rohun Krishnan, Theodore D. Yassa, Kelvin Lee, Glenn M. Sammis, Nicholas D. Ball. Facile synthesis of sulfonyl fluorides from sulfonic acids. Chemical Communications 2023, 59 (5) , 555-558. https://doi.org/10.1039/D2CC05781F
  39. Shadrack Wilson Lucas, Richard Zijian Qin, K.P. Rakesh, K.S. Sharath Kumar, Hua-Li Qin. Chemical and biology of sulfur fluoride exchange (SuFEx) click chemistry for drug discovery. Bioorganic Chemistry 2023, 130 , 106227. https://doi.org/10.1016/j.bioorg.2022.106227
  40. Komal Jakhar. Facile and Environment-friendly Fluorinations using Ionic Liquids. Current Organic Synthesis 2022, 19 (8) , 849-873. https://doi.org/10.2174/1570179419666220208104453
  41. Peng Wang, Honghai Zhang, Xingliang Nie, Tianxiao Xu, Saihu Liao. Photoredox catalytic radical fluorosulfonylation of olefins enabled by a bench-stable redox-active fluorosulfonyl radical precursor. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-31089-7
  42. Weigang Zhang, Heyin Li, Xiaojuan Li, Zhenlei Zou, Mengjun Huang, Jiyang Liu, Xiaochen Wang, Shengyang Ni, Yi Pan, Yi Wang. A practical fluorosulfonylating platform via photocatalytic imidazolium-based SO2F radical reagent. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-31296-2
  43. Fu-Sheng He, Yuqing Li, Jie Wu. Fluorosulfonyl radicals: new horizons for the synthesis of sulfonyl fluorides. Organic Chemistry Frontiers 2022, 9 (19) , 5299-5305. https://doi.org/10.1039/D2QO01211A
  44. Peng Wang, Honghai Zhang, Mingqi Zhao, Shuangshuang Ji, Lu Lin, Na Yang, Xingliang Nie, Jinshuai Song, Saihu Liao. Radical Hydro‐Fluorosulfonylation of Unactivated Alkenes and Alkynes. Angewandte Chemie 2022, 134 (39) https://doi.org/10.1002/ange.202207684
  45. Peng Wang, Honghai Zhang, Mingqi Zhao, Shuangshuang Ji, Lu Lin, Na Yang, Xingliang Nie, Jinshuai Song, Saihu Liao. Radical Hydro‐Fluorosulfonylation of Unactivated Alkenes and Alkynes. Angewandte Chemie International Edition 2022, 61 (39) https://doi.org/10.1002/anie.202207684
  46. Honghai Zhang, Shaojie Li, Han-Liang Zheng, Gangguo Zhu, Saihu Liao, Xingliang Nie. Photocatalytic fluorosulfonylation of aliphatic carboxylic acid NHPI esters. Organic Chemistry Frontiers 2022, 9 (18) , 4854-4860. https://doi.org/10.1039/D2QO00861K
  47. Yang Chao, Akash Krishna, Muthusamy Subramaniam, Dong‐Dong Liang, Sidharam P. Pujari, Andrew C.‐H. Sue, Guanna Li, Fedor M. Miloserdov, Han Zuilhof. Sulfur–Phenolate Exchange: SuFEx‐Derived Dynamic Covalent Reactions and Degradation of SuFEx Polymers. Angewandte Chemie International Edition 2022, 61 (36) https://doi.org/10.1002/anie.202207456
  48. Yang Chao, Akash Krishna, Muthusamy Subramaniam, Dong‐Dong Liang, Sidharam P. Pujari, Andrew C.‐H. Sue, Guanna Li, Fedor M. Miloserdov, Han Zuilhof. Sulfur–Phenolate Exchange: SuFEx‐Derived Dynamic Covalent Reactions and Degradation of SuFEx Polymers. Angewandte Chemie 2022, 134 (36) https://doi.org/10.1002/ange.202207456
  49. Manisha Khandelwal, Gangotri Pemawat, Rama Kanwar Khangarot. Recent Developments in Nucleophilic Fluorination with Potassium Fluoride (KF): A Review. Asian Journal of Organic Chemistry 2022, 11 (9) https://doi.org/10.1002/ajoc.202200325
  50. Ji-Tao Yi, Xiang Zhou, Qi-Long Chen, Zhi-Da Chen, Gui Lu, Jiang Weng. Copper-catalyzed direct decarboxylative fluorosulfonylation of aliphatic carboxylic acids. Chemical Communications 2022, 58 (67) , 9409-9412. https://doi.org/10.1039/D2CC03221J
