ACS Publications. Most Trusted. Most Cited. Most Read
Competitive Nitrogen versus Carbon Tunneling
My Activity

Figure 1Loading Img
    Article

    Competitive Nitrogen versus Carbon Tunneling
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2019, 141, 36, 14340–14348
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.9b06869
    Published August 19, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Quantum mechanical tunneling (QMT) of heavy atoms like carbon or nitrogen has been considered very unlikely for the longest time, but recent evidence suggests that heavy-atom QMT does occur more frequently than typically assumed. Here we demonstrate that carbon vs nitrogen heavy-atom QMT can even be competitive leading to two different products originating from the same starting material. Amino-substituted benzazirine was generated in solid argon (3–18 K) and found to decay spontaneously in the dark, with a half-life of 210 min, to p-aminophenylnitrene and amino-substituted ketenimine. The reaction rate is independent of the cryogenic temperature, in contradiction to the rules inferred from classical transition state theory. Quantum chemical computations confirm the existence of two competitive carbon vs nitrogen QMT reaction pathways. This discovery emphasizes the quantum nature of atoms and molecules, thereby enabling a much higher level of control and a deeper understanding of the factors that govern chemical reactivity.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.9b06869.

    • Additional experimental results, IR assignments, and computational data (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 54 publications.

    1. Jeremy O. Richardson. Nonadiabatic Tunneling in Chemical Reactions. The Journal of Physical Chemistry Letters 2024, 15 (29) , 7387-7397. https://doi.org/10.1021/acs.jpclett.4c01098
    2. Artur Mardyukov, Federico J. Hernández, Lijuan Song, Rachel Crespo-Otero, Peter R. Schreiner. Experimentally Delineating the Catalytic Effect of a Single Water Molecule in the Photochemical Rearrangement of the Phenylperoxy Radical to the Oxepin-2(5H)-one-5-yl Radical. Journal of the American Chemical Society 2024, 146 (28) , 19070-19076. https://doi.org/10.1021/jacs.4c03461
    3. Juan García de la Concepción, José C. Corchado, Pedro Cintas, Reyes Babiano. Norcaradiene–Cycloheptatriene Equilibrium: A Heavy-Atom Quantum Tunneling Case. The Journal of Organic Chemistry 2024, 89 (13) , 9336-9343. https://doi.org/10.1021/acs.joc.4c00464
    4. Alexander Frenklach, Hila Amlani, Sebastian Kozuch. Quantum Tunneling Instability in Pericyclic Reactions: The Cheletropic, Coarctate, and Ene Cases. Organic Letters 2024, 26 (24) , 5157-5161. https://doi.org/10.1021/acs.orglett.4c01635
    5. Caroline R. Pharr, Brian J. Esselman, Robert J. McMahon. Photochemistry of 1-(2- and 3-Thienyl)diazoethanes: Spectroscopy and Tunneling Reaction of Triplet 1-(3-Thienyl)ethylidene. The Journal of Organic Chemistry 2023, 88 (23) , 16176-16185. https://doi.org/10.1021/acs.joc.3c01639
    6. Julien F. Rowen, Frederike Beyer, Tim Schleif, Wolfram Sander. Isomer-Specific Heavy-Atom Tunneling in the Ring Expansion of Fluorenylazirines. The Journal of Organic Chemistry 2023, 88 (13) , 7893-7900. https://doi.org/10.1021/acs.joc.3c00484
