A Single Point Mutation Converts GH84 O-GlcNAc Hydrolases into Phosphorylases: Experimental and Theoretical EvidenceClick to copy article linkArticle link copied!
- David Teze*David Teze*[email protected]Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 224, DK-2800 Kongens Lyngby, DenmarkUFIP, CNRS, Université de Nantes, 44300 Nantes, FranceMore by David Teze
- Joan CoinesJoan CoinesDepartament de Quı́mica Inorgànica i Orgànica (Secció de Quı́mica Orgànica) and Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, SpainMore by Joan Coines
- Lluís RaichLluís RaichDepartament de Quı́mica Inorgànica i Orgànica (Secció de Quı́mica Orgànica) and Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, SpainMore by Lluís Raich
- Valentina Kalichuk
- Claude Solleux
- Charles Tellier
- Corinne André-MiralCorinne André-MiralUFIP, CNRS, Université de Nantes, 44300 Nantes, FranceMore by Corinne André-Miral
- Birte Svensson*Birte Svensson*[email protected]Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 224, DK-2800 Kongens Lyngby, DenmarkMore by Birte Svensson
- Carme Rovira*Carme Rovira*[email protected]Departament de Quı́mica Inorgànica i Orgànica (Secció de Quı́mica Orgànica) and Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, SpainInstitució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, SpainMore by Carme Rovira
Abstract

Glycoside hydrolases and phosphorylases are two major classes of enzymes responsible for the cleavage of glycosidic bonds. Here we show that two GH84 O-GlcNAcase enzymes can be converted to efficient phosphorylases by a single point mutation. Noteworthy, the mutated enzymes are over 10-fold more active than naturally occurring glucosaminide phosphorylases. We rationalize this novel transformation using molecular dynamics and QM/MM metadynamics methods, showing that the mutation changes the electrostatic potential at the active site and reduces the energy barrier for phosphorolysis by 10 kcal·mol–1. In addition, the simulations unambiguously reveal the nature of the intermediate as a glucose oxazolinium ion, clarifying the debate on the nature of such a reaction intermediate in glycoside hydrolases operating via substrate-assisted catalysis.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 30 publications.
- Steven S. Cheng, Alison C. Mody, Christina M. Woo. Opportunities for Therapeutic Modulation of O-GlcNAc. Chemical Reviews 2024, 124
(22)
, 12918-13019. https://doi.org/10.1021/acs.chemrev.4c00417
- Jorick Franceus, José Pablo Rivas-Fernández, Jolien Lormans, Carme Rovira, Tom Desmet. Evolution of Phosphorylase Activity in an Ancestral Glycosyltransferase. ACS Catalysis 2024, 14
(5)
, 3103-3114. https://doi.org/10.1021/acscatal.3c05819
- Martín Calvelo, Alexandra Males, Matthew G. Alteen, Lianne I. Willems, David J. Vocadlo, Gideon J. Davies, Carme Rovira. Human O-GlcNAcase Uses a Preactivated Boat-skew Substrate Conformation for Catalysis. Evidence from X-ray Crystallography and QM/MM Metadynamics. ACS Catalysis 2023, 13
(20)
, 13672-13678. https://doi.org/10.1021/acscatal.3c02378
- Agnes B. Petersen, Seyed Hossein Mirbarati, Birte Svensson, Jens Ø. Duus, David Teze. The Engineered Hexosaminidase TtOGA-D120N Is an Efficient O-/N-/S-Glycoligase That Also Catalyzes Formation and Release of Oxazoline Donors for Cascade Syntheses with Glycosynthases or Transglycosylases. Biochemistry 2023, 62
(16)
, 2358-2362. https://doi.org/10.1021/acs.biochem.3c00236
- Anisha Vyas, Bernd Nidetzky. Energetics of the Glycosyl Transfer Reactions of Sucrose Phosphorylase. Biochemistry 2023, 62