  51. Jiang Liu, Jingcheng Xu, Haibo Mei, Jianlin Han. Electrochemical multi-component reaction of potassium metabisulfite with alkenes and alcohols enabling synthesis of sulfonate esters. Green Chemistry 2022, 24 (16) , 6113-6118. https://doi.org/10.1039/D2GC01909D
  52. Siyuan Zheng, Kai Wang. Electrosynthesis of tetrabenzylthiuram disulfide via flow reactors. Chemical Engineering Science 2022, 257 , 117717. https://doi.org/10.1016/j.ces.2022.117717
  53. Yuan Huang, Xueyan Zhao, Dengfeng Chen, Yu Zheng, Jinyue Luo, Shenlin Huang. Access to Sulfocoumarins by Three‐Component Reaction of β‐Keto Sulfonyl Fluorides, Arynes, and DMF. European Journal of Organic Chemistry 2022, 2022 (27) https://doi.org/10.1002/ejoc.202200715
  54. Lei Zhang, Xu Cheng, Qi‐Lin Zhou. Electrochemical Synthesis of Sulfonyl Fluorides with Triethylamine Hydrofluoride. Chinese Journal of Chemistry 2022, 40 (14) , 1687-1692. https://doi.org/10.1002/cjoc.202200112
  55. Jin Kyu Park, Jonghoon Oh, Sunwoo Lee. Electrochemical synthesis of sulfonyl fluorides from sulfonyl hydrazides. Organic Chemistry Frontiers 2022, 9 (13) , 3407-3413. https://doi.org/10.1039/D2QO00651K
  56. Jianchao Cui, Sen Ke, Jia Zhao, Shufeng Wu, Wencheng Luo, Shinuo Xu, Xiaolong Su, Yi Li. Photocatalytic access to aromatic keto sulfonyl fluorides from vinyl fluorosulfates. Organic Chemistry Frontiers 2022, 9 (13) , 3540-3545. https://doi.org/10.1039/D2QO00416J
  57. Amanda A. Volk, Zachary S. Campbell, Malek Y.S. Ibrahim, Jeffrey A. Bennett, Milad Abolhasani. Flow Chemistry: A Sustainable Voyage Through the Chemical Universe en Route to Smart Manufacturing. Annual Review of Chemical and Biomolecular Engineering 2022, 13 (1) , 45-72. https://doi.org/10.1146/annurev-chembioeng-092120-024449
  58. Marc Magre, Shengyang Ni, Josep Cornella. (Hetero)aryl‐S VI Fluorides: Synthetic Development and Opportunities. Angewandte Chemie International Edition 2022, 61 (23) https://doi.org/10.1002/anie.202200904
  59. Marc Magre, Shengyang Ni, Josep Cornella. (Hetero)aryl‐S VI Fluorides: Synthetic Development and Opportunities. Angewandte Chemie 2022, 134 (23) https://doi.org/10.1002/ange.202200904
  60. Sonali Garg, Harvinder Singh Sohal, Dharambeer Singh Malhi, Manvinder Kaur, Kishanpal Singh, Ajay Sharma, Vishal Mutreja, Deepa Thakur, Loveleen Kaur. Electrochemical Method: A Green Approach for the Synthesis of Organic Compounds. Current Organic Chemistry 2022, 26 (10) , 899-919. https://doi.org/10.2174/1385272826666220516113152
  61. Masahiro Takumi, Aiichiro Nagaki. Flash Synthesis and Continuous Production of C-Arylglycosides in a Flow Electrochemical Reactor. Frontiers in Chemical Engineering 2022, 4 https://doi.org/10.3389/fceng.2022.862766
  62. Vu T. Nguyen, Graham C. Haug, Viet D. Nguyen, Ngan T. H. Vuong, Guna B. Karki, Hadi D. Arman, Oleg V. Larionov. Functional group divergence and the structural basis of acridine photocatalysis revealed by direct decarboxysulfonylation. Chemical Science 2022, 13 (14) , 4170-4179. https://doi.org/10.1039/D2SC00789D
  63. Van Hieu Tran, Hee‐Kwon Kim. One‐Pot Manganese (IV)‐Mediated Synthesis of Sulfonyl Fluorides from Arylhydrazines. Asian Journal of Organic Chemistry 2022, 11 (4) https://doi.org/10.1002/ajoc.202200004
  64. Yi Yu, Yimin Jiang, Shaofen Wu, Zhaojiang Shi, Jinnan Wu, Yaofeng Yuan, Keyin Ye. Electrochemistry enabled selective vicinal fluorosulfenylation and fluorosulfoxidation of alkenes. Chinese Chemical Letters 2022, 33 (4) , 2009-2014. https://doi.org/10.1016/j.cclet.2021.10.016