    7. Yangyu Zhou, Wei Fang, Lina Wang, Xiaoqing Zeng, Dong H. Zhang, Mingfei Zhou. Quantum Tunneling in Peroxide O–O Bond Breaking Reaction. Journal of the American Chemical Society 2023, 145 (16) , 8817-8821. https://doi.org/10.1021/jacs.3c02750
    8. Zhifeng Ma, Zeyin Yan, Xin Li, Lung Wa Chung. Quantum Tunneling in Reactions Modulated by External Electric Fields: Reactivity and Selectivity. The Journal of Physical Chemistry Letters 2023, 14 (5) , 1124-1132. https://doi.org/10.1021/acs.jpclett.2c03461
    9. Cláudio M. Nunes, José P. L. Roque, Srinivas Doddipatla, Samuel A. Wood, Robert J. McMahon, Rui Fausto. Simultaneous Tunneling Control in Conformer-Specific Reactions. Journal of the American Chemical Society 2022, 144 (45) , 20866-20874. https://doi.org/10.1021/jacs.2c09026
    10. Tim Schleif, Melania Prado Merini, Stefan Henkel, Wolfram Sander. Solvation Effects on Quantum Tunneling Reactions. Accounts of Chemical Research 2022, 55 (16) , 2180-2190. https://doi.org/10.1021/acs.accounts.2c00151
    11. Edyta M. Greer, Victor Siev, Ayelet Segal, Alexander Greer, Charles Doubleday. Computational Evidence for Tunneling and a Hidden Intermediate in the Biosynthesis of Tetrahydrocannabinol. Journal of the American Chemical Society 2022, 144 (17) , 7646-7656. https://doi.org/10.1021/jacs.1c11981
    12. Cláudio M. Nunes, Nelson A. M. Pereira, Rui Fausto. Photochromism of a Spiropyran in Low-Temperature Matrices: Unprecedented Bidirectional Switching between a Merocyanine and an Allene Intermediate. The Journal of Physical Chemistry A 2022, 126 (14) , 2222-2233. https://doi.org/10.1021/acs.jpca.2c01105
    13. Ashim Nandi, Jan M. L. Martin. Heavy-Atom Tunneling in the Covalent/Dative Bond Complexation of Cyclo[18]carbon–Piperidine. The Journal of Physical Chemistry B 2022, 126 (8) , 1799-1804. https://doi.org/10.1021/acs.jpcb.2c00218
    14. Eric R. Heller, Jeremy O. Richardson. Spin Crossover of Thiophosgene via Multidimensional Heavy-Atom Quantum Tunneling. Journal of the American Chemical Society 2021, 143 (49) , 20952-20961. https://doi.org/10.1021/jacs.1c10088
    15. Nelson A. M. Pereira, Cláudio M. Nunes, Igor Reva, Rui Fausto. Evidence of IR-Induced Chemistry in a Neat Solid: Tautomerization of Thiotropolone by Thermal, Electronic, and Vibrational Excitations. The Journal of Physical Chemistry A 2021, 125 (29) , 6394-6403. https://doi.org/10.1021/acs.jpca.1c04081
    16. Sujan K. Sarkar, Ephrath Solel, Sebastian Kozuch, Manabu Abe. Heavy-Atom Tunneling Processes during Denitrogenation of 2,3-Diazabicyclo[2.2.1]hept-2-ene and Ring Closure of Cyclopentane-1,3-diyl Diradical. Stereoselectivity in Tunneling and Matrix Effect. The Journal of Organic Chemistry 2020, 85 (14) , 8881-8892. https://doi.org/10.1021/acs.joc.0c00763
    17. Jie Liu, Zhuang Wu, Yang Yang, Weiyu Qian, Lina Wang, Xiaoqing Zeng. 3-Nitrene-2-formylthiophene and 3-Nitrene-2-formylfuran: Matrix Isolation, Conformation, and Rearrangement Reactions. The Journal of Physical Chemistry A 2020, 124 (19) , 3786-3794. https://doi.org/10.1021/acs.jpca.9b11638
    18. Tim Schleif, Joel Mieres-Perez, Stefan Henkel, Enrique Mendez-Vega, Hiroshi Inui, Robert J. McMahon, Wolfram Sander. Conformer-Specific Heavy-Atom Tunneling in the Rearrangement of Benzazirines to Ketenimines. The Journal of Organic Chemistry 2019, 84 (24) , 16013-16018. https://doi.org/10.1021/acs.joc.9b02482