(12)
, 1953-1963. https://doi.org/10.1021/acs.biochem.3c00080
- Zhiyong Guo, Lei Wang, Deming Rao, Weiqiong Liu, Shiheng Chen, Mengwei Lu, Lingqia Su, Sheng Chen, Jing Wu. Mechanistic Insights into How the Protonation State of D234 Dictates the Reactivity in Streptomyces coelicolor β-N-Acetylhexosaminidase. The Journal of Physical Chemistry B 2023, 127
(21)
, 4820-4828. https://doi.org/10.1021/acs.jpcb.2c08718
- Mercedes Alfonso-Prieto, Irene Cuxart, Gabrielle Potocki-Véronèse, Isabelle André, Carme Rovira. Substrate-Assisted Mechanism for the Degradation of N-Glycans by a Gut Bacterial Mannoside Phosphorylase. ACS Catalysis 2023, 13
(7)
, 4283-4289. https://doi.org/10.1021/acscatal.3c00451
- Irene Cuxart, Joan Coines, Oriol Esquivias, Magda Faijes, Antoni Planas, Xevi Biarnés, Carme Rovira. Enzymatic Hydrolysis of Human Milk Oligosaccharides. The Molecular Mechanism of Bifidobacterium Bifidum Lacto-N-biosidase. ACS Catalysis 2022, 12
(8)
, 4737-4743. https://doi.org/10.1021/acscatal.2c00309
- Etienne Derat, Shina Caroline Lynn Kamerlin. Computational Advances in Protein Engineering and Enzyme Design. The Journal of Physical Chemistry B 2022, 126
(13)
, 2449-2451. https://doi.org/10.1021/acs.jpcb.2c01198
- Joan Coines, Irene Cuxart, David Teze, Carme Rovira. Computer Simulation to Rationalize “Rational” Engineering of Glycoside Hydrolases and Glycosyltransferases. The Journal of Physical Chemistry B 2022, 126
(4)
, 802-812. https://doi.org/10.1021/acs.jpcb.1c09536
- Jorick Franceus, Jolien Lormans, Lore Cools, Matthias D’hooghe, Tom Desmet. Evolution of Phosphorylases from N-Acetylglucosaminide Hydrolases in Family GH3. ACS Catalysis 2021, 11
(10)
, 6225-6233. https://doi.org/10.1021/acscatal.1c00761
- Junfeng Ma, Ci Wu, Gerald W. Hart. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chemical Reviews 2021, 121
(3)
, 1513-1581. https://doi.org/10.1021/acs.chemrev.0c00884
- David Teze, Joan Coines, Folmer Fredslund, Kshatresh D. Dubey, Gonzalo N. Bidart, Paul D. Adams, John E. Dueber, Birte Svensson, Carme Rovira, Ditte H. Welner. O-/N-/S-Specificity in Glycosyltransferase Catalysis: From Mechanistic Understanding to Engineering. ACS Catalysis 2021, 11
(3)
, 1810-1815. https://doi.org/10.1021/acscatal.0c04171
- Jing Xiong, Dingguo Xu. Mechanistic Insights into the Hydrolysis of O-GlcNAcylation Catalyzed by Human O-GlcNAcase. The Journal of Physical Chemistry B 2020, 124
(42)
, 9310-9322. https://doi.org/10.1021/acs.jpcb.0c05755
- Xin Xu, Wanqing Wei, Yiwen Zhou, Jia Liu, Cong Gao, Guipeng Hu, Xiaomin Li, Jian Wen, Liming Liu, Jing Wu, Wei Song. Customizing biocatalysts by reducing ΔG‡: Integrating ground-state destabilization and transition-state stabilization. Chem Catalysis 2025, 5
(4)
, 101323. https://doi.org/10.1016/j.checat.2025.101323
- Marlene Vuillemin, Jan Muschiol, Yan Zhang, Jesper Holck, Kristian Barrett, Jens Preben Morth, Anne S. Meyer, Birgitte Zeuner. Discovery of Lacto‐
N
‐Biosidases and a Novel
N
‐Acetyllactosaminidase Activity in the CAZy Family GH20: Functional Diversity and Structural Insights. ChemBioChem 2025, 26
(2)
https://doi.org/10.1002/cbic.202400710
- Yiwei Meng, Lukasz Peplowski, Tong Wu, Zhongyi Cheng, Laichuang Han, Jun Qiao, Zhongyi Cheng, Zhemin Zhou. Multi-method analysis revealed the mechanism of substrate selectivity in NHase: A gatekeeper residue at the activity center. International Journal of Biological Macromolecules 2024, 279 , 135426. https://doi.org/10.1016/j.ijbiomac.2024.135426
