ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Uniform Biodegradable Fiber-Like Micelles and Block Comicelles via “Living” Crystallization-Driven Self-Assembly of Poly(l-lactide) Block Copolymers: The Importance of Reducing Unimer Self-Nucleation via Hydrogen Bond Disruption

Cite this: J. Am. Chem. Soc. 2019, 141, 48, 19088–19098
Publication Date (Web):October 28, 2019
https://doi.org/10.1021/jacs.9b09885
Copyright © 2019 American Chemical Society

    Article Views

    5759

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Fiber-like micelles based on biodegradable and biocompatible polymers exhibit considerable promise for applications in nanomedicine, but until recently no convenient methods were available to prepare samples with uniform and controllable dimensions and spatial control of functionality. “Living” crystallization-driven self-assembly (CDSA) is a seeded growth method of growing importance for the preparation of uniform 1D and 2D core–shell nanoparticles from a range of crystallizable polymeric amphiphiles. However, in the case of poly(l-lactide) (PLLA), arguably the most widely utilized biodegradable polymer as the crystallizable core-forming block, the controlled formation of uniform fiber-like structures over a substantial range of lengths by “living” CDSA has been a major challenge. Herein, we demonstrate that via simple modulation of the solvent conditions via the addition of trifluoroethanol (TFE), DMSO, DMF and acetone, uniform fiber-like nanoparticles from PLLA diblock copolymers with controlled lengths up to 1 μm can be prepared. The probable mechanism involves improved unimer solvation by a reduction of hydrogen bonding interactions among PLLA chains. We provide evidence that this minimizes undesirable unimer aggregation which otherwise favors self-nucleation that competes with epitaxial crystallization from seed termini. This approach has also allowed the formation of well-defined segmented block comicelles with PLLA cores via the sequential seeded-growth of PLLA block copolymers with different corona-forming blocks.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.9b09885.

    • Experimental details and additional results (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 105 publications.

    1. Jiaxian Wang, Linxi Hou. Spatially Amplified and Rigid Junction in Diblock Copolymers: Reduced Microphase Separation Size via Interface Expansion. ACS Macro Letters 2024, 13 (3) , 348-353. https://doi.org/10.1021/acsmacrolett.3c00704
    2. Mengyue Wang, Yu Wang, Nanjiong Pang, Mingyao Wang, Yunxiang He, Xiaoling Wang, Junling Guo. Efficient Removal of Tetracyclines and Quinolones Enabled by Polyphenol-Mediated Supramolecular Coagulation. Langmuir 2024, 40 (7) , 3586-3595. https://doi.org/10.1021/acs.langmuir.3c03261
    3. Feiyang Teng, Bingbing Xiang, Liping Liu, Spyridon Varlas, Zaizai Tong. Precise Control of Two-Dimensional Hexagonal Platelets via Scalable, One-Pot Assembly Pathways Using Block Copolymers with Crystalline Side Chains. Journal of the American Chemical Society 2023, 145 (51) , 28049-28060. https://doi.org/10.1021/jacs.3c09370
    4. Yike Yao, Liang Gao, Chunhua Cai, Jiaping Lin, Shuxiao Wang, Siqin Song. Controllable Copolymerization of Polymeric Micelles for the Construction of Supramolecular Chains. Macromolecules 2023, 56 (24) , 10254-10263. https://doi.org/10.1021/acs.macromol.3c01639
    5. Lingyuan Zhu, Liping Liu, Spyridon Varlas, Rui-Yang Wang, Rachel K. O’Reilly, Zaizai Tong. Understanding the Seeded Heteroepitaxial Growth of Crystallizable Polymers: The Role of Crystallization Thermodynamics. ACS Nano 2023, 17 (23) , 24141-24153. https://doi.org/10.1021/acsnano.3c09130
    6. Bingbing Xiang, Xiang Wang, Feiyang Teng, Liping Liu, Meili Li, Xiancheng Meng, Zhenyan Chu, Xianjing Zhou, Yujie Xie, Zaizai Tong. Regulation of Two-Dimensional Platelet Micelles by Dynamic Changing of Polymer Topological Architectures upon Light Irradiation. Macromolecules 2023, 56 (23) , 9685-9696. https://doi.org/10.1021/acs.macromol.3c01720
    7. Liping Liu, Lingyuan Zhu, Zhenyan Chu, Zaizai Tong. Seeded Epitaxial Growth of Crystallizable Polymers Governed by Crystallization Temperatures. Macromolecules 2023, 56 (15) , 5984-5992. https://doi.org/10.1021/acs.macromol.3c00973
    8. Ding Shen, Boyang Shi, Peng Zhou, Di Li, Guowei Wang. Temperature-Dependent Ring-Opening Polymerization-Induced Self-Assembly Using Crystallizable Polylactones as Core-Forming Blocks. Macromolecules 2023, 56 (13) , 4814-4822. https://doi.org/10.1021/acs.macromol.3c00681
    9. Randall A. Scanga, Ali Shahrokhinia, Jake Borges, Sean H. Sarault, Michael B. Ross, James F. Reuther. Asymmetric Polymerization-Induced Crystallization-Driven Self-Assembly of Helical, Rod-Coil Poly(aryl isocyanide) Block Copolymers. Journal of the American Chemical Society 2023, 145 (11) , 6319-6329. https://doi.org/10.1021/jacs.2c13354
    10. Dongni Lin, Yanling Li, Li Zhang, Ying Chen, Jianbo Tan. Scalable Preparation of Cylindrical Block Copolymer Micelles with a Liquid-Crystalline Perfluorinated Core by Photoinitiated Reversible Addition-Fragmentation Chain Transfer Dispersion Polymerization. Macromolecules 2023, 56 (2) , 440-447. https://doi.org/10.1021/acs.macromol.2c01983
    11. Allison R. Wong, Melissa Barrera, Arpan Pal, Jessica R. Lamb. Improved Characterization of Polyoxazolidinones by Incorporating Solubilizing Side Chains. Macromolecules 2022, 55 (24) , 11006-11012. https://doi.org/10.1021/acs.macromol.2c02104
    12. Charlotte E. Ellis, J. Diego Garcia-Hernandez, Ian Manners. Scalable and Uniform Length-Tunable Biodegradable Block Copolymer Nanofibers with a Polycarbonate Core via Living Polymerization-Induced Crystallization-Driven Self-assembly. Journal of the American Chemical Society 2022, 144 (44) , 20525-20538. https://doi.org/10.1021/jacs.2c09715
    13. Steven T. G. Street, Josie Chrenek, Robert L. Harniman, Keiran Letwin, Judith M. Mantell, Ufuk Borucu, Stephanie M. Willerth, Ian Manners. Length-Controlled Nanofiber Micelleplexes as Efficient Nucleic Acid Delivery Vehicles. Journal of the American Chemical Society 2022, 144 (43) , 19799-19812. https://doi.org/10.1021/jacs.2c06695
    14. Zhen Liu, Xinjie Shi, Wenchao Shu, Shuo Qi, Xiaoming He, Xiaosong Wang, Xiaohua He. Effect of Hydrophobic Hydration on the Self-Assembling Behavior of Poly (l-Lactide) Homopolymers with an Ionic End Group. Macromolecules 2022, 55 (19) , 8892-8898. https://doi.org/10.1021/acs.macromol.2c01304
    15. Sylvia Ganda, Chin Ken Wong, Joanna Biazik, Radhika Raveendran, Lin Zhang, Fan Chen, Nicholas Ariotti, Martina H. Stenzel. Macrophage-Targeting and Complete Lysosomal Degradation of Self-assembled Two-Dimensional Poly(ε-caprolactone) Platelet Particles. ACS Applied Materials & Interfaces 2022, 14 (31) , 35333-35343. https://doi.org/10.1021/acsami.2c06555
    16. John R. Finnegan, Thomas P. Davis, Kristian Kempe. Heat-Induced Living Crystallization-Driven Self-Assembly: The Effect of Temperature and Polymer Composition on the Assembly and Disassembly of Poly(2-oxazoline) Nanorods. Macromolecules 2022, 55 (9) , 3650-3660. https://doi.org/10.1021/acs.macromol.2c00298
    17. Irem Akar, Jeffrey C. Foster, Xiyue Leng, Amanda K. Pearce, Robert T. Mathers, Rachel K. O’Reilly. Log Poct/SA Predicts the Thermoresponsive Behavior of P(DMA-co-RA) Statistical Copolymers. ACS Macro Letters 2022, 11 (4) , 498-503. https://doi.org/10.1021/acsmacrolett.1c00776
    18. Yongbeom Kwon, Hyunji Ma, Kyoung Taek Kim. Self-Assembly of Stereoblock Copolymers Driven by the Chain Folding of Discrete Poly(d-lactic acid-b-l-lactic acid) via Intramolecular Stereocomplexation. Macromolecules 2022, 55 (7) , 2768-2776. https://doi.org/10.1021/acs.macromol.2c00017
    19. Soon-Hyeok Hwang, Sung-Yun Kang, Sanghee Yang, Jaeho Lee, Tae-Lim Choi. Synchronous Preparation of Length-Controllable 1D Nanoparticles via Crystallization-Driven In Situ Nanoparticlization of Conjugated Polymers. Journal of the American Chemical Society 2022, 144 (13) , 5921-5929. https://doi.org/10.1021/jacs.1c13385
    20. Yawei Su, Yikun Jiang, Liping Liu, Yujie Xie, Shichang Chen, Yongjun Wang, Rachel K. O’Reilly, Zaizai Tong. Hydrogen-Bond-Regulated Platelet Micelles by Crystallization-Driven Self-Assembly and Templated Growth for Poly(ε-Caprolactone) Block Copolymers. Macromolecules 2022, 55 (3) , 1067-1076. https://doi.org/10.1021/acs.macromol.1c02402
    21. Robert L. Harniman, Samuel Pearce, Ian Manners. Exploring the “Living” Growth of Block Copolymer Nanofibers from Surface-Confined Seeds by In Situ Solution-Phase Atomic Force Microscopy. Journal of the American Chemical Society 2022, 144 (2) , 951-962. https://doi.org/10.1021/jacs.1c11209
    22. Kazuki Fukushima, Kodai Matsuzaki, Masashi Oji, Yuji Higuchi, Go Watanabe, Yuki Suzuki, Moriya Kikuchi, Nozomi Fujimura, Naofumi Shimokawa, Hiroaki Ito, Takashi Kato, Seigou Kawaguchi, Masaru Tanaka. Anisotropic, Degradable Polymer Assemblies Driven by a Rigid Hydrogen-Bonding Motif That Induce Shape-Specific Cell Responses. Macromolecules 2022, 55 (1) , 15-25. https://doi.org/10.1021/acs.macromol.1c01894
    23. Shixing Lei, Jia Tian, Tomoya Fukui, Mitchell A. Winnik, Ian Manners. Probing the Analogy between Living Crystallization-Driven Self-Assembly and Living Covalent Polymerizations: Length-Independent Growth Behavior for 1D Block Copolymer Nanofibers. Macromolecules 2022, 55 (1) , 359-369. https://doi.org/10.1021/acs.macromol.1c02241
    24. Liam R. MacFarlane, Xiaoyu Li, Charl F. J. Faul, Ian Manners. Efficient and Controlled Seeded Growth of Poly(3-hexylthiophene) Block Copolymer Nanofibers through Suppression of Homogeneous Nucleation. Macromolecules 2021, 54 (24) , 11269-11280. https://doi.org/10.1021/acs.macromol.1c02005
    25. Yongbeom Kwon, Kyoung Taek Kim. Crystallization-Driven Self-Assembly of Block Copolymers Having Monodisperse Poly(lactic acid)s with Defined Stereochemical Sequences. Macromolecules 2021, 54 (22) , 10487-10498. https://doi.org/10.1021/acs.macromol.1c01825
    26. Diego A. Resendiz-Lara, Frederik R. Wurm. Polyphosphonate-Based Macromolecular RAFT-CTA Enables the Synthesis of Well-Defined Block Copolymers Using Vinyl Monomers. ACS Macro Letters 2021, 10 (10) , 1273-1279. https://doi.org/10.1021/acsmacrolett.1c00564
    27. Jiajing Zhou, Matthew N. Creyer, Amanda Chen, Wonjun Yim, René P. M. Lafleur, Tengyu He, Zhixing Lin, Ming Xu, Pedram Abbasi, Jianfeng Wu, Tod A. Pascal, Frank Caruso, Jesse V. Jokerst. Stereoselective Growth of Small Molecule Patches on Nanoparticles. Journal of the American Chemical Society 2021, 143 (31) , 12138-12144. https://doi.org/10.1021/jacs.1c04272
    28. Sylvia Ganda, Chin Ken Wong, Martina H. Stenzel. Corona-Loading Strategies for Crystalline Particles Made by Living Crystallization-Driven Self-Assembly. Macromolecules 2021, 54 (14) , 6662-6669. https://doi.org/10.1021/acs.macromol.1c00643
    29. Zhiqin Wang, Chen Ma, Xiaoyu Huang, Guolin Lu, Mitchell A. Winnik, Chun Feng. Self-Seeding of Oligo(p-phenylenevinylene)-b-poly(2-vinylpyridine) Micelles: Effect of Metal Ions. Macromolecules 2021, 54 (14) , 6705-6717. https://doi.org/10.1021/acs.macromol.1c00965
    30. Yue Song, Mahmoud Elsabahy, Christina A. Collins, Sarosh Khan, Richen Li, Teri N. Hreha, Yidan Shen, Yen-Nan Lin, Rachel A. Letteri, Lu Su, Mei Dong, Fuwu Zhang, David A. Hunstad, Karen L. Wooley. Morphologic Design of Silver-Bearing Sugar-Based Polymer Nanoparticles for Uroepithelial Cell Binding and Antimicrobial Delivery. Nano Letters 2021, 21 (12) , 4990-4998. https://doi.org/10.1021/acs.nanolett.1c00776
    31. J. Diego Garcia-Hernandez, Steven T. G. Street, Yuetong Kang, Yifan Zhang, Ian Manners. Cargo Encapsulation in Uniform, Length-Tunable Aqueous Nanofibers with a Coaxial Crystalline and Amorphous Core. Macromolecules 2021, 54 (12) , 5784-5796. https://doi.org/10.1021/acs.macromol.1c00672
    32. Liying Kang, Albert Chao, Meng Zhang, Tianyi Yu, Jun Wang, Qi Wang, Huihui Yu, Naisheng Jiang, Donghui Zhang. Modulating the Molecular Geometry and Solution Self-Assembly of Amphiphilic Polypeptoid Block Copolymers by Side Chain Branching Pattern. Journal of the American Chemical Society 2021, 143 (15) , 5890-5902. https://doi.org/10.1021/jacs.1c01088
    33. Jiayi You, Lingshan Liu, Wanqiu Huang, Ian Manners, Hongjing Dou. Redox-Active Micelle-Based Reaction Platforms for In Situ Preparation of Noble Metal Nanocomposites with Photothermal Conversion Capability. ACS Applied Materials & Interfaces 2021, 13 (11) , 13648-13657. https://doi.org/10.1021/acsami.0c21925
    34. Zaizai Tong, Yawei Su, Yikun Jiang, Yujie Xie, Shichang Chen, Rachel K. O’Reilly. Spatially Restricted Templated Growth of Poly(ε-caprolactone) from Carbon Nanotubes by Crystallization-Driven Self-Assembly. Macromolecules 2021, 54 (6) , 2844-2851. https://doi.org/10.1021/acs.macromol.0c02739
    35. Hui Sun, Jianzhong Du. Intramolecular Cyclization-Induced Crystallization-Driven Self-Assembly of an Amorphous Poly(amic acid). Macromolecules 2020, 53 (24) , 11033-11039. https://doi.org/10.1021/acs.macromol.0c02186
    36. Xiaoming He, John R. Finnegan, Dominic W. Hayward, Liam R. MacFarlane, Robert L. Harniman, Ian Manners. Living Crystallization-Driven Self-Assembly of Polymeric Amphiphiles: Low-Dispersity Fiber-like Micelles from Crystallizable Phosphonium-Capped Polycarbonate Homopolymers. Macromolecules 2020, 53 (23) , 10591-10600. https://doi.org/10.1021/acs.macromol.0c02075
    37. Jeffrey C. Foster, Irem Akar, Marcus C. Grocott, Amanda K. Pearce, Robert T. Mathers, Rachel K. O’Reilly. 100th Anniversary of Macromolecular Science Viewpoint: The Role of Hydrophobicity in Polymer Phenomena. ACS Macro Letters 2020, 9 (11) , 1700-1707. https://doi.org/10.1021/acsmacrolett.0c00645
    38. Karl Scheuer, Damiano Bandelli, Christian Helbing, Christine Weber, Julien Alex, Johannes B. Max, Alexis Hocken, Ondrej Stranik, Lisa Seiler, Frederike Gladigau, Ute Neugebauer, Felix H. Schacher, Ulrich S. Schubert, Klaus D. Jandt. Self-Assembly of Copolyesters into Stereocomplex Crystallites Tunes the Properties of Polyester Nanoparticles. Macromolecules 2020, 53 (19) , 8340-8351. https://doi.org/10.1021/acs.macromol.0c01247
    39. Tomoya Fukui, J. Diego Garcia-Hernandez, Liam R. MacFarlane, Shixing Lei, George R. Whittell, Ian Manners. Seeded Self-Assembly of Charge-Terminated Poly(3-hexylthiophene) Amphiphiles Based on the Energy Landscape. Journal of the American Chemical Society 2020, 142 (35) , 15038-15048. https://doi.org/10.1021/jacs.0c06185
    40. Irem Akar, Robert Keogh, Lewis D. Blackman, Jeffrey C. Foster, Robert T. Mathers, Rachel K. O’Reilly. Grafting Density Governs the Thermoresponsive Behavior of P(OEGMA-co-RMA) Statistical Copolymers. ACS Macro Letters 2020, 9 (8) , 1149-1154. https://doi.org/10.1021/acsmacrolett.0c00461
    41. Jiucheng Nie, Zhiqin Wang, Xiaoyu Huang, Guolin Lu, Chun Feng. Uniform Continuous and Segmented Nanofibers Containing a π-Conjugated Oligo(p-phenylene ethynylene) Core via “Living” Crystallization-Driven Self-Assembly: Importance of Oligo(p-phenylene ethynylene) Chain Length. Macromolecules 2020, 53 (15) , 6299-6313. https://doi.org/10.1021/acs.macromol.0c01199
    42. Zhiwei Wang, Min Lin, Colin Bonduelle, Rongye Li, Zhekun Shi, Chenhui Zhu, Sébastien Lecommandoux, Zhibo Li, Jing Sun. Thermoinduced Crystallization-Driven Self-Assembly of Bioinspired Block Copolymers in Aqueous Solution. Biomacromolecules 2020, 21 (8) , 3411-3419. https://doi.org/10.1021/acs.biomac.0c00844
    43. Huda Shaikh, Xu-Hui Jin, Robert L. Harniman, Robert M. Richardson, George R. Whittell, Ian Manners. Solid-State Donor–Acceptor Coaxial Heterojunction Nanowires via Living Crystallization-Driven Self-Assembly. Journal of the American Chemical Society 2020, 142 (31) , 13469-13480. https://doi.org/10.1021/jacs.0c04975
    44. Yue Sun, Ziheng Liu, Chengjian Zhang, Xinghong Zhang. Sustainable Polymers with High Performance and Infinite Scalability. Angewandte Chemie International Edition 2024, 63 (17) https://doi.org/10.1002/anie.202400142
    45. Yue Sun, Ziheng Liu, Chengjian Zhang, Xinghong Zhang. Sustainable Polymers with High Performance and Infinite Scalability. Angewandte Chemie 2024, 136 (17) https://doi.org/10.1002/ange.202400142
    46. Zhenyan Chu, Xiancheng Meng, Zaizai Tong. Precision control of one-/two-dimensional assemblies for Poly(hexamethylene carbonate) block copolymers. Polymer 2024, 298 , 126897. https://doi.org/10.1016/j.polymer.2024.126897
    47. Pan Gu, Hao Li, Bijin Xiong, Jinlan Li, Zhenxian Chen, Wang Li, Xi Mao, Huayang Wang, Jing Jin, Jiangping Xu, Jintao Zhu. Decoding the Pathway‐Dependent Self‐Assembly of Polymer‐Grafted Nanoparticles by Ligand Crystallization. Small 2024, 20 (14) https://doi.org/10.1002/smll.202306671
    48. Shaohua Peng, Danyang Li, Yuanpeng Cai, Hui Liu. Synthesis, Self‐Assembly and Drug Controlled Releasing Performance of Triple Responsive Ternary Copolymer Micelles. ChemistrySelect 2024, 9 (1) https://doi.org/10.1002/slct.202304829
    49. Xiaoliang Yu, Xingjian Guo, Yuanjian Fang, Zhi Fan, Minjie Guo, Bowen Cheng. Topological structure-induced self-assembly of highly asymmetric PLLA-b-QPDMAEMA block copolymers in solution: Linear versus bottlebrush. European Polymer Journal 2024, 202 , 112648. https://doi.org/10.1016/j.eurpolymj.2023.112648
    50. Yue Lu, Juanjuan Gao, Yangge Ren, Yi Ding, Lin Jia. Synergetic Self‐Assembly of Liquid Crystalline Block Copolymer with Amphiphiles for Fabrication of Hierarchical Assemblies. Small 2024, 20 (1) https://doi.org/10.1002/smll.202304955
    51. Shahab Ghaderi, Masome Rashno, Alireza Sarkaki, Seyed Esmaeil Khoshnam. Sesamin mitigates lead-induced behavioral deficits in male rats: The role of oxidative stress. Brain Research Bulletin 2024, 206 , 110852. https://doi.org/10.1016/j.brainresbull.2023.110852
    52. Aritra Rajak, Anindita Das. Cascade Energy Transfer and White‐Light Emission in Chirality‐Controlled Crystallization‐Driven Two‐Dimensional Co‐assemblies from Donor and Acceptor Dye‐Conjugated Polylactides. Angewandte Chemie 2023, 135 (49) https://doi.org/10.1002/ange.202314290
    53. Aritra Rajak, Anindita Das. Cascade Energy Transfer and White‐Light Emission in Chirality‐Controlled Crystallization‐Driven Two‐Dimensional Co‐assemblies from Donor and Acceptor Dye‐Conjugated Polylactides. Angewandte Chemie International Edition 2023, 62 (49) https://doi.org/10.1002/anie.202314290
    54. Hao Liu, Xiangmin Ding, Tianli Liu, Jing Sun. Tunable Hairy and Crew‐Cut Supermicelles from Poly( N ‐octyl glycine)‐Based Diblock Copolymer via a Hierarchical Assembly Strategy. Macromolecular Chemistry and Physics 2023, 224 (24) https://doi.org/10.1002/macp.202300198
    55. Ahmad Alsawaf, Yuya Kanehira, Alain M. Bapolisi, Ilko Bald, Matthias Hartlieb. PLLA‐Based Block Copolymers via Raft Polymerization—Impact of the Synthetic Route and Activation Mechanism. Macromolecular Chemistry and Physics 2023, 224 (24) https://doi.org/10.1002/macp.202300274
    56. Jiucheng Nie, Zhongming Wang, Longgang Xia, Xiaoyu Huang, Guolin Lu, Chun Feng. Co-Self-seeding: A facile approach to generate heterogeneous π-Conjugated Fiber-Like comicelles with tunable Length, composition and morphology. European Polymer Journal 2023, 197 , 112384. https://doi.org/10.1016/j.eurpolymj.2023.112384
    57. Jie Xu, Changzhu Lv, Qiangqiang Shi, Jialin Zhang, Ning Wang, Guoying Zhang, Jinming Hu, Shiyong Liu. Controlled Self‐Assembly of Discrete Amphiphilic Oligourethanes with a Cascade Self‐Immolative Motif. Angewandte Chemie 2023, 135 (33) https://doi.org/10.1002/ange.202306119
    58. Jie Xu, Changzhu Lv, Qiangqiang Shi, Jialin Zhang, Ning Wang, Guoying Zhang, Jinming Hu, Shiyong Liu. Controlled Self‐Assembly of Discrete Amphiphilic Oligourethanes with a Cascade Self‐Immolative Motif. Angewandte Chemie International Edition 2023, 62 (33) https://doi.org/10.1002/anie.202306119
    59. Zaizai Tong, Yujie Xie, Maria C. Arno, Yifan Zhang, Ian Manners, Rachel K. O’Reilly, Andrew P. Dove. Uniform segmented platelet micelles with compositionally distinct and selectively degradable cores. Nature Chemistry 2023, 15 (6) , 824-831. https://doi.org/10.1038/s41557-023-01177-2
    60. Steven T. G. Street, Hayley C. Parkin, Lennard Shopperly, Josie Chrenek, Keiran Letwin, Stephanie M. Willerth, Ian Manners. Optimization of precision nanofiber micelleplexes for DNA delivery. Biomaterials Science 2023, 11 (10) , 3512-3523. https://doi.org/10.1039/D2BM02014A
    61. Iulia Babutan, Otto Todor-Boer, Leonard Ionut Atanase, Adriana Vulpoi, Ioan Botiz. Crystallization of Poly(ethylene oxide)-Based Triblock Copolymers in Films Swollen-Rich in Solvent Vapors. Coatings 2023, 13 (5) , 918. https://doi.org/10.3390/coatings13050918
    62. Lingyuan Zhu, Bingbing Xiang, Yawei Su, Zaizai Tong. Chemical shield effect of metal complexation on seeded growth of poly(ε-caprolactone) core-forming blends. Polymer 2023, 272 , 125831. https://doi.org/10.1016/j.polymer.2023.125831
    63. Haohui Huo, Jing Zou, Shu‐Gui Yang, Jiaqi Zhang, Jie Liu, Yutong Liu, Yanyun Hao, Hongfei Chen, Hui Li, Chaobo Huang, Goran Ungar, Feng Liu, Zhiyue Zhang, Qilu Zhang. Multicompartment Nanoparticles by Crystallization‐Driven Self‐Assembly of Star Polymers: Combining High Stability and Loading Capacity. Macromolecular Rapid Communications 2023, 44 (4) https://doi.org/10.1002/marc.202200706
    64. Qiangqiang Shi, Hao Yin, Rundi Song, Jie Xu, Jiajia Tan, Xin Zhou, Jie Cen, Zhengyu Deng, Huimin Tong, Chenhui Cui, Yanfeng Zhang, Xiaopeng Li, Zhengbiao Zhang, Shiyong Liu. Digital micelles of encoded polymeric amphiphiles for direct sequence reading and ex vivo label-free quantification. Nature Chemistry 2023, 15 (2) , 257-270. https://doi.org/10.1038/s41557-022-01076-y
    65. Bixin Jin, Yiqi Chen, Yunjun Luo, Xiaoyu Li. Precise and Controllable Assembly of Block Copolymers †. Chinese Journal of Chemistry 2023, 41 (1) , 93-110. https://doi.org/10.1002/cjoc.202200489
    66. Zehua Li, Amanda K. Pearce, Jianzhong Du, Andrew P. Dove, Rachel K. O'Reilly. Uniform antibacterial cylindrical nanoparticles for enhancing the strength of nanocomposite hydrogels. Journal of Polymer Science 2023, 61 (1) , 44-55. https://doi.org/10.1002/pol.20210853
    67. Shahab Ghaderi, Alireza Komaki, Iraj Salehi, Zahra Basir, Masome Rashno. RETRACTED: Possible mechanisms involved in the protective effects of chrysin against lead-induced cognitive decline: An in vivo study in a rat model. Biomedicine & Pharmacotherapy 2023, 157 , 114010. https://doi.org/10.1016/j.biopha.2022.114010
    68. Hui Sun, Shuai Chen, Xiao Li, Ying Leng, Xiaoyan Zhou, Jianzhong Du. Lateral growth of cylinders. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-29863-8
    69. Charlotte E. Ellis, Christian Hils, Alex M. Oliver, Andreas Greiner, Holger Schmalz, Ian Manners. Electrospinning of 1D Fiber‐Like Block Copolymer Micelles with a Crystalline Core. Macromolecular Chemistry and Physics 2022, 223 (19) https://doi.org/10.1002/macp.202200151
    70. Rui Qi, Wensheng Qi, Yin Zhang, Baohua Liu, Jian Wang, Hongmei Li, Haimei Yuan, Songzhi Xie. Fabrication of Multilayered Two-Dimensional Micelles and Fibers by Controlled Self-Assembly of Rod-Coil Block Copolymers. Polymers 2022, 14 (19) , 4125. https://doi.org/10.3390/polym14194125
    71. Chao Wang, Lei Xu, Li Zhou, Na Liu, Zong‐Quan Wu. Asymmetric Living Supramolecular Polymerization: Precise Fabrication of One‐Handed Helical Supramolecular Polymers. Angewandte Chemie 2022, 134 (33) https://doi.org/10.1002/ange.202207028
    72. Chao Wang, Lei Xu, Li Zhou, Na Liu, Zong‐Quan Wu. Asymmetric Living Supramolecular Polymerization: Precise Fabrication of One‐Handed Helical Supramolecular Polymers. Angewandte Chemie International Edition 2022, 61 (33) https://doi.org/10.1002/anie.202207028
    73. Wenqing Xu, Ying Zheng, Pengju Pan. Crystallization‐driven self‐assembly of semicrystalline block copolymers and end‐functionalized polymers: A minireview. Journal of Polymer Science 2022, 60 (15) , 2136-2152. https://doi.org/10.1002/pol.20210789
    74. J. Diego Garcia-Hernandez, Hayley C. Parkin, Yangyang Ren, Yifan Zhang, Ian Manners. Hydrophobic cargo loading at the core–corona interface of uniform, length-tunable aqueous diblock copolymer nanofibers with a crystalline polycarbonate core. Polymer Chemistry 2022, 13 (28) , 4100-4110. https://doi.org/10.1039/D2PY00395C
    75. Boyang Shi, Ding Shen, Wei Li, Guowei Wang. Self‐Assembly of Copolymers Containing Crystallizable Blocks: Strategies and Applications. Macromolecular Rapid Communications 2022, 43 (14) https://doi.org/10.1002/marc.202200071
    76. Aritra Rajak, Anindita Das. Crystallization‐Driven Controlled Two‐Dimensional (2D) Assemblies from Chromophore‐Appended Poly(L‐lactide)s: Highly Efficient Energy Transfer on a 2D Surface. Angewandte Chemie 2022, 134 (15) https://doi.org/10.1002/ange.202116572
    77. Aritra Rajak, Anindita Das. Crystallization‐Driven Controlled Two‐Dimensional (2D) Assemblies from Chromophore‐Appended Poly(L‐lactide)s: Highly Efficient Energy Transfer on a 2D Surface. Angewandte Chemie International Edition 2022, 61 (15) https://doi.org/10.1002/anie.202116572
    78. Shin Asano, Jaeyeong Choi, Thi Hang Tran, Nalinthip Chanthaset, Hiroharu Ajiro. The influence of chain‐end functionalization and stereocomplexation on the degradation stability under alkaline condition. Polymers for Advanced Technologies 2022, 33 (3) , 991-999. https://doi.org/10.1002/pat.5573
    79. Yunxiang He, Yang Tang, Yifan Zhang, Liam MacFarlane, Jiaojiao Shang, Heping Shi, Qiuping Xie, Hui Zhao, Ian Manners, Junling Guo. Driving forces and molecular interactions in the self-assembly of block copolymers to form fiber-like micelles. Applied Physics Reviews 2022, 9 (2) https://doi.org/10.1063/5.0083099
    80. Haoruo Zhang, Zhengguang Heng, Ji Zhou, Lu Shen, Yang Chen, Huawei Zou, Mei Liang. Robust organic semiconductor thermoset composite films based on Crystallization-Driven Self-Assembled nanofibers of Poly(3-hexylthiophene) block copolymers. Chemical Engineering Journal 2022, 430 , 132695. https://doi.org/10.1016/j.cej.2021.132695
    81. Junyu Ma, Guolin Lu, Xiaoyu Huang, Chun Feng. π-Conjugated-polymer-based nanofibers through living crystallization-driven self-assembly: preparation, properties and applications. Chemical Communications 2021, 57 (98) , 13259-13274. https://doi.org/10.1039/D1CC04825B
    82. Oleksandr Shyshov, Shyamkumar Vadakket Haridas, Luca Pesce, Haoyuan Qi, Andrea Gardin, Davide Bochicchio, Ute Kaiser, Giovanni M. Pavan, Max von Delius. Living supramolecular polymerization of fluorinated cyclohexanes. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-23370-y
    83. Nicole Janoszka, Suna Azhdari, Christian Hils, Deniz Coban, Holger Schmalz, André H. Gröschel. Morphology and Degradation of Multicompartment Microparticles Based on Semi-Crystalline Polystyrene-block-Polybutadiene-block-Poly(L-lactide) Triblock Terpolymers. Polymers 2021, 13 (24) , 4358. https://doi.org/10.3390/polym13244358
    84. Hao Li, Bijin Xiong, Jiangping Xu, Jintao Zhu. Chiral transfer‐dictated self‐assembly of chiral block copolymers. Aggregate 2021, 2 (5) https://doi.org/10.1002/agt2.122
    85. Yin Liu, Lulu Chang, Weiwei Zhang, Shuya Liu, Yanjun Gong. Fabrication of complex hierarchical heterostructures with controlled luminescence via seeded self-assembly. Journal of Materials Chemistry C 2021, 9 (36) , 12073-12078. https://doi.org/10.1039/D1TC02892H
    86. Ying Xiao, Zhao-Yang Wang, Shi-He Luo, Jian-Yun Lin, Xi-Ying Cao, Yong-Gan Fang. One-pot preparation of thermosensitive polylactic acid materials by modifying with N-Isopropyl acrylamide. Polymer 2021, 231 , 124126. https://doi.org/10.1016/j.polymer.2021.124126
    87. Charlotte E. Ellis, Tomoya Fukui, Cristina Cordoba, Arthur Blackburn, Ian Manners. Towards scalable, low dispersity, and dimensionally tunable 2D platelets using living crystallization-driven self-assembly. Polymer Chemistry 2021, 12 (25) , 3650-3660. https://doi.org/10.1039/D1PY00571E
    88. Xiaolin Lyu, Hanlin Huang, Zhehao Tang, Longfei Luo, Wenjun Luo, Yan Yu, Zhihao Shen, Xing‐He Fan, Zhigang Zou. Efficient Access to 3D Mesoscopic Prisms in Polymeric Soft Materials. Macromolecular Rapid Communications 2021, 42 (11) https://doi.org/10.1002/marc.202100064
    89. Jian-Yun Lin, Xi-Ying Cao, Ying Xiao, Jin-Xin Wang, Shi-He Luo, Li-Ting Yang, Yong-Gan Fang, Zhao-Yang Wang. Controllable preparation and performance of bio-based poly(lactic acid-iminodiacetic acid) as sustained-release Pb2+ chelating agent. iScience 2021, 24 (6) , 102518. https://doi.org/10.1016/j.isci.2021.102518
    90. Christian Hils, Ian Manners, Judith Schöbel, Holger Schmalz. Patchy Micelles with a Crystalline Core: Self-Assembly Concepts, Properties, and Applications. Polymers 2021, 13 (9) , 1481. https://doi.org/10.3390/polym13091481
    91. Liam MacFarlane, Chuanqi Zhao, Jiandong Cai, Huibin Qiu, Ian Manners. Emerging applications for living crystallization-driven self-assembly. Chemical Science 2021, 12 (13) , 4661-4682. https://doi.org/10.1039/D0SC06878K
    92. Mingwei Tian, Chen Ma, Xiaoyu Huang, Guolin Lu, Chun Feng. Supramolecular-micelle-directed preparation of uniform magnetic nanofibers with length tunability, colloidal stability and capacity for surface functionalization. Polymer Chemistry 2021, 12 (13) , 1924-1930. https://doi.org/10.1039/D1PY00168J
    93. Yuhan Wei, Fujun Liu, Min Li, Zhibo Li, Jing Sun. Dimension control on self-assembly of a crystalline core-forming polypeptoid block copolymer: 1D nanofibers versus 2D nanosheets. Polymer Chemistry 2021, 12 (8) , 1147-1154. https://doi.org/10.1039/D0PY01673J
    94. Tobias Klein, Franka V Gruschwitz, Maren T Kuchenbrod, Ivo Nischang, Stephanie Hoeppener, Johannes C Brendel. Adjusting the length of supramolecular polymer bottlebrushes by top-down approaches. Beilstein Journal of Organic Chemistry 2021, 17 , 2621-2628. https://doi.org/10.3762/bjoc.17.175
    95. Christopher Y. Li. The rise of semicrystalline polymers and why are they still interesting. Polymer 2020, 211 , 123150. https://doi.org/10.1016/j.polymer.2020.123150
    96. Tobias Klein, Hans F. Ulrich, Franka V. Gruschwitz, Maren T. Kuchenbrod, Rintaro Takahashi, Shota Fujii, Stephanie Hoeppener, Ivo Nischang, Kazuo Sakurai, Johannes C. Brendel. Impact of amino acids on the aqueous self-assembly of benzenetrispeptides into supramolecular polymer bottlebrushes. Polymer Chemistry 2020, 11 (42) , 6763-6771. https://doi.org/10.1039/D0PY01185A
    97. Cheng Miao, Xiaomin Zhu, Jian Zhang, Youliang Zhao. Rational design of nonlinear crystalline-amorphous-responsive terpolymers for pH-guided fabrication of 0D–3D nano-objects. Polymer Chemistry 2020, 11 (39) , 6259-6272. https://doi.org/10.1039/D0PY01035A
    98. Hayato Onishi, Yuta Koda, Hideo Horibe. Thermoresponsive Conductivity of Acrylamide-based Polymers and Ni Microparticle Composites. Chemistry Letters 2020, 49 (10) , 1224-1227. https://doi.org/10.1246/cl.200342
    99. Steven T. G. Street, Yunxiang He, Xu-Hui Jin, Lorna Hodgson, Paul Verkade, Ian Manners. Cellular uptake and targeting of low dispersity, dual emissive, segmented block copolymer nanofibers. Chemical Science 2020, 11 (32) , 8394-8408. https://doi.org/10.1039/D0SC02593C
    100. Sanghee Yang, Tae-Lim Choi. Rapid formation and real-time observation of micron-sized conjugated nanofibers with tunable lengths and widths in 20 minutes by living crystallization-driven self-assembly. Chemical Science 2020, 11 (32) , 8416-8424. https://doi.org/10.1039/D0SC02891F
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect