ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Stable Ultraconcentrated and Ultradilute Colloids of CsPbX3 (X = Cl, Br) Nanocrystals Using Natural Lecithin as a Capping Ligand

  • Franziska Krieg
    Franziska Krieg
    Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
    Laboratory for Thin Films and Photovoltaics, Empa−Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
  • Quy K. Ong
    Quy K. Ong
    Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    More by Quy K. Ong
  • Max Burian
    Max Burian
    Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
    More by Max Burian
  • Gabriele Rainò
    Gabriele Rainò
    Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
    Laboratory for Thin Films and Photovoltaics, Empa−Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
  • Denys Naumenko
    Denys Naumenko
    Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/V, 8010 Graz, Austria
  • Heinz Amenitsch
    Heinz Amenitsch
    Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/V, 8010 Graz, Austria
  • Adrian Süess
    Adrian Süess
    Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
    Laboratory for Thin Films and Photovoltaics, Empa−Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
  • Matthias J. Grotevent
    Matthias J. Grotevent
    Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
    Laboratory for Transport at Nanoscale Interfaces, Empa−Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
  • Frank Krumeich
    Frank Krumeich
    Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
  • Maryna I. Bodnarchuk
    Maryna I. Bodnarchuk
    Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
    Laboratory for Thin Films and Photovoltaics, Empa−Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
  • Ivan Shorubalko
    Ivan Shorubalko
    Laboratory for Transport at Nanoscale Interfaces, Empa−Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
  • Francesco Stellacci
    Francesco Stellacci
    Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
  • , and 
  • Maksym V. Kovalenko*
    Maksym V. Kovalenko
    Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
    Laboratory for Thin Films and Photovoltaics, Empa−Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
    *[email protected]
Cite this: J. Am. Chem. Soc. 2019, 141, 50, 19839–19849
Publication Date (Web):November 25, 2019
https://doi.org/10.1021/jacs.9b09969

Copyright © 2019 American Chemical Society. This publication is licensed under these Terms of Use.

  • Open Access

Article Views

12264

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (8 MB)
Supporting Info (2)»

Abstract

Attaining thermodynamic stability of colloids in a broad range of concentrations has long been a major thrust in the field of colloidal ligand-capped semiconductor nanocrystals (NCs). This challenge is particularly pressing for the novel NCs of cesium lead halide perovskites (CsPbX3; X = Cl, Br) owing to their highly dynamic and labile surfaces. Herein, we demonstrate that soy lecithin, a mass-produced natural phospholipid, serves as a tightly binding surface-capping ligand suited for a high-reaction yield synthesis of CsPbX3 NCs (6–10 nm) and allowing for long-term retention of the colloidal and structural integrity of CsPbX3 NCs in a broad range of concentrations—from a few ng/mL to >400 mg/mL (inorganic core mass). The high colloidal stability achieved with this long-chain zwitterionic ligand can be rationalized with the Alexander–De Gennes model that considers the increased particle–particle repulsion due to branched chains and ligand polydispersity. The versatility and immense practical utility of such colloids is showcased by the single NC spectroscopy on ultradilute samples and, conversely, by obtaining micrometer-thick, optically homogeneous dense NC films in a single spin-coating step from ultraconcentrated colloids.

Introduction

ARTICLE SECTIONS
Jump To

Colloidal nanocrystals (NCs) of lead halide perovskites (APbX3; A = Cs, formamidinium; X = Cl, Br, I) are new semiconductor NCs which have both unique optical characteristics as well as specific challenges. (1) Defect-tolerant photophysics, (2) outstanding photoluminescence (PL) characteristics, narrow emitting bands, high quantum yields (QYs), spectral tunability, and facile synthesis make perovskite NCs appealing classical light sources (in LCD and LED displays, (3) lasers, (4) optical communication, (5) scintillators (6)) as well as single-photon sources. (7) Conversely, perovskite NCs are also pursued as promising light harvesters for solar cells (8) and photodetectors. (5a,9)
The surface state of semiconductor NCs has been the dominant factor defining the optical and electronic characteristics of individual NCs and their assemblies. (10) The inorganic (NC core)–organic (ligands, solvents) interface is quintessential for the entire life cycle of a semiconductor NC—from its nucleation and growth to integration into devices. (11) The surface chemistry of perovskite NCs has been shown to be vastly different from conventional semiconductor NCs, chiefly due to their ionic bonding and low lattice energy within the lead halide NC core (structural lability) and at the inorganic–organic interface. (12) Most specific challenges are the susceptibility of the NC cores to water and many other solvents due to their finite solubility and the loose binding of the surface-capping ligands. (13) These have been the major obstacles for studying, processing, and applications of perovskite NCs. For instance, rapid ligand desorption renders colloids unstable and eventually causes morphological degradation and coalescence of these NCs. Unsurprisingly, a rapid surge of reports is targeting these difficulties by the judicious choice of the solvents, ligands, and other additives for the synthesis and isolation protocols. (1l,n,12c,d,14) Alternatively, NC films can be subjected to various surface stabilization and matrix-encapsulation strategies. (7j,16)
The ideal ligand system is allowing for efficient synthesis and subsequent processing. Common solution-processing techniques—spin coating, inkjet printing, doctor blading, slot die coating, or screen printing—all require concentrated and stable colloids. Obtaining thick, optically homogeneous, and dense films of CsPbBr3 and FAPbBr3 NCs with high PL QYs is of paramount importance in quantum dot-color filter displays, (3a,i,17) wherein the emissive layer must be several micrometers thick in order to completely absorb the blue backlight to reach optimal luminance and a wide color gamut. On the other hand, highly dilute NC systems are required for engineering quantum light sources. (7)
In this study, we sought to devise an effective ligand system that allows retention of the colloidal state, structural integrity, and optical characteristics over a broad range of CsPbBr3 NC concentrations. Using natural soy lecithin as a capping ligand (Figure 1a and 1b), we obtained concentrations of CsPbX3 NCs exceeding 400 mg/mL (inorganic core mass/total volume of the colloid), i.e., approximately 30% by volume (Figure 1c). Furthermore, tight ligand binding allows attaining the colloidal state and maintaining NC integrity in a broad concentration range down to few ng/mL.

Figure 1

Figure 1. (a) Schematic of a lecithin-ligand brush on a CsPbX3 surface; h indicates the brush height. (b) Chemical structure of lecithin and statistical occurrence of side chains in soy lecithin. (15) (c) Plot comparing the saturation concentration CsPbBr3 NCs (ca. 7 nm) capped with different ligands: oleic acid (OA) and oleylamine (OLA), ASC8 [3-(N,N-dimethyloctylammonio)propanesulfonate] and its longer chain analogues (ASC12 and ASC18, having C12 and C18 carbon chains in place of octyl, see also an earlier study in ref (14k)). The highest concentration of above 400 mg/mL (inorganic content per mL of toluene) is obtained with soy lecithin as a combined result of its higher chain length and natural lengths dispersity and, comparatively to all other studied ligands, higher grafting density (two vs one long chains per headgroup; i.e., 3.6 vs 2 tails/nm2). For comparison, ACS18-capped NCs exhibit a saturated concentration of ca. 90 mg/mL.

Results and Discussion

ARTICLE SECTIONS
Jump To

Soy lecithin is an inexpensive, natural, zwitterionic phospholipid which contains a physiological mixture of saturated and unsaturated long hydrocarbon chains (total of five, Figure 1b), two per molecule. Hence, it can be viewed as a polydisperse ligand. The choice of lecithin was inspired, on one hand, by our earlier studies of other zwitterionic long-chain molecules as strongly binding ligands (14k) and, on the other hand, by insights from polymer physics. To achieve highly concentrated colloids the NC–NC repulsion—typically and in this study of purely steric nature (18)—needs to be maximized. Ligand-covered NC surfaces can be viewed as brush-like structures (Figure 1a). Details of modeling the ligand–ligand repulsion between two NC surfaces can be found in the SI, Table S1 and Figures S1 and S2. The repulsion between polymer brushes has been studied extensively by De Gennes (19) and others. (20) The classical model considers these brushes as made up from stretched chains, permanently attached to an infinite, flat surface, (20,21) which are valid assumptions for lecithin-capped CsPbBr3 NCs due to static ligand binding (confirmed by NMR, see discussion later in the text) and their cuboidal shape. According to classical, self-consistent mean field theory the factors which increase the energy of repulsion and thus the energy barrier for aggregation are tight binding, long chains, high grafting density, (22) and ligand chain polydispersity. (21) Calculated energy of repulsion vs number of hydrocarbons reproduces the slope obtained in the logarithmic plot of the experimental saturation concentration vs number of hydrocarbons (Figure S3). We note that we have thus far ignored the effect of the ligand interpenetration (gain in enthalpy upon aggregation due to van der Waals ligand–ligand interaction) that counteracts the steric repulsion.
Interpenetration of ligands explains the lower solubility of stearyl-ASC18 compared to oleyl-ACS18 (Figure S3). Similar effects of the ligand sterics have been observed on smaller, quasispherical NCs (CdSe, Fe2O3, Ag, etc.). (23) For sufficiently long chains the overall impact of interdigitation on the system’s free energy will level off, as commonly observed with polymers. (24) In fact, both the experiment and the calculations agree on the grafting density and ligand-chain distribution as the factors able to boost the CsPbBr3 NC–NC repulsion well beyond the impact of chain length. Soy lecithin is a natural ligand system that harnesses all three components (Figure 1c). Our results on CsPbBr3 NCs and recent work by others on CdSe NCs (25) point to a rather unexplored potential of ligand systems comprising the same headgroup and a mixture of different hydrocarbon tails.
Highly concentrated colloids of lecithin-covered CsPbBr3 NCs retain a fully dispersed state without noticeable aggregation for at least 1 month, as can be readily seen by the Tindall effect (Figure S4) and confirmed by dynamic light scattering (DLS, Figures S5 and S6). They can be centrifuged at 29 500g for 1 h without noticeable precipitation. At the other extreme, in very dilute solutions (Figure 2a and 2b, right), factors such as chain length become less important due to decreased collision probability. The tight binding of the ligand, however, gains a pivotal role as it counteracts dilution-favored desorption of the ligands (leading to NC degradation as well). The PL peak positions and PL QY values are retained upon deep dilution (Figure S7).

Figure 2

Figure 2. (a and b) Vials containing lecithin-covered ∼8 nm CsPbBr3 NCs at various concentrations (indicated on the figure) under day light and UV light, respectively. (c) Typical absorption spectra (gray, as synthesized; black, fraction 8) and emission spectrum (green, fraction 8), (d) high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) image, (e) HR-TEM image, and (f) high-resolution HAADF-STEM image of CsPbBr3 NCs from fraction 8 obtained by size fractioning; full size-selected series is given in Figure 3a and 3b as well as Figures S15 and S16.

Soy-lecithin-capped CsPbX3 NCs were obtained at 80–150 °C in a hot-injection synthesis (see details in SI) by adapting the methodology that we previously devised for synthetic zwitterionic molecules as capping ligands. In particular, Pb–oleate, Cs–oleate, and trioctylphosphine–halogen adduct (TOPBr2, TOPCl2) were used as precursors, whereas octadecene was employed as a solvent (effect of halide ratio Figrue S8). The NCs crystallize into an orthorhombic perovskite lattice (Pbnm, Figure S9). (1d,26) NCs can be isolated by destabilizing the crude solution with acetone followed by centrifugation and redispersion in toluene. The synthesis yield can be ca. 70% (for a 130 °C, synthesis), which is about 800 mg from a 25 mL reaction scale. The loss is primarily due to incomplete precipitation at each stage. We note the practical utility of perovskite NCs is often handicapped by the low synthesis yields caused by the losses at the isolation and purification stages, not by the initial precursor-to-NC conversion. For instance, 90% of NCs are typically lost in conventional OA/OLA synthesis due to the desorption of OA/OLA coating and NC aggregation. With zwitterionic ligands, on the contrary, up to 80% of NCs can be obtained in the form of well-purified colloids. (14k) In this regard, lecithin is a similarly efficient ligand yet with its own specifics caused by drastically enhanced colloidal stabilization. For instance, running the synthesis at the concentrations of reagents commensurate with conventional OA/OLA synthesis (i.e., five times lower than we report here) yields colloids that are hard to destabilize by acetone.
Lecithin-capped NCs fully retain their spectral characteristics after intense purification by repetitive precipitation with diverse nonsolvents under ambient conditions and after prolonged storage (Figure S10). We note that all results presented in this work are obtained for samples that were at least several weeks old. Efficient ligand binding and ligand retention upon isolation is directly confirmed by NMR spectroscopy and thermal gravimetric analysis (TGA). The 1H and 31P NMR spectra of lecithin-covered NCs show severe line broadening compared to lecithin reference spectra and spectra of decomposed NCs (Figures S11 and S12). Decomposition of NCs was conducted by mixing a concentrated colloid with d6-DMSO. A plausible reason for the line broadening is the increase of the ligand’s rotational correlation time due to association with the NCs. Association of the ligand molecules with each other into micelles, an alternative cause for the reduced molecular tumbling and hence line broadening, can be excluded based on analytical ultracentrifugation (AUC) measurements, as discussed later in the text. Diffusion-ordered NMR spectroscopy (DOSY) shows an increase of the ligand’s diffusion coefficient by a factor of 10 when associated with the NCs (Figure S13). This is in agreement with values previously seen with other zwitterionic ligands (see ref (14k) and Table S2). The NC size received from DOSY, assuming tight binding of the ligands, is commensurate with NC sizes determined by TEM or DLS (Table S2). The combination of these arguments suggests the absence of free organic solutes. With the TGA weight loss of ca. 25% (at 300 °C, Figure S14), one can estimate ligand surface densities of ca. 1.8 nm–2. This value is close to that obtained with single-chain zwitterionic ligands such as ASC18 (ca. 2.0 nm–2(14k)), suggesting that bulkier lecithin molecules do not suffer from much increased sterical encumbrance at the NC surface.
The typical absorption spectrum for CsPbBr3 NCs synthesized at 130 °C is shown in Figure 2c (gray line). Such colloids are characterized by the standard size deviation of ca. 20%. For obtaining practical quantities of narrowly dispersed NCs (size distribution below 10%) we employed a so-called size-selective precipitation technique, extensively used in the past for conventional semiconductor NCs (InP, CdSe, CdTe). (27) Size fractioning is conducted by the gradual destabilization of a colloid with a nonsolvent and collection of each fraction by centrifugation. High concentrations and stable surface capping are imperative for an overall practicality of this approach. So-obtained NCs exhibit better-resolved excitonic features in the absorption spectra, as follows from Figure 2c (black curve), showing fraction 8 in this specific case, comprising 16 wt % of the initial ensemble. Electron microscopy reveals a uniform cuboid shape, mean NC size of ∼9 nm, and confirms monodispersity of these NCs (ca. 9.9% of size distribution). Monodisperse NC colloids with a mean NC size precisely adjustable in the range of 6–10 nm can be obtained by combining the effect of the synthesis temperature (higher for larger sizes) and size-selective precipitation (Figures S15 and S16, Table S3). For smaller NCs (<8 nm), which fall into strong and intermediate quantum confinement regimes, (28) the benefits of size selection on the sharpening of absorption spectra and narrowing PL lines are most pronounced. At larger sizes, PL bands are already limited by the homogeneous line width, (29) as can be seen from the spectral indistinguishability of fractions 1–8 (Figure 3b). Absorbance spectra often are less subjected to homogeneous broadening and hence render a better estimate for the spectral polydispersity of the colloids (Figure 3a).

Figure 3

Figure 3. (a) Absorption and (b) photoluminescence spectra of size-selected fractions of CsPbBr3 NCs (130 °C synthesis, 20% initial size distribution). NC size decreases with increasing fraction number. (c) Schematic of the AUC principle. (d) C(s,f/f0) distributions estimated by Sedfit from absorbance scans at 500 nm for fractions 6–9 (these fractions together sum up to 59% of the whole ensemble). Unit Sv “Svedberg” is equal to 10–13 s. From the distributions, solvodynamic particle size and core size were calculated and tabulated on the right. Core size refers to the average edge length of the NC. Results are tabulated in Table S4.

The size distribution of the size-selected fractions (for the same 130 °C, synthesis) has been further quantified with two very distinct techniques which can probe the NCs in their native colloidal state: analytical ultracentrifugation (AUC) and small-angle X-ray scattering (SAXS). The results for fractions 6–9 are presented in Table 1 and compared to TEM data (Figure S17).
Table 1. NC Edge Lengths (in nm) Determined by Various Methods
fractionTEMAUCSAXS
610.4 ± 0.9910.3 
710.5 ± 1.29.9 
88.9 ± 0.898.77.9 × 9.1 × 9.1, σ = 6.5%, average 8.7
98.75 ± 0.878.07.2 × 8.2 × 8.3, σ = 6.6%, average 7.9
We employed AUC sedimentation velocity (SV) measurement for its capability in determining solvodynamic parameters of the NCs in their original dispersion. (30) In an AUC-SV experiment, the dispersion in a cell is spun at a constant speed, causing a net sedimenting movement of the NCs toward the bottom of the cell. The concentration of the nanocrystals is monitored along the cell as time progresses. Absorbance or interference optics can be utilized (Figure 3c). The evolution of the absorbance signal with space and time depends on the sedimentation of the species that absorb at a given wavelength. The evolution of the interference pattern is sensitive to all species present because their sedimentation causes a change in the refractive index of the dispersion. In our AUC-SV experiments we recorded both absorbance and interference simultaneously. A sample composed solely of NCs should have the same distribution of sedimentation coefficients derived from absorbance and interference AUC; any difference would be an indication of optically inactive species in solution (i.e., impurities). The distribution of sedimentation coefficients C(s), which is determined by the particle size, shape, and density, is obtained by numerically fitting the Lamm’s solution to the AUC radial profiles (Figures S18–20). (30a,31) We ran AUC on multiple fractions of the NCs. We found that for all fractions the distribution results from absorbance (550 nm) data and interference data were essentially the same (Figure S20), indicating that the particles have a high degree of purity. Representative distributions of the sedimentation coefficients are shown in Figure 3d (and others are in Figure S20). These plots clearly show that each fraction contains NCs of rather narrow size distribution and that fractionation improved size distribution.
In order to better explain the working principle of AUC we can take the example of a NCs-containing sample. The centrifugal forces that act on the NCs determine the movement of the absorbance boundary that is related to the NCs sedimentation coefficient that is proportional to their solvodynamic size. As the experiment progresses, the natural diffusion of the NCs tends to broaden the absorbance boundary whose thickness is effectively infinitely sharp at time zero and progressively can evolve to be sizable. Such evolution of the boundary is used to determine either the particle’s density (assuming spherical shape) or the particle’s frictional coefficient (a parameter related to the shape of the NCs, assuming a known density). (30a−c) In the analysis of the NCs described here we assume a frictional coefficient of a cube (f/f0 = 1.05); this allowed us to calculate the density for the NCs. As explained in ref (30a), the simultaneous knowledge of the NCs solvodynamic radius (from the sedimentation coefficient) and the overall particle density allowed us to calculate the size of the inorganic core of the NCs. Overall, the core sizes found in AUC agree quantitatively with the edge lengths retrieved from HR-TEM and SAXS (see Table 1). In addition, we can also conclude that the samples are free from known impurities for these NCs (such as Cs4PbBr6, CsPb2Br5, PbBr2, CsBr, delaminated Ruddleston–Popper phases, organic micelles, etc.) as AUC at 500 nm leads to identical results to AUC at 335 nm or AUC run in interference mode. Any of the impurities named above would have led to additional contributions to the AUC distributions.
Colloids of NCs with less than 10% polydispersity are highly suited for analysis with small angle X-ray scattering (SAXS). Size- and shape-dependent scattering features can thus be identified and interpreted, as we illustrate here for toluene solutions of lecithin-capped CsPbBr3 NCs (fractions 8 and 9 from 130 °C, synthesis). Colloids were filled in a flow cell capillary, followed by the SAXS measurements at a synchrotron source (see SI section 4.5 for details). After applying intensity and background corrections, the scattering traces all showed clear features of form factor scattering and were hence compared to analytical models. (32) Additionally, the shape was reconstructed using SASHEL, a model-free Monte Carlo 3D fitting algorithm, which operates without prior assumptions. (33) The results of both methods are shown in Figures 4 and S21 for the NCs of fractions 8 and 9, respectively.

Figure 4

Figure 4. (a) SAXS traces of NCs from fraction 8 (green) fitted with a monodisperse orthorhombic (violet) and polydisperse cubic (orange) and orthorhombic (black) models. Best fit was found for an orthorhombic model with 6.5% polydispersity on the edge lengths (fitting results Table S5). (b) Model-free fit of the small angle scattering data along with the NC shape that allowed for the a full 3D reconstruction, shown from 3 sides. Shape found from reconstruction of the scattering pattern agrees with the best-fit model, TEM statistics (Figure 2 d–f), and AUC data (Figure 3d). Measurements and fittings for NCs from fraction 9 can be found in Figure S21.

In the analytical model, an oblate cuboid with dimensions 7.99 × 9.27 × 9.27 nm (i.e., aspect ration of 0.86) and 6.43% relative polydispersity was found to most closely represent the NCs of fraction 8. Alternative models such as monodisperse cuboids and cubes with 9.4% relative polydispersity did not reproduce the measured scattering traces as closely, as can be seen from the residuals in Figure 4a. Full reconstruction yielded a cuboidal NC shape of 7.9 × 9.1 × 9.3 nm for NCs of fraction 8 (Figures 4b).
Retention of colloidal, structural, and optical integrity over a broad concentration range of CsPbX3 NCs, i.e., from 400 mg/mL down to few ng/mL, will have diverse practical implications. In the following, we showcase two instances of immense practical utility of ultraconcentrated as well as ultradilute colloids of CsPbX3 NCs.
Highly concentrated colloids can be used as inks for one-step deposition of thick, smooth, optically clear films by spin coating. The thickness of the film can be readily adjusted by the concentration of the colloid to above 1 μm while maintaining a roughness of just 15 nm (Figure 5a–d, Figures S22 and S23). Previously, micrometer-thick perovskite NC films were obtained mostly by stepwise deposition with intermittent consolidation steps (8d,14c) or by filling of a scaffold structure. (6a,34) The experimental thickness vs concentration dependence—while linear in ASC18-covered NCs (black)—can be approximated with a square root law for lecithin-covered NCs (green), although an increase with the power of 1/3 would be generally expected. This deviation can be rationalized by the variation of solution properties such as viscosity, vapor pressure, or contact angle at high volumetric loadings, (35) which are critical to the spin-coating process. In particular, higher viscosity leads to thicker than expected films. Importantly, these films exhibit excellent optical clarity, indicative of their aggregation-free deposition and high PL QYs of ca. 30% at all thicknesses. Such thick films may find applications in the next-generation displays with NC films serving as both light filters and emitters (3a,i,17) or as scintillators for detecting X-rays and gamma-rays. (6,9)

Figure 5

Figure 5. (a) Film thickness (AFM) under identical spin-coating conditions as a function of ink concentration (underlying AFM images Figures S22 and S23). (Green) Films made from toluene solutions of lecithin-capped CsPbBr3 NCs and (black) films from toluene solutions of ASC18-capped CsPbBr3 NCs. Error bars indicate film roughness. Lines are power-law fits. For the lecithin NCs the power is 0.5. (b) Photo of a 1 × 1 cm film 1 μm thick showing optical transparency; (c) AFM scan of a 1 μm thick film with roughness less than 13 nm; (d) SEM image of an identically prepared film showing long-range thickness homogeneity; (e) 80 consecutive spectra of a single lecithin-covered CsPbBr3 NC showing spectral stability due to good ligand passivation; (f) normalized correlogram indicating a single emitter is measured.

Ultradilute colloids are also in great demand. For example, dilution to the ng/mL level is necessary for obtaining sparsely distributed NCs upon deposition and solvent evaporation. In particular, dilutions which result in the average NC-to-NC separation by several micrometers are ideally suited for single NC spectroscopy with typical microphotoluminescence setups. As discussed above, labile ligand shells rapidly lead to the loss of colloidal state and NC aggregation upon such severe dilution due to ligand desorption. We therefore tested the durability of lecithin-capped CsPbBr3 NCs for obtaining single-photon emission at room temperature (Figure 5e and 5f), moreover, by conducting all steps under ambient conditions. Despite the presence of PL blinking as usually reported for these NCs, the PL is stable for several tens of seconds and without significant PL blue shift (typical for perovskite NCs). (7j,29a,36) Second-order correlation measurements attest single-photon emission with the characteristic antibunching behavior and a good single-photon purity (g2(0) ≈ 0.2), further confirming a nonaggregated, intact state of these NCs.

Conclusions

ARTICLE SECTIONS
Jump To

We found that soy lecithin–an inexpensive, natural, mass-produced zwitterionic phospholipid–makes for an effective capping ligand for the synthesis of colloidal CsPbX3 NCs. Most importantly, it imparts high colloidal stability in a broad range of NC concentrations (from few ng/mL to above 400 mg/mL). Tight ligand binding, high grafting density, long chains, and ligand polydispersity are the key contributors of the effectiveness of this ligand. High synthesis yield and robustness of the colloids allow for facile size fractioning of the colloids, yielding practical quantities of monodisperse NCs with mean particle size tunable in the range of 6–10 nm. The size, shape, and size distribution of so-obtained NCs have been thoroughly examined with TEM, SAXS, and AUC techniques. In particular, the shape of these NCs have been confirmed to be oblate cuboids with a small aspect ratio of ca. 0.86.
An immense practical utility of such ultraconcentrated and ultradilute colloids has been illustrated by two showcase experiments. First, we have shown a one-step deposition of thick (up to 1.5 μm) NC films by spin coating. Such films exhibit excellent optical clarity while retaining bright fluorescence. Second, such colloids are also versatile inks for obtaining highly dilute NC systems as required for single-dot spectroscopy. Single-photon emission with pronounced photon antibunching has thus been readily observed.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.9b09969.

  • Experimental methods and supplementary figures (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
    • Maksym V. Kovalenko - Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, SwitzerlandLaboratory for Thin Films and Photovoltaics and , Empa−Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, SwitzerlandOrcidhttp://orcid.org/0000-0002-6396-8938 Email: [email protected]
  • Authors
    • Franziska Krieg - Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, SwitzerlandLaboratory for Thin Films and Photovoltaics and , Empa−Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
    • Quy K. Ong - Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
    • Max Burian - Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
    • Gabriele Rainò - Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, SwitzerlandLaboratory for Thin Films and Photovoltaics and , Empa−Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
    • Denys Naumenko - Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/V, 8010 Graz, Austria
    • Heinz Amenitsch - Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/V, 8010 Graz, Austria
    • Adrian Süess - Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, SwitzerlandLaboratory for Thin Films and Photovoltaics and , Empa−Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
    • Matthias J. Grotevent - Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, SwitzerlandLaboratory for Transport at Nanoscale Interfaces and , Empa−Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
    • Frank Krumeich - Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, SwitzerlandOrcidhttp://orcid.org/0000-0001-5625-1536
    • Maryna I. Bodnarchuk - Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, SwitzerlandLaboratory for Thin Films and Photovoltaics and , Empa−Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, SwitzerlandOrcidhttp://orcid.org/0000-0001-6597-3266
    • Ivan Shorubalko - Laboratory for Transport at Nanoscale Interfaces and , Empa−Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
    • Francesco Stellacci - Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, SwitzerlandOrcidhttp://orcid.org/0000-0003-4635-6080
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS
Jump To

This work was financially supported by the Swiss Federal Commission for Technology and Innovation (CTI-No. 18614.1 PFNM-NM) and, in part, by the European Union through the FP7 (ERC Starting Grant NANOSOLID, grant agreement No. [306733]) and through the Horizon 2020 Research and Innovation Programme (grant agreement No. [819740], project SCALE-HALO). Q.O. and F.S. gratefully acknowledge support from the Swiss National Science Foundation (SNSF) (Grant No. 200020_185062). This project received funding from the EU-H2020 Research and Innovation Programme under grant agreement no. 654360 having benefitted from access to the Austrian SAXS beamline provided by TUG@Elettra in Trieste, Italy, within the framework of the NFFA-Europe Transnational Access Activity. The authors thank the Scientific Center for Optical and Electron Microscopy (ScopeM) at ETH Zurich and the Empa Electron Microscopy Center for use of their facilities.

References

ARTICLE SECTIONS
Jump To

This article references 36 other publications.

  1. 1
    (a) Schmidt, L. C.; Pertegas, A.; Gonzalez-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Minguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Perez-Prieto, J. Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. J. Am. Chem. Soc. 2014, 136, 850853,  DOI: 10.1021/ja4109209
    (b) Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 36926,  DOI: 10.1021/nl5048779
    (c) Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Bertolotti, F.; Masciocchi, N.; Guagliardi, A.; Kovalenko, M. V. Monodisperse Formamidinium Lead Bromide Nanocrystals with Bright and Stable Green Photoluminescence. J. Am. Chem. Soc. 2016, 138, 1420214205,  DOI: 10.1021/jacs.6b08900
    (d) Swarnkar, A.; Chulliyil, R.; Ravi, V. K.; Irfanullah, M.; Chowdhury, A.; Nag, A. Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots. Angew. Chem., Int. Ed. 2015, 54, 1542415428,  DOI: 10.1002/anie.201508276
    (e) Huang, H.; Polavarapu, L.; Sichert, J. A.; Susha, A. S.; Urban, A. S.; Rogach, A. L. Colloidal Lead Halide Perovskite Nanocrystals: Synthesis, Optical Properties and Applications. NPG Asia Mater. 2016, 8, e328e328,  DOI: 10.1038/am.2016.167
    (f) Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and Potential Optoelectronic Applications of Lead Halide Perovskite Nanocrystals. Science 2017, 358, 745750,  DOI: 10.1126/science.aam7093
    (g) Zhang, J.; Yang, X. K.; Deng, H.; Qiao, K. K.; Farooq, U.; Ishaq, M.; Yi, F.; Liu, H.; Tang, J.; Song, H. S. Low-Dimensional Halide Perovskites and Their Advanced Optoelectronic Applications. Nano-Micro Lett. 2017, 9, 3662,  DOI: 10.1007/s40820-017-0137-5
    (h) Li, X.; Cao, F.; Yu, D.; Chen, J.; Sun, Z.; Shen, Y.; Zhu, Y.; Wang, L.; Wei, Y.; Wu, Y.; Zeng, H. All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications. Small 2017, 13, 16039961604020,  DOI: 10.1002/smll.201603996
    (i) Akkerman, Q. A.; Raino, G.; Kovalenko, M. V.; Manna, L. Genesis, Challenges and Opportunities for Colloidal Lead Halide Perovskite Nanocrystals. Nat. Mater. 2018, 17, 394405,  DOI: 10.1038/s41563-018-0018-4
    (j) Adinolfi, V.; Peng, W.; Walters, G.; Bakr, O. M.; Sargent, E. H. The Electrical and Optical Properties of Organometal Halide Perovskites Relevant to Optoelectronic Performance. Adv. Mater. 2018, 30, 17007641700777,  DOI: 10.1002/adma.201700764
    (k) Zhao, Y.; Li, J.; Dong, Y.; Song, J. Synthesis of Colloidal Halide Perovskite Quantum Dots/Nanocrystals: Progresses and Advances. Isr. J. Chem. 2019, 59, 649660,  DOI: 10.1002/ijch.201900009
    (l) Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties. Chem. Rev. 2019, 119, 32963348,  DOI: 10.1021/acs.chemrev.8b00644
    (m) Zheng, X. P.; Hou, Y.; Sun, H. T.; Mohammed, O. F.; Sargent, E. H.; Bakr, O. M. Reducing Defects in Halide Perovskite Nanocrystals for Light-Emitting Applications. J. Phys. Chem. Lett. 2019, 10, 26292640,  DOI: 10.1021/acs.jpclett.9b00689
    (n) Dutta, A.; Pradhan, N. Phase-Stable Red-Emitting CsPbI3 Nanocrystals: Successes and Challenges. ACS Energy Lett. 2019, 4, 709719,  DOI: 10.1021/acsenergylett.9b00138
  2. 2
    (a) Giansante, C.; Infante, I. Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective. J. Phys. Chem. Lett. 2017, 8, 52095215,  DOI: 10.1021/acs.jpclett.7b02193
    (b) Huang, H.; Bodnarchuk, M. I.; Kershaw, S. V.; Kovalenko, M. V.; Rogach, A. L. Lead Halide Perovskite Nanocrystals in the Research Spotlight: Stability and Defect Tolerance. ACS Energy Lett. 2017, 2, 20712083,  DOI: 10.1021/acsenergylett.7b00547
    (c) Motti, S. G.; Meggiolaro, D.; Martani, S.; Sorrentino, R.; Barker, A. J.; De Angelis, F.; Petrozza, A. Defect Activity in Metal-Halide Perovskites. Adv. Mater. 2019, 31, 1901183,  DOI: 10.1002/adma.201901183
  3. 3
    (a) Kovalenko, M. V.; Bodnarchuk, M. I. Lead Halide Perovskite Nanocrystals: From Discovery to Self-assembly and Applications. Chimia 2017, 71, 461470,  DOI: 10.2533/chimia.2017.461
    (b) Zhao, X.; Ng, J. D. A.; Friend, R. H.; Tan, Z.-K. Opportunities and Challenges in Perovskite Light-Emitting Devices. ACS Photonics 2018, 5, 38663875,  DOI: 10.1021/acsphotonics.8b00745
    (c) Van Le, Q.; Jang, H. W.; Kim, S. Y. Recent Advances toward High-Efficiency Halide Perovskite Light emitting diodes Review and Perspective. Small Methods 2018, 2, 17004191700437,  DOI: 10.1002/smtd.201700419
    (d) Chiba, T.; Kido, J. Lead Halide Perovskite Quantum Dots for Light Emitting Devices. J. Mater. Chem. C 2018, 6, 11868,  DOI: 10.1039/C8TC03561J
    (e) Zhang, F.; Song, J.; Han, B.; Fang, T.; Li, J.; Zeng, H. High-Efficiency Pure-Color Inorganic Halide Perovskite Emitters for Ultrahigh-Definition Displays: Progress for Backlighting Displays and Electrically Driven Devices. Small Methods 2018, 2, 17003821700391,  DOI: 10.1002/smtd.201700382
    (f) Kim, Y.-H.; Kim, S.; Jo, S. H.; Lee, T.-W. Metal Halide Perovskites: From Crystal Formations to Light-Emitting-Diode Applications. Small Methods 2018, 2, 18000931800114,  DOI: 10.1002/smtd.201800093
    (g) Chang, S.; Bai, Z.; Zhong, H. In Situ Fabricated Perovskite Nanocrystals: A Revolution in Optical Materials. Adv. Opt. Mater. 2018, 6, 18003801800399,  DOI: 10.1002/adom.201800380
    (h) Chen, N.; Bai, Z.; Wang, Z.; Ji, H.; Liu, R.; Cao, C.; Wang, H.; Jiang, F.; Zhong, H. Low Cost Quantum Dot Film based Wide Color Gamut Backlight Unit for LCD TVs. Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 2018, 49, 16571659,  DOI: 10.1002/sdtp.12303
    (i) Yoon, H. C.; Lee, H.; Kang, H.; Oh, J. H.; Do, Y. R. Highly Efficient Wide-Color-Gamut QD-Emissive LCDs using Red and Green Perovskite Core/Shell QDs. J. Mater. Chem. C 2018, 6, 1302313033,  DOI: 10.1039/C8TC04537B
    (j) Lu, M.; Zhang, Y.; Wang, S.; Guo, J.; Yu, W. W.; Rogach, A. L. Metal Halide Perovskite Light-Emitting Devices: Promising Technology for Next-Generation Displays. Adv. Funct. Mater. 2019, 29, 19020081902043,  DOI: 10.1002/adfm.201902008
    (k) He, Z.; Zhang, C.; Dong, Y.; Wu, S.-T. Emerging Perovskite Nanocrystals-Enhanced Solid-State Lighting and Liquid-Crystal Displays. Crystals 2019, 9, 59,  DOI: 10.3390/cryst9020059
  4. 4
    (a) Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold Amplified Spontaneous Emission and Lasing from Colloidal Nanocrystals of Caesium Lead Halide Perovskites. Nat. Commun. 2015, 6, 80568064,  DOI: 10.1038/ncomms9056
    (b) Stylianakis, M. M.; Maksudov, T.; Panagiotopoulos, A.; Kakavelakis, G.; Petridis, K. Inorganic and Hybrid Perovskite Based Laser Devices: A Review. Materials 2019, 12, 859,  DOI: 10.3390/ma12060859
    (c) Zhang, Y.; Lim, C.-K.; Dai, Z.; Yu, G.; Haus, J. W.; Zhang, H.; Prasad, P. N. Photonics and Optoelectronics using Nano-Structured Hybrid Perovskite Media and their Optical Cavities. Phys. Rep. 2019, 795, 151,  DOI: 10.1016/j.physrep.2019.01.005
  5. 5
    (a) Wu, Y.; Li, X.; Wei, Y.; Gu, Y.; Zeng, H. Perovskite Photodetectors with both Visible-Infrared Dual-Mode Response and Super-Narrowband Characteristics towards Photo-Communication Encryption Application. Nanoscale 2018, 10, 359365,  DOI: 10.1039/C7NR06193E
    (b) Mei, S.; Liu, X.; Zhang, W.; Liu, R.; Zheng, L.; Guo, R.; Tian, P. High-Bandwidth White-Light System Combining a Micro-LED with Perovskite Quantum Dots for Visible Light Communication. ACS Appl. Mater. Interfaces 2018, 10, 56415648,  DOI: 10.1021/acsami.7b17810
    (c) Zhang, Y.; Wang, L.; Wang, K.; Wong, K. S.; Wu, K. Recent Advances in the Hardware of Visible Light Communication. IEEE Access 2019, 7, 9109391104,  DOI: 10.1109/ACCESS.2019.2927054
    (d) Cen, G.; Liu, Y.; Zhao, C.; Wang, G.; Fu, Y.; Yan, G.; Yuan, Y.; Su, C.; Zhao, Z.; Mai, W. Atomic-Layer Deposition-Assisted Double-Side Interfacial Engineering for High-Performance Flexible and Stable CsPbBr3 Perovskite Photodetectors toward Visible Light Communication Applications. Small 2019, 15, 1902135,  DOI: 10.1002/smll.201902135
  6. 6
    (a) Chen, Q.; Wu, J.; Ou, X.; Huang, B.; Almutlaq, J.; Zhumekenov, A. A.; Guan, X.; Han, S.; Liang, L.; Yi, Z.; Li, J.; Xie, X.; Wang, Y.; Li, Y.; Fan, D.; Teh, D. B. L.; All, A. H.; Mohammed, O. F.; Bakr, O. M.; Wu, T.; Bettinelli, M.; Yang, H.; Huang, W.; Liu, X. All-Inorganic Perovskite Nanocrystal Scintillators. Nature 2018, 561, 8893,  DOI: 10.1038/s41586-018-0451-1
    (b) Maddalena, F.; Tjahjana, L.; Xie, A.; Arramel; Zeng, S.; Wang, H.; Coquet, P.; Drozdowski, W.; Dujardin, C.; Dang, C.; Birowosuto, M. Inorganic, Organic, and Perovskite Halides with Nanotechnology for High–Light Yield X- and γ-ray Scintillators. Crystals 2019, 9, 88117,  DOI: 10.3390/cryst9020088
  7. 7
    (a) Raino, G.; Nedelcu, G.; Protesescu, L.; Bodnarchuk, M. I.; Kovalenko, M. V.; Mahrt, R. F.; Stoferle, T. Single Cesium Lead Halide Perovskite Nanocrystals at Low Temperature: Fast Single-Photon Emission, Reduced Blinking, and Exciton Fine Structure. ACS Nano 