  65. Bing-Yu Li, Lauren Voets, Ruben Van Lommel, Fien Hoppenbrouwers, Mercedes Alonso, Steven H. L. Verhelst, Wim M. De Borggraeve, Joachim Demaerel. SuFEx-enabled, chemoselective synthesis of triflates, triflamides and triflimidates. Chemical Science 2022, 13 (8) , 2270-2279. https://doi.org/10.1039/D1SC06267K
  66. Zhanhu Ma, Yongan Liu, Xiaoyu Ma, Xiaojun Hu, Yong Guo, Qing-Yun Chen, Chao Liu. Aliphatic sulfonyl fluoride synthesis via reductive decarboxylative fluorosulfonylation of aliphatic carboxylic acid NHPI esters. Organic Chemistry Frontiers 2022, 9 (4) , 1115-1120. https://doi.org/10.1039/D1QO01655E
  67. Terry Shing-Bong Lou, Michael C. Willis. Sulfonyl fluorides as targets and substrates in the development of new synthetic methods. Nature Reviews Chemistry 2022, 6 (2) , 146-162. https://doi.org/10.1038/s41570-021-00352-8
  68. Zhanhu Ma, Lingling Shan, Xiaoyu Ma, Xiaojun Hu, Yong Guo, Qing-Yun Chen, Chao Liu. Arenesulfonyl fluoride synthesis via one-pot copper-free Sandmeyer-type three-component reaction of aryl amine, K2S2O5, and NFSI. Journal of Fluorine Chemistry 2022, 254 , 109948. https://doi.org/10.1016/j.jfluchem.2022.109948
  69. Xuyan Song, Yunlu He, Bo Wang, Sanwen Peng, Xi Pan, Min Wei, Qiang Liu, Hua-Li Qin, Haolin Tang. Synthesis of aryl sulfonyl fluorides from aryl sulfonyl chlorides using sulfuryl fluoride (SO2F2) as fluoride provider. Tetrahedron 2022, 108 , 132657. https://doi.org/10.1016/j.tet.2022.132657
  70. José A. Forni, Milena L. Czyz, David W. Lupton, Anastasios Polyzos. An electrochemical γ-C–H arylation of amines in continuous flow. Tetrahedron Letters 2022, 91 , 153647. https://doi.org/10.1016/j.tetlet.2022.153647
  71. Tien Tan Bui, Van Hieu Tran, Hee‐Kwon Kim. Visible‐Light‐Mediated Synthesis of Sulfonyl Fluorides from Arylazo Sulfones. Advanced Synthesis & Catalysis 2022, 364 (2) , 341-347. https://doi.org/10.1002/adsc.202100951
  72. Yiran Cao, Natan Padoin, Cíntia Soares, Timothy Noël. On the performance of liquid-liquid Taylor flow electrochemistry in a microreactor – A CFD study. Chemical Engineering Journal 2022, 427 , 131443. https://doi.org/10.1016/j.cej.2021.131443
  73. Zhiying Du, Qiqi Qi, Wei Gao, Li Ma, Zhenxian Liu, Ruiming Wang, Jianbin Chen. Electrochemical Heteroatom‐Heteroatom Bond Construction. The Chemical Record 2022, 22 (1) https://doi.org/10.1002/tcr.202100178
  74. Oleksandr O. Grygorenko, Dmitriy M. Volochnyuk, Bohdan V. Vashchenko. Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European Journal of Organic Chemistry 2021, 2021 (47) , 6478-6510. https://doi.org/10.1002/ejoc.202100857
  75. Dengfeng Chen, Xingliang Nie, Qingyuan Feng, Yingyin Zhang, Yiheng Wang, Qiuyue Wang, Lin Huang, Shenlin Huang, Saihu Liao. Electrochemical Oxo‐Fluorosulfonylation of Alkynes under Air: Facile Access to β‐Keto Sulfonyl Fluorides. Angewandte Chemie 2021, 133 (52) , 27477-27482. https://doi.org/10.1002/ange.202112118
  76. Dengfeng Chen, Xingliang Nie, Qingyuan Feng, Yingyin Zhang, Yiheng Wang, Qiuyue Wang, Lin Huang, Shenlin Huang, Saihu Liao. Electrochemical Oxo‐Fluorosulfonylation of Alkynes under Air: Facile Access to β‐Keto Sulfonyl Fluorides. Angewandte Chemie International Edition 2021, 60 (52) , 27271-27276. https://doi.org/10.1002/anie.202112118
  77. Weiqiang Li, Qin Wu, Genrui Xu, Yinjing Sun, Chao Huang, Teng Liu. A Practical Synthesis of N ‐aryl/ N ‐alkyl 4‐Pyridones under Continuous Flow Technology. Asian Journal of Organic Chemistry 2021, 10 (12) , 3370-3373. https://doi.org/10.1002/ajoc.202100584