- Junying Bai, Chuan Zhang, Jie Cui, Mingcong Fan, Yan Li, Linhua Huang, Li Wang. Analysis of the effect of oat β-glucan on gut microbiota and clarification of their interaction relationship. Journal of Cereal Science 2024, 117 , 103921. https://doi.org/10.1016/j.jcs.2024.103921
- Jorick Franceus, Jolien Lormans, Tom Desmet. Building mutational bridges between carbohydrate-active enzymes. Current Opinion in Biotechnology 2022, 78 , 102804. https://doi.org/10.1016/j.copbio.2022.102804
- Roland Wohlgemuth. The Power of Biocatalysts for Highly Selective and Efficient Phosphorylation Reactions. Catalysts 2022, 12
(11)
, 1436. https://doi.org/10.3390/catal12111436
- Ao Li, Mounir Benkoulouche, Simon Ladeveze, Julien Durand, Gianluca Cioci, Elisabeth Laville, Gabrielle Potocki-Veronese. Discovery and Biotechnological Exploitation of Glycoside-Phosphorylases. International Journal of Molecular Sciences 2022, 23
(6)
, 3043. https://doi.org/10.3390/ijms23063043
- Zi-Fu Ni, Pei Xu, Min-Hua Zong, Wen-Yong Lou. Structure-guided protein engineering of ammonia lyase for efficient synthesis of sterically bulky unnatural amino acids. Bioresources and Bioprocessing 2021, 8
(1)
https://doi.org/10.1186/s40643-021-00456-5
- Marlene Vuillemin, Jesper Holck, Martin Matwiejuk, Eduardo S. Moreno Prieto, Jan Muschiol, Dora Molnar-Gabor, Anne S. Meyer, Birgitte Zeuner. Improvement of the Transglycosylation Efficiency of a Lacto-N-Biosidase from Bifidobacterium bifidum by Protein Engineering. Applied Sciences 2021, 11
(23)
, 11493. https://doi.org/10.3390/app112311493
- Zuzana Mészáros, Pavlína Nekvasilová, Pavla Bojarová, Vladimír Křen, Kristýna Slámová. Reprint of: Advanced glycosidases as ingenious biosynthetic instruments. Biotechnology Advances 2021, 51 , 107820. https://doi.org/10.1016/j.biotechadv.2021.107820
- David Teze, Jiao Zhao, Mathias Wiemann, Zubaida G. A. Kazi, Rossana Lupo, Birgitte Zeuner, Marlène Vuillemin, Mette E. Rønne, Göran Carlström, Jens Ø. Duus, Yves‐Henri Sanejouand, Michael J. O'Donohue, Eva Nordberg Karlsson, Régis Fauré, Henrik Stålbrand, Birte Svensson. Rational Enzyme Design without Structural Knowledge: A Sequence‐Based Approach for Efficient Generation of Transglycosylases. Chemistry – A European Journal 2021, 27
(40)
, 10323-10334. https://doi.org/10.1002/chem.202100110
- Zuzana Mészáros, Pavlína Nekvasilová, Pavla Bojarová, Vladimír Křen, Kristýna Slámová. Advanced glycosidases as ingenious biosynthetic instruments. Biotechnology Advances 2021, 49 , 107733. https://doi.org/10.1016/j.biotechadv.2021.107733
- Fernanda Mendoza, Laura Masgrau. Computational modeling of carbohydrate processing enzymes reactions. Current Opinion in Chemical Biology 2021, 61 , 203-213. https://doi.org/10.1016/j.cbpa.2021.02.012
- Ijaz Gul, Wang Le, Zhou Jie, Fang Ruiqin, Muhammad Bilal, Lixia Tang. Recent advances on engineered enzyme-conjugated biosensing modalities and devices for halogenated compounds. TrAC Trends in Analytical Chemistry 2021, 134 , 116145. https://doi.org/10.1016/j.trac.2020.116145
- Arielis Estevez, Dongsheng Zhu, Connor Blankenship, Jiaoyang Jiang. Molecular Interrogation to Crack the Case of O‐GlcNAc. Chemistry – A European Journal 2020, 26
(53)
, 12086-12100. https://doi.org/10.1002/chem.202000155
- Jan Muschiol, Marlene Vuillemin, Anne S. Meyer, Birgitte Zeuner. β-N-Acetylhexosaminidases for Carbohydrate Synthesis via Trans-Glycosylation. Catalysts 2020, 10
(4)
, 365. https://doi.org/10.3390/catal10040365
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.