    19. Jessica K. Arbitman, Cameron S. Michel, Claire Castro, William L. Karney. Calculations Predict That Heavy-Atom Tunneling Dominates Möbius Bond Shifting in [12]- and [16]Annulene. Organic Letters 2019, 21 (21) , 8587-8591. https://doi.org/10.1021/acs.orglett.9b03185
    20. Carsten Müller, Frederik Bader, Frenio A. Redeker, Lawrence Conrad, Helmut Beckers, Beate Paulus, Sebastian Riedel, Jean Christophe Tremblay. Experimental observation of quantum mechanical fluorine tunnelling. Nature Communications 2025, 16 (1) https://doi.org/10.1038/s41467-025-59008-6
    21. Rubal Sharma, Mitsuhiro Arisawa, Shinobu Takizawa, Mohamed S. H. Salem. Remodelling molecular frameworks via atom-level surgery: recent advances in skeletal editing of (hetero)cycles. Organic Chemistry Frontiers 2025, 12 (5) , 1633-1670. https://doi.org/10.1039/D4QO02157F
    22. Igor Reva. Comment on “Formation of silyl metal hydride, HMnSiH3 and silylidyne, H3ReSiH in the activation of silane by manganese and rhenium atoms”. Chemical Physics Letters 2025, 860 , 141777. https://doi.org/10.1016/j.cplett.2024.141777
    23. José P. L. Roque, Cláudio M. Nunes, Fumito Saito, Bastian Bernhardt, Rui Fausto, Peter R. Schreiner. Competitive Heavy‐Atom Tunneling Reactions Controlled Through Electronic Effects. ChemistryEurope 2025, 3 (1) https://doi.org/10.1002/ceur.202400060
    24. Fabrizio Esposito, Pablo Gamallo, Miguel González, Carlo Petrongolo. Exploring quantum tunneling in heavy atom reactions using a rigorous theoretical approach to the dynamics: formation of NO + O from the N + O 2 atmospheric reaction. Physical Chemistry Chemical Physics 2025, 3 https://doi.org/10.1039/D5CP00539F
    25. Juan Julian Santoyo‐Flores, Sebastian Kozuch. Heavy Atom Quantum Tunnelling in N‐Heterocyclic Pentalenes. European Journal of Organic Chemistry 2024, 27 (43) https://doi.org/10.1002/ejoc.202400487
    26. José P. L. Roque, Cláudio M. Nunes, Peter R. Schreiner, Rui Fausto. Hydrogen Tunneling Exhibiting Unexpectedly Small Primary Kinetic Isotope Effects. Chemistry – A European Journal 2024, 30 (39) https://doi.org/10.1002/chem.202401323
    27. Xue Li, Jia Xu, Zhi-Gang Xu. Precision single-atom editing: new frontiers in nitrogen insertion and substitution for the generation of N-heterocycles. Organic Chemistry Frontiers 2024, 11 (14) , 4041-4053. https://doi.org/10.1039/D4QO00812J
    28. Hanna Rostkowska, Leszek Lapinski, Maciej J. Nowak. Hydrogen-atom tunneling in small thioamides: N-methylthiourea, thiobenzamide and 2-cyanothioacetamide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2024, 313 , 124139. https://doi.org/10.1016/j.saa.2024.124139
    29. Ashim Nandi, Germán Molpeceres, Prashant K. Gupta, Dan T. Major, Johannes Kästner, Jan M.L. Martin, Sebastian Kozuch. Quantum Tunneling in Computational Catalysis and Kinetics: Is it Really Important?. 2024, 713-734. https://doi.org/10.1016/B978-0-12-821978-2.00020-9
    30. Melania Prado Merini, Tim Schleif, Wolfram Sander. Heavy‐Atom Tunneling in Bicyclo[4.1.0]hepta‐2,4,6‐trienes. Angewandte Chemie 2023, 135 (44) https://doi.org/10.1002/ange.202309717
    31. Melania Prado Merini, Tim Schleif, Wolfram Sander. Heavy‐Atom Tunneling in Bicyclo[4.1.0]hepta‐2,4,6‐trienes. Angewandte Chemie International Edition 2023, 62 (44) https://doi.org/10.1002/anie.202309717
    32. Itzhak Sedgi, Sebastian Kozuch. A Playground for Heavy Atom Tunnelling: Neutral Substitutional Defect Rearrangement from Diamondoids to Diamonds. Chemistry – A European Journal 2023, 29 (36) https://doi.org/10.1002/chem.202300673
    33. Bastian Bernhardt, Markus Schauermann, Ephrath Solel, André K. Eckhardt, Peter R. Schreiner. Equilibrating parent aminomercaptocarbene and CO 2 with 2-amino-2-thioxoacetic acid via heavy-atom quantum tunneling. Chemical Science 2022, 14 (1) , 130-135. https://doi.org/10.1039/D2SC05388H
    34. Cláudio M. Nunes, Srinivas Doddipatla, Gonçalo F. Loureiro, José P. L. Roque, Nelson A. M. Pereira, Teresa M. V. D. Pinho e Melo, Rui Fausto. Differential Tunneling‐Driven and Vibrationally‐Induced Reactivity in Isomeric Benzazirines. Chemistry – A European Journal 2022, 28 (67) https://doi.org/10.1002/chem.202202306
    35. Tim Schleif. Transformations of Strained Three‐Membered Rings a Common, Yet Overlooked, Motif in Heavy‐Atom Tunneling Reactions. Chemistry – A European Journal 2022, 28 (56) https://doi.org/10.1002/chem.202201775
    36. José P. L. Roque, Cláudio M. Nunes, Rui Fausto. Matrix Isolation in Heterocyclic Chemistry. 2022, 401-451. https://doi.org/10.1002/9783527832002.ch12
    37. Rui Fausto, Gulce O. Ildiz, Cláudio M. Nunes. IR-induced and tunneling reactions in cryogenic matrices: the (incomplete) story of a successful endeavor. Chemical Society Reviews 2022, 51 (7) , 2853-2872. https://doi.org/10.1039/D1CS01026C
    38. Nilangshu Mandal, Ankita Das, Chandralekha Hajra, Ayan Datta. Stereoelectronic and dynamical effects dictate nitrogen inversion during valence isomerism in benzene imine. Chemical Science 2022, 13 (3) , 704-712. https://doi.org/10.1039/D1SC04855D
    39. Cláudio M. Nunes, Nelson A. M. Pereira, Luís P. Viegas, Teresa M. V. D. Pinho e Melo, Rui Fausto. Inducing molecular reactions by selective vibrational excitation of a remote antenna with near-infrared light. Chemical Communications 2021, 57 (75) , 9570-9573. https://doi.org/10.1039/D1CC03574F
    40. Vladimir I. Feldman, Sergey V. Ryazantsev, Svetlana V. Kameneva. Matrix isolation in laboratory astrochemistry: state-of-the-art, implications and perspective. Russian Chemical Reviews 2021, 90 (9) , 1142-1165. https://doi.org/10.1070/RCR4995
    41. Stefan Henkel, Melania Prado Merini, Enrique Mendez-Vega, Wolfram Sander. Lewis acid catalyzed heavy atom tunneling – the case of 1 H -bicyclo[3.1.0]-hexa-3,5-dien-2-one. Chemical Science 2021, 12 (33) , 11013-11019. https://doi.org/10.1039/D1SC02853G
    42. Sebastian Kozuch, Tim Schleif, Amir Karton. Quantum mechanical tunnelling: the missing term to achieve sub-kJ mol −1 barrier heights. Physical Chemistry Chemical Physics 2021, 23 (18) , 10888-10898. https://doi.org/10.1039/D1CP01275D
    43. Luís P. Viegas, Cláudio M. Nunes, Rui Fausto. Spin-forbidden heavy-atom tunneling in the ring-closure of triplet cyclopentane-1,3-diyl. Physical Chemistry Chemical Physics 2021, 23 (10) , 5797-5803. https://doi.org/10.1039/D1CP00076D
    44. Agnideep Das, Cheriehan Hessin, Yufeng Ren, Marine Desage-El Murr. Biological concepts for catalysis and reactivity: empowering bioinspiration. Chemical Society Reviews 2020, 49 (23) , 8840-8867. https://doi.org/10.1039/D0CS00914H
    45. Tim Schleif, Melania Prado Merini, Wolfram Sander. The Mystery of the Benzene‐Oxide/Oxepin Equilibrium—Heavy‐Atom Tunneling Reversed by Solvent Interactions. Angewandte Chemie 2020, 132 (46) , 20498-20502. https://doi.org/10.1002/ange.202010452
    46. Tim Schleif, Melania Prado Merini, Wolfram Sander. The Mystery of the Benzene‐Oxide/Oxepin Equilibrium—Heavy‐Atom Tunneling Reversed by Solvent Interactions. Angewandte Chemie International Edition 2020, 59 (46) , 20318-20322. https://doi.org/10.1002/anie.202010452
    47. Subramee Sarkar, Swaroop Chandra, B. Suryaprasad, N. Ramanathan, K. Sundararajan, A. Suresh. Conformational topography of tris(2-methylbutyl) phosphate and the influence of methyl branching at the non-hyperconjugative carbon on the conformational landscape: insights from matrix isolation infrared spectroscopy and DFT computations. Physical Chemistry Chemical Physics 2020, 22 (42) , 24372-24392. https://doi.org/10.1039/D0CP03403G
    48. Peter R. Schreiner. Quantum Mechanical Tunneling Is Essential to Understanding Chemical Reactivity. Trends in Chemistry 2020, 2 (11) , 980-989. https://doi.org/10.1016/j.trechm.2020.08.006
    49. Cláudio M. Nunes, Luís P. Viegas, Samuel A. Wood, José P. L. Roque, Robert J. McMahon, Rui Fausto. Heavy‐Atom Tunneling Through Crossing Potential Energy Surfaces: Cyclization of a Triplet 2‐Formylarylnitrene to a Singlet 2,1‐Benzisoxazole. Angewandte Chemie 2020, 132 (40) , 17775-17780. https://doi.org/10.1002/ange.202006640
    50. Cláudio M. Nunes, Luís P. Viegas, Samuel A. Wood, José P. L. Roque, Robert J. McMahon, Rui Fausto. Heavy‐Atom Tunneling Through Crossing Potential Energy Surfaces: Cyclization of a Triplet 2‐Formylarylnitrene to a Singlet 2,1‐Benzisoxazole. Angewandte Chemie International Edition 2020, 59 (40) , 17622-17627. https://doi.org/10.1002/anie.202006640
    51. Ashim Nandi, Sebastian Kozuch, Johannes Kästner. Comment on “Computational evidence for sulfur atom tunneling in the ring flipping reaction of S4N4”. Chemical Physics Letters 2020, 754 , 137678. https://doi.org/10.1016/j.cplett.2020.137678
    52. Tim Schleif, Jörg Tatchen, Julien F. Rowen, Frederike Beyer, Elsa Sanchez‐Garcia, Wolfram Sander. Heavy‐Atom Tunneling in Semibullvalenes: How Driving Force, Substituents, and Environment Influence the Tunneling Rates. Chemistry – A European Journal 2020, 26 (46) , 10452-10458. https://doi.org/10.1002/chem.202001202
    53. Claire Castro, William L. Karney. Heavy‐Atom Tunneling in Organic Reactions. Angewandte Chemie 2020, 132 (22) , 8431-8442. https://doi.org/10.1002/ange.201914943
    54. Claire Castro, William L. Karney. Heavy‐Atom Tunneling in Organic Reactions. Angewandte Chemie International Edition 2020, 59 (22) , 8355-8366. https://doi.org/10.1002/anie.201914943

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2019, 141, 36, 14340–14348
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.9b06869
    Published August 19, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    5113

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.