  78. Hao Long, Chong Huang, Yun-Tao Zheng, Zhao-Yu Li, Liang-Hua Jie, Jinshuai Song, Shaobin Zhu, Hai-Chao Xu. Electrochemical C–H phosphorylation of arenes in continuous flow suitable for late-stage functionalization. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-26960-y
  79. Qijun Pan, Yongan Liu, Wan Pang, Jingjing Wu, Xiaoyu Ma, Xiaojun Hu, Yong Guo, Qing-Yun Chen, Chao Liu. Copper-catalyzed three-component reaction of arylhydrazine hydrochloride, DABSO, and NFSI for the synthesis of arenesulfonyl fluorides. Organic & Biomolecular Chemistry 2021, 19 (41) , 8999-9003. https://doi.org/10.1039/D1OB01697K
  80. Xingliang Nie, Tianxiao Xu, Yuhao Hong, Honghai Zhang, Chenxi Mao, Saihu Liao. Introducing A New Class of Sulfonyl Fluoride Hubs via Radical Chloro‐Fluorosulfonylation of Alkynes. Angewandte Chemie International Edition 2021, 60 (40) , 22035-22042. https://doi.org/10.1002/anie.202109072
  81. Xingliang Nie, Tianxiao Xu, Yuhao Hong, Honghai Zhang, Chenxi Mao, Saihu Liao. Introducing A New Class of Sulfonyl Fluoride Hubs via Radical Chloro‐Fluorosulfonylation of Alkynes. Angewandte Chemie 2021, 133 (40) , 22206-22213. https://doi.org/10.1002/ange.202109072
  82. Nasser Amri, Thomas Wirth. Recent Advances in the Electrochemical Synthesis of Organosulfur Compounds. The Chemical Record 2021, 21 (9) , 2526-2537. https://doi.org/10.1002/tcr.202100064
  83. Na Chen, Hai‐Chao Xu. Electrochemically Driven Radical Reactions: From Direct Electrolysis to Molecular Catalysis. The Chemical Record 2021, 21 (9) , 2306-2319. https://doi.org/10.1002/tcr.202100048
  84. Tao Zhong, Zhida Chen, Jitao Yi, Gui Lu, Jiang Weng. Recent progress in the synthesis of sulfonyl fluorides for SuFEx click chemistry. Chinese Chemical Letters 2021, 32 (9) , 2736-2750. https://doi.org/10.1016/j.cclet.2021.03.035
  85. Aida Chelagha, Dan Louvel, Alexis Taponard, Rodolphe Berthelon, Anis Tlili. Synthetic Routes to Arylsulfonyl Fluorides. Catalysts 2021, 11 (7) , 830. https://doi.org/10.3390/catal11070830
  86. Ditto Abraham Thadathil, Anitha Varghese, Kokkuvayil Vasu Radhakrishnan. Review—Electrochemical Strategies for Selective Fluorination of Organic Compounds. Journal of The Electrochemical Society 2021, 168 (7) , 075503. https://doi.org/10.1149/1945-7111/ac148f
  87. Ali Alipour Najmi, M. Faizan Bhat, Rainer Bischoff, Gerrit J. Poelarends, Hjalmar P. Permentier. TEMPO‐Mediated Electrochemical N‐demethylation of Opiate Alkaloids. ChemElectroChem 2021, 8 (13) , 2590-2596. https://doi.org/10.1002/celc.202100784
  88. Dan Louvel, Aida Chelagha, Jean Rouillon, Pierre‐Adrien Payard, Lhoussain Khrouz, Cyrille Monnereau, Anis Tlili. Metal‐Free Visible‐Light Synthesis of Arylsulfonyl Fluorides: Scope and Mechanism. Chemistry – A European Journal 2021, 27 (34) , 8704-8708. https://doi.org/10.1002/chem.202101056
  89. Chong Huang, Zhao‐Yu Li, Jinshuai Song, Hai‐Chao Xu. Catalyst‐ and Reagent‐Free Formal Aza‐Wacker Cyclizations Enabled by Continuous‐Flow Electrochemistry. Angewandte Chemie 2021, 57 https://doi.org/10.1002/ange.202101835
  90. Chong Huang, Zhao‐Yu Li, Jinshuai Song, Hai‐Chao Xu. Catalyst‐ and Reagent‐Free Formal Aza‐Wacker Cyclizations Enabled by Continuous‐Flow Electrochemistry. Angewandte Chemie International Edition 2021, 57 https://doi.org/10.1002/anie.202101835
  91. Marcos R. Scheide, Celso R. Nicoleti, Guilherme M. Martins, Antonio L. Braga. Electrohalogenation of organic compounds. Organic & Biomolecular Chemistry 2021, 19 (12) , 2578-2602. https://doi.org/10.1039/D0OB02459G
  92. Hong-Ru Chen, Zhen-Yu Hu, Hua-Li Qin, Haolin Tang. A novel three-component reaction for constructing indolizine-containing aliphatic sulfonyl fluorides. Organic Chemistry Frontiers 2021, 8 (6) , 1185-1189. https://doi.org/10.1039/D0QO01430C
  93. Bin Guo, Hai-Chao Xu. Electrocatalytic C(sp 3 )–H/C(sp)–H cross-coupling in continuous flow through TEMPO/copper relay catalysis. Beilstein Journal of Organic Chemistry 2021, 17 , 2650-2656. https://doi.org/10.3762/bjoc.17.178
  94. Maksim Ošeka, Gabriele Laudadio, Nicolaas P. van Leest, Marco Dyga, Aloisio de A. Bartolomeu, Lukas J. Gooßen, Bas de Bruin, Kleber T. de Oliveira, Timothy Noël. Electrochemical Aziridination of Internal Alkenes with Primary Amines. Chem 2021, 7 (1) , 255-266. https://doi.org/10.1016/j.chempr.2020.12.002
  95. Lin Wang, Josep Cornella. A Unified Strategy for Arylsulfur(VI) Fluorides from Aryl Halides: Access to Ar‐SOF 3 Compounds. Angewandte Chemie 2020, 132 (52) , 23716-23721. https://doi.org/10.1002/ange.202009699
  96. Lin Wang, Josep Cornella. A Unified Strategy for Arylsulfur(VI) Fluorides from Aryl Halides: Access to Ar‐SOF 3 Compounds. Angewandte Chemie International Edition 2020, 59 (52) , 23510-23515. https://doi.org/10.1002/anie.202009699
  97. Derek Pletcher. Electrolysis cells for laboratory organic synthesis. Current Opinion in Electrochemistry 2020, 24 , 1-5. https://doi.org/10.1016/j.coelec.2020.04.001
  98. Thomas P. Nicholls, Christiane Schotten, Charlotte E. Willans. Electrochemistry in continuous systems. Current Opinion in Green and Sustainable Chemistry 2020, 26 , 100355. https://doi.org/10.1016/j.cogsc.2020.100355
  99. Shuai Liu, Yangen Huang, Xiu-Hua Xu, Feng-Ling Qing. Fluorosulfonylation of arenediazonium tetrafluoroborates with Na2S2O5 and N-fluorobenzenesulfonimide. Journal of Fluorine Chemistry 2020, 240 , 109653. https://doi.org/10.1016/j.jfluchem.2020.109653
  100. Tianpeng Cao, Tianxiao Xu, Ruting Xu, Xianli Shu, Saihu Liao. Decarboxylative thiolation of redox-active esters to free thiols and further diversification. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-19195-w
Load all citations
  • Abstract

    Figure 1

    Figure 1. Development of an electrochemical synthesis of sulfonyl fluorides. (A) Advantages and applications of sulfonyl fluorides. (B) Established synthetic routes to prepare sulfonyl fluorides. (C) Reaction conditions (Entry 1): 2-mercapto-4,6-dimethylpyrimidine (2 mmol), KF (5 equiv), pyridine (1 equiv), CH3CN/1 M HCl (20 mL, 1:1 v/v), C anode/Fe cathode, 20 mA (4.1 mA/cm2), 12 h.

    Figure 2

    Figure 2. Synthesis of sulfonyl fluorides. Substrate scope for the electrochemical sulfonyl fluoride synthesis. Reported yields are isolated and reproduced at least two times. Yields between [brackets] are those referring to 19F NMR yields calculated with PhCF3 as internal standard. Reaction conditions (Entry 1): thiol (2 mmol) or disulfide (1 mmol), KF (5 equiv), pyridine (1 equiv), CH3CN/1 M HCl (20 mL, 1:1 v/v), C anode/Fe cathode, 20 mA (4.1 mA/cm2). *3.2 V applied potential. **4.0 V applied potential. #Isolated as a phenyl sulfonate derivative through reaction with phenol. Scale-up reaction conditions: thiophenol (10 mmol), KF (5 equiv), pyridine (1 equiv), CH3CN/1 M HCl (40 mL, 1:1 v/v), C anode/Fe cathode, 3.2 V applied potential.

    Figure 3

    Figure 3. Mechanistic investigation of the electrochemical sulfonyl fluoride synthesis. (A) 19F NMR Kinetic batch experiment (see Supporting Information). (B) Kinetic experiment carried out in an electrochemical microreactor (gas chromatography flame ionization detector, see Supporting Information). (C) Toroidal vortices in segmented flow result in enhanced mass transport to and from the electrodes. (D) Fluorination step experiments and radical trapping experiments. Gas chromatography yield (biphenyl as internal standard). (E) Proposed mechanism.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 24 other publications.

    1. 1
      Dong, J.; Krasnova, L.; Finn, M. G.; Sharpless, K. B. Sulfur(VI) Fluoride Exchange (SuFEx): Another Good Reaction for Click Chemistry. Angew. Chem., Int. Ed. 2014, 53, 94309448,  DOI: 10.1002/anie.201309399
    2. 2
      (a) Narayanan, A.; Jones, L. H. Sulfonyl fluorides as privileged warheads in chemical biology. Chem. Sci. 2015, 6, 26502659,  DOI: 10.1039/C5SC00408J .
      (b) Shannon, D. A.; Gu, C.; McLaughlin, C. J.; Kaiser, M.; van der Hoorn, R. A. L.; Weerapana, E. Sulfonyl Fluoride Analogues as Activity-Based Probes for Serine Proteases. ChemBioChem 2012, 13, 23272330,  DOI: 10.1002/cbic.201200531
    3. 3
      Nielsen, M. K.; Ugaz, C. R.; Li, W.; Doyle, A. G. PyFluor: A Low-Cost, Stable, and Selective Deoxyfluorination Reagent. J. Am. Chem. Soc. 2015, 137, 95719574,  DOI: 10.1021/jacs.5b06307
    4. 4
      (a) Matesic, L.; Wyatt, N. A.; Fraser, B. H.; Roberts, M. P.; Pham, T. Q.; Greguric, I. Ascertaining the suitability of aryl sulfonyl fluorides for [18F]radiochemistry applications: A systematic investigation using microfluidics. J. Org. Chem. 2013, 78, 1126211270,  DOI: 10.1021/jo401759z .
      (b) Inkster, J. A. H.; Liu, K.; Ait-Mohand, S.; Schaffer, P.; Guérin, B.; Ruth, T. J.; Storr, T. Sulfonyl Fluoride-Based Prosthetic Compounds as Potential 18F Labelling Agents. Chem. - Eur. J. 2012, 18, 1107911087,  DOI: 10.1002/chem.201103450
    5. 5
      Chinthakindi, P. K.; Arvidsson, P. I. Sulfonyl Fluorides (SFs): More Than Click Reagents?. Eur. J. Org. Chem. 2018, 36483666,  DOI: 10.1002/ejoc.201800464
    6. 6
      (a) Xiao, X.; Zhou, F.; Jiang, J.; Chen, H.; Wang, L.; Chen, D.; Xu, Q.; Lu, J. Highly efficient polymerization via sulfur(VI)-fluoride exchange (SuFEx): novel polysulfates bearing a pyrazoline–naphthylamide conjugated moiety and their electrical memory performance. Polym. Chem. 2018, 9, 10401044,  DOI: 10.1039/C7PY02042B .
      (b) Yang, C.; Flynn, J. P.; Niu, J. Facile Synthesis of Sequence-Regulated Synthetic Polymers Using Orthogonal SuFEx and CuAAC Click Reactions. Angew. Chem., Int. Ed. 2018, 57, 1619416199,  DOI: 10.1002/anie.201811051 .
      (c) Wang, H.; Zhou, F.; Ren, G.; Zheng, Q.; Chen, H.; Gao, B.; Klivansky, L.; Liu, Y.; Wu, B.; Xu, Q.; Lu, J.; Sharpless, K. B.; Wu, P. SuFEx-Based Polysulfonate Formation from Ethenesulfonyl Fluoride–Amine Adducts. Angew. Chem., Int. Ed. 2017, 56, 1120311208,  DOI: 10.1002/anie.201701160
    7. 7
      Abdul Fattah, T.; Saeed, A.; Albericio, F. Recent advances towards sulfur (VI) fluoride exchange (SuFEx) click chemistry. J. Fluorine Chem. 2018, 213, 87112,  DOI: 10.1016/j.jfluchem.2018.07.008
    8. 8
      (a) Talko, A.; Barbasiewicz, M. Nucleophilic Fluorination with Aqueous Bifluoride Solution: Effect of the Phase-Transfer Catalyst. ACS Sustainable Chem. Eng. 2018, 6, 66936701,  DOI: 10.1021/acssuschemeng.8b00489 .
      (b) Tang, L.; Yang, Y.; Wen, L.; Yang, X.; Wang, Z. Catalyst-free radical fluorination of sulfonyl hydrazides in water. Green Chem. 2016, 18, 12241228,  DOI: 10.1039/C5GC02755A .
      (c) Bianchi, T. A.; Cate, L. A. Phase Transfer Catalysis. Preparation of Aliphatic and Aromatic Sulfonyl Fluorides. J. Org. Chem. 1977, 42, 20312032,  DOI: 10.1021/jo00431a054 .
      (d) Davies, W.; Dick, J. H. CCLXXXVI.—Aromatic sulphonyl fluorides. A convenient method of preparation. J. Chem. Soc. 1931, 0, 21042109,  DOI: 10.1039/JR9310002104
    9. 9
      Schmitt, A.-M. D.; Schmitt, D. C., Chapter 13. Synthesis of Sulfonamides. In RSC Drug Discovery Series , 2016; Vol. 2016, pp 123138.
    10. 10
      Brouwer, A. J.; Ceylan, T.; Linden, T. v. d.; Liskamp, R. M. J. Synthesis of β-aminoethanesulfonyl fluorides or 2-substituted taurine sulfonyl fluorides as potential protease inhibitors. Tetrahedron Lett. 2009, 50, 33913393,  DOI: 10.1016/j.tetlet.2009.02.130
    11. 11
      Tribby, A. L.; Rodríguez, I.; Shariffudin, S.; Ball, N. D. Pd-Catalyzed Conversion of Aryl Iodides to Sulfonyl Fluorides Using SO2 Surrogate DABSO and Selectfluor. J. Org. Chem. 2017, 82, 22942299,  DOI: 10.1021/acs.joc.7b00051
    12. 12
      Davies, A. T.; Curto, J. M.; Bagley, S. W.; Willis, M. C. One-pot palladium-catalyzed synthesis of sulfonyl fluorides from aryl bromides. Chem. Sci. 2017, 8, 12331237,  DOI: 10.1039/C6SC03924C
    13. 13
      (a) Kirihara, M.; Naito, S.; Nishimura, Y.; Ishizuka, Y.; Iwai, T.; Takeuchi, H.; Ogata, T.; Hanai, H.; Kinoshita, Y.; Kishida, M.; Yamazaki, K.; Noguchi, T.; Yamashoji, S. Oxidation of disulfides with electrophilic halogenating reagents: concise methods for preparation of thiosulfonates and sulfonyl halides. Tetrahedron 2014, 70, 24642471,  DOI: 10.1016/j.tet.2014.02.013 .
      (b) Kirihara, M.; Naito, S.; Ishizuka, Y.; Hanai, H.; Noguchi, T. Oxidation of disulfides with Selectfluor: concise syntheses of thiosulfonates and sulfonyl fluorides. Tetrahedron Lett. 2011, 52, 30863089,  DOI: 10.1016/j.tetlet.2011.03.132
    14. 14

      For other S-F bond forming transformations leading to SFx species, see:

      (a) Pitts, C. R.; Bornemann, D.; Liebing, P.; Santschi, N.; Togni, A. Making the SF5 Group More Accessible: A Gas-Reagent-Free Approach to Aryl Tetrafluoro-λ 6-sulfanyl Chlorides. Angew. Chem., Int. Ed. 2019, 58, 19501954,  DOI: 10.1002/anie.201812356 .
      (b) Umemoto, T.; Garrick, L. M.; Saito, N. Discovery of practical production processes for arylsulfur pentafluorides and their higher homologues, bis- and tris(sulfur pentafluorides): Beginning of a new era of “super-trifluoromethyl” arene chemistry and its industry. Beilstein J. Org. Chem. 2012, 8, 461471,  DOI: 10.3762/bjoc.8.53 .
      (c) Umemoto, T.; Singh, R. P.; Xu, Y.; Saito, N. Discovery of 4-tert-butyl-2,6-dimethylphenylsulfur trifluoride as a deoxofluorinating agent with high thermal stability as well as unusual resistance to aqueous hydrolysis, and its diverse fluorination capabilities including deoxofluoro-arylsulfinylation with high stereoselectivity. J. Am. Chem. Soc. 2010, 132, 1819918205,  DOI: 10.1021/ja106343h
    15. 15
      Laudadio, G.; Barmpoutsis, E.; Schotten, C.; Struik, L.; Govaerts, S.; Browne, D. L.; Noël, T. Sulfonamide Synthesis through Electrochemical Oxidative Coupling of Amines and Thiols. J. Am. Chem. Soc. 2019, 141, 56645668,  DOI: 10.1021/jacs.9b02266
    16. 16
      (a) Tang, S.; Liu, Y.; Lei, A. Electrochemical Oxidative Cross-coupling with Hydrogen Evolution: A Green and Sustainable Way for Bond Formation. Chem. 2018, 4, 2745,  DOI: 10.1016/j.chempr.2017.10.001 .
      (b) Wiebe, A.; Gieshoff, T.; Möhle, S.; Rodrigo, E.; Zirbes, M.; Waldvogel, S. R. Electrifying Organic Synthesis. Angew. Chem., Int. Ed. 2018, 57, 55945619,  DOI: 10.1002/anie.201711060 .
      (c) Yan, M.; Kawamata, Y.; Baran, P. S. Synthetic Organic Electrochemical Methods Since 2000: On the Verge of a Renaissance. Chem. Rev. 2017, 117, 1323013319,  DOI: 10.1021/acs.chemrev.7b00397
    17. 17
      Pupo, G.; Vicini, A. C.; Ascough, D. M. H.; Ibba, F.; Christensen, K. E.; Thompson, A. L.; Brown, J. M.; Paton, R. S.; Gouverneur, V. Hydrogen Bonding Phase-Transfer Catalysis with Potassium Fluoride: Enantioselective Synthesis of β-Fluoroamines. J. Am. Chem. Soc. 2019, 141, 28782883,  DOI: 10.1021/jacs.8b12568
    18. 18
      Francke, R.; Little, R. D. Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem. Soc. Rev. 2014, 43, 2492,  DOI: 10.1039/c3cs60464k
    19. 19
      Laudadio, G.; Straathof, N. J. W.; Lanting, M. D.; Knoops, B.; Hessel, V.; Noël, T. An environmentally benign and selective electrochemical oxidation of sulfides and thiols in a continuous-flow microreactor. Green Chem. 2017, 19, 40614066,  DOI: 10.1039/C7GC01973D
    20. 20
      Laudadio, G.; De Smet, Wouter; Struik, L.; Cao, Y.; Noël, T. Design and application of a modular and scalable electrochemical flow microreactor. J. Flow Chem. 2018, 8, 157165,  DOI: 10.1007/s41981-018-0024-3
    21. 21
      (a) Pletcher, D.; Green, R. A.; Brown, R. C. D. Flow Electrolysis Cells for the Synthetic Organic Chemistry Laboratory. Chem. Rev. 2018, 118, 45734591,  DOI: 10.1021/acs.chemrev.7b00360 .
      (b) Atobe, M.; Tateno, H.; Matsumura, Y. Applications of Flow Microreactors in Electrosynthetic Processes. Chem. Rev. 2018, 118, 45414572,  DOI: 10.1021/acs.chemrev.7b00353 .
      (c) Mitsudo, K.; Kurimoto, Y.; Yoshioka, K.; Suga, S. Miniaturization and Combinatorial Approach in Organic Electrochemistry. Chem. Rev. 2018, 118, 59855999,  DOI: 10.1021/acs.chemrev.7b00532 .
      (d) Folgueiras-Amador, A. A.; Wirth, T. Perspectives in flow electrochemistry. J. Flow Chem. 2017, 7, 9495,  DOI: 10.1556/1846.2017.00020
    22. 22
      Lam, K.; Geiger, W. E. Anodic oxidation of disulfides: Detection and reactions of disulfide radical cations. J. Org. Chem. 2013, 78, 80208027,  DOI: 10.1021/jo401263z
    23. 23
      Huba, F.; Yeager, E. B.; Olah, G. A. The formation and role of carbocations in electrolytic fluorination using hydrogen fluoride electrolytes in a nafion membrane-divided Teflon cell. Electrochim. Acta 1979, 24, 489494,  DOI: 10.1016/0013-4686(79)85021-5
    24. 24
      Seel, F.; Budenz, R.; Flaccus, R. D.; Staab, R. Zur frage der existenz des phenylschwefelmonofluorids und seines chemischen verhaltens. J. Fluorine Chem. 1978, 12, 437438,  DOI: 10.1016/S0022-1139(00)82986-3
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.9b06126.

    • Data and materials availability: additional optimization, mechanistic data, experimental procedures and analytical data (1H, 19F and 13C NMR, high resolution mass spectrometry) for all new compounds (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect