ACS Publications. Most Trusted. Most Cited. Most Read
A Single Point Mutation Converts GH84 O-GlcNAc Hydrolases into Phosphorylases: Experimental and Theoretical Evidence
My Activity

Figure 1Loading Img
    Communication

    A Single Point Mutation Converts GH84 O-GlcNAc Hydrolases into Phosphorylases: Experimental and Theoretical Evidence
    Click to copy article linkArticle link copied!

    • David Teze*
      David Teze
      Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 224, DK-2800 Kongens Lyngby, Denmark
      UFIP, CNRS, Université de Nantes, 44300 Nantes, France
      *[email protected]
      More by David Teze
    • Joan Coines
      Joan Coines
      Departament de Quı́mica Inorgànica i Orgànica (Secció de Quı́mica Orgànica) and Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
      More by Joan Coines
    • Lluís Raich
      Lluís Raich
      Departament de Quı́mica Inorgànica i Orgànica (Secció de Quı́mica Orgànica) and Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
      More by Lluís Raich
    • Valentina Kalichuk
      Valentina Kalichuk
      UFIP, CNRS, Université de Nantes, 44300 Nantes, France
    • Claude Solleux
      Claude Solleux
      UFIP, CNRS, Université de Nantes, 44300 Nantes, France
    • Charles Tellier
      Charles Tellier
      UFIP, CNRS, Université de Nantes, 44300 Nantes, France
    • Corinne André-Miral
      Corinne André-Miral
      UFIP, CNRS, Université de Nantes, 44300 Nantes, France
    • Birte Svensson*
      Birte Svensson
      Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Bldg. 224, DK-2800 Kongens Lyngby, Denmark
      *[email protected]
    • Carme Rovira*
      Carme Rovira
      Departament de Quı́mica Inorgànica i Orgànica (Secció de Quı́mica Orgànica) and Institut de Quı́mica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
      Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
      *[email protected]
      More by Carme Rovira
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2020, 142, 5, 2120–2124
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.9b09655
    Published January 9, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Glycoside hydrolases and phosphorylases are two major classes of enzymes responsible for the cleavage of glycosidic bonds. Here we show that two GH84 O-GlcNAcase enzymes can be converted to efficient phosphorylases by a single point mutation. Noteworthy, the mutated enzymes are over 10-fold more active than naturally occurring glucosaminide phosphorylases. We rationalize this novel transformation using molecular dynamics and QM/MM metadynamics methods, showing that the mutation changes the electrostatic potential at the active site and reduces the energy barrier for phosphorolysis by 10 kcal·mol–1. In addition, the simulations unambiguously reveal the nature of the intermediate as a glucose oxazolinium ion, clarifying the debate on the nature of such a reaction intermediate in glycoside hydrolases operating via substrate-assisted catalysis.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.9b09655.

    • Experimental methods and computational details (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 30 publications.

    1. Steven S. Cheng, Alison C. Mody, Christina M. Woo. Opportunities for Therapeutic Modulation of O-GlcNAc. Chemical Reviews 2024, 124 (22) , 12918-13019. https://doi.org/10.1021/acs.chemrev.4c00417
    2. Jorick Franceus, José Pablo Rivas-Fernández, Jolien Lormans, Carme Rovira, Tom Desmet. Evolution of Phosphorylase Activity in an Ancestral Glycosyltransferase. ACS Catalysis 2024, 14 (5) , 3103-3114. https://doi.org/10.1021/acscatal.3c05819
    3. Martín Calvelo, Alexandra Males, Matthew G. Alteen, Lianne I. Willems, David J. Vocadlo, Gideon J. Davies, Carme Rovira. Human O-GlcNAcase Uses a Preactivated Boat-skew Substrate Conformation for Catalysis. Evidence from X-ray Crystallography and QM/MM Metadynamics. ACS Catalysis 2023, 13 (20) , 13672-13678. https://doi.org/10.1021/acscatal.3c02378
    4. Agnes B. Petersen, Seyed Hossein Mirbarati, Birte Svensson, Jens Ø. Duus, David Teze. The Engineered Hexosaminidase TtOGA-D120N Is an Efficient O-/N-/S-Glycoligase That Also Catalyzes Formation and Release of Oxazoline Donors for Cascade Syntheses with Glycosynthases or Transglycosylases. Biochemistry 2023, 62 (16) , 2358-2362. https://doi.org/10.1021/acs.biochem.3c00236
    5. Anisha Vyas, Bernd Nidetzky. Energetics of the Glycosyl Transfer Reactions of Sucrose Phosphorylase. Biochemistry 2023, 62 (12) , 1953-1963. https://doi.org/10.1021/acs.biochem.3c00080
    6. Zhiyong Guo, Lei Wang, Deming Rao, Weiqiong Liu, Shiheng Chen, Mengwei Lu, Lingqia Su, Sheng Chen, Jing Wu. Mechanistic Insights into How the Protonation State of D234 Dictates the Reactivity in Streptomyces coelicolor β-N-Acetylhexosaminidase. The Journal of Physical Chemistry B 2023, 127 (21) , 4820-4828. https://doi.org/10.1021/acs.jpcb.2c08718
    7. Mercedes Alfonso-Prieto, Irene Cuxart, Gabrielle Potocki-Véronèse, Isabelle André, Carme Rovira. Substrate-Assisted Mechanism for the Degradation of N-Glycans by a Gut Bacterial Mannoside Phosphorylase. ACS Catalysis 2023, 13 (7) , 4283-4289. https://doi.org/10.1021/acscatal.3c00451
    8. Irene Cuxart, Joan Coines, Oriol Esquivias, Magda Faijes, Antoni Planas, Xevi Biarnés, Carme Rovira. Enzymatic Hydrolysis of Human Milk Oligosaccharides. The Molecular Mechanism of Bifidobacterium Bifidum Lacto-N-biosidase. ACS Catalysis 2022, 12 (8) , 4737-4743. https://doi.org/10.1021/acscatal.2c00309
    9. Etienne Derat, Shina Caroline Lynn Kamerlin. Computational Advances in Protein Engineering and Enzyme Design. The Journal of Physical Chemistry B 2022, 126 (13) , 2449-2451. https://doi.org/10.1021/acs.jpcb.2c01198
    10. Joan Coines, Irene Cuxart, David Teze, Carme Rovira. Computer Simulation to Rationalize “Rational” Engineering of Glycoside Hydrolases and Glycosyltransferases. The Journal of Physical Chemistry B 2022, 126 (4) , 802-812. https://doi.org/10.1021/acs.jpcb.1c09536
    11. Jorick Franceus, Jolien Lormans, Lore Cools, Matthias D’hooghe, Tom Desmet. Evolution of Phosphorylases from N-Acetylglucosaminide Hydrolases in Family GH3. ACS Catalysis 2021, 11 (10) , 6225-6233. https://doi.org/10.1021/acscatal.1c00761
    12. Junfeng Ma, Ci Wu, Gerald W. Hart. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chemical Reviews 2021, 121 (3) , 1513-1581. https://doi.org/10.1021/acs.chemrev.0c00884
    13. David Teze, Joan Coines, Folmer Fredslund, Kshatresh D. Dubey, Gonzalo N. Bidart, Paul D. Adams, John E. Dueber, Birte Svensson, Carme Rovira, Ditte H. Welner. O-/N-/S-Specificity in Glycosyltransferase Catalysis: From Mechanistic Understanding to Engineering. ACS Catalysis 2021, 11 (3) , 1810-1815. https://doi.org/10.1021/acscatal.0c04171
    14. Jing Xiong, Dingguo Xu. Mechanistic Insights into the Hydrolysis of O-GlcNAcylation Catalyzed by Human O-GlcNAcase. The Journal of Physical Chemistry B 2020, 124 (42) , 9310-9322. https://doi.org/10.1021/acs.jpcb.0c05755
    15. Xin Xu, Wanqing Wei, Yiwen Zhou, Jia Liu, Cong Gao, Guipeng Hu, Xiaomin Li, Jian Wen, Liming Liu, Jing Wu, Wei Song. Customizing biocatalysts by reducing ΔG‡: Integrating ground-state destabilization and transition-state stabilization. Chem Catalysis 2025, 5 (4) , 101323. https://doi.org/10.1016/j.checat.2025.101323
    16. Marlene Vuillemin, Jan Muschiol, Yan Zhang, Jesper Holck, Kristian Barrett, Jens Preben Morth, Anne S. Meyer, Birgitte Zeuner. Discovery of Lacto‐ N ‐Biosidases and a Novel N ‐Acetyllactosaminidase Activity in the CAZy Family GH20: Functional Diversity and Structural Insights. ChemBioChem 2025, 26 (2) https://doi.org/10.1002/cbic.202400710
    17. Yiwei Meng, Lukasz Peplowski, Tong Wu, Zhongyi Cheng, Laichuang Han, Jun Qiao, Zhongyi Cheng, Zhemin Zhou. Multi-method analysis revealed the mechanism of substrate selectivity in NHase: A gatekeeper residue at the activity center. International Journal of Biological Macromolecules 2024, 279 , 135426. https://doi.org/10.1016/j.ijbiomac.2024.135426
    18. Junying Bai, Chuan Zhang, Jie Cui, Mingcong Fan, Yan Li, Linhua Huang, Li Wang. Analysis of the effect of oat β-glucan on gut microbiota and clarification of their interaction relationship. Journal of Cereal Science 2024, 117 , 103921. https://doi.org/10.1016/j.jcs.2024.103921
    19. Jorick Franceus, Jolien Lormans, Tom Desmet. Building mutational bridges between carbohydrate-active enzymes. Current Opinion in Biotechnology 2022, 78 , 102804. https://doi.org/10.1016/j.copbio.2022.102804
    20. Roland Wohlgemuth. The Power of Biocatalysts for Highly Selective and Efficient Phosphorylation Reactions. Catalysts 2022, 12 (11) , 1436. https://doi.org/10.3390/catal12111436
    21. Ao Li, Mounir Benkoulouche, Simon Ladeveze, Julien Durand, Gianluca Cioci, Elisabeth Laville, Gabrielle Potocki-Veronese. Discovery and Biotechnological Exploitation of Glycoside-Phosphorylases. International Journal of Molecular Sciences 2022, 23 (6) , 3043. https://doi.org/10.3390/ijms23063043
    22. Zi-Fu Ni, Pei Xu, Min-Hua Zong, Wen-Yong Lou. Structure-guided protein engineering of ammonia lyase for efficient synthesis of sterically bulky unnatural amino acids. Bioresources and Bioprocessing 2021, 8 (1) https://doi.org/10.1186/s40643-021-00456-5
    23. Marlene Vuillemin, Jesper Holck, Martin Matwiejuk, Eduardo S. Moreno Prieto, Jan Muschiol, Dora Molnar-Gabor, Anne S. Meyer, Birgitte Zeuner. Improvement of the Transglycosylation Efficiency of a Lacto-N-Biosidase from Bifidobacterium bifidum by Protein Engineering. Applied Sciences 2021, 11 (23) , 11493. https://doi.org/10.3390/app112311493
    24. Zuzana Mészáros, Pavlína Nekvasilová, Pavla Bojarová, Vladimír Křen, Kristýna Slámová. Reprint of: Advanced glycosidases as ingenious biosynthetic instruments. Biotechnology Advances 2021, 51 , 107820. https://doi.org/10.1016/j.biotechadv.2021.107820
    25. David Teze, Jiao Zhao, Mathias Wiemann, Zubaida G. A. Kazi, Rossana Lupo, Birgitte Zeuner, Marlène Vuillemin, Mette E. Rønne, Göran Carlström, Jens Ø. Duus, Yves‐Henri Sanejouand, Michael J. O'Donohue, Eva Nordberg Karlsson, Régis Fauré, Henrik Stålbrand, Birte Svensson. Rational Enzyme Design without Structural Knowledge: A Sequence‐Based Approach for Efficient Generation of Transglycosylases. Chemistry – A European Journal 2021, 27 (40) , 10323-10334. https://doi.org/10.1002/chem.202100110
    26. Zuzana Mészáros, Pavlína Nekvasilová, Pavla Bojarová, Vladimír Křen, Kristýna Slámová. Advanced glycosidases as ingenious biosynthetic instruments. Biotechnology Advances 2021, 49 , 107733. https://doi.org/10.1016/j.biotechadv.2021.107733
    27. Fernanda Mendoza, Laura Masgrau. Computational modeling of carbohydrate processing enzymes reactions. Current Opinion in Chemical Biology 2021, 61 , 203-213. https://doi.org/10.1016/j.cbpa.2021.02.012
    28. Ijaz Gul, Wang Le, Zhou Jie, Fang Ruiqin, Muhammad Bilal, Lixia Tang. Recent advances on engineered enzyme-conjugated biosensing modalities and devices for halogenated compounds. TrAC Trends in Analytical Chemistry 2021, 134 , 116145. https://doi.org/10.1016/j.trac.2020.116145
    29. Arielis Estevez, Dongsheng Zhu, Connor Blankenship, Jiaoyang Jiang. Molecular Interrogation to Crack the Case of O‐GlcNAc. Chemistry – A European Journal 2020, 26 (53) , 12086-12100. https://doi.org/10.1002/chem.202000155
    30. Jan Muschiol, Marlene Vuillemin, Anne S. Meyer, Birgitte Zeuner. β-N-Acetylhexosaminidases for Carbohydrate Synthesis via Trans-Glycosylation. Catalysts 2020, 10 (4) , 365. https://doi.org/10.3390/catal10040365

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2020, 142, 5, 2120–2124
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.9b09655
    Published January 9, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    3677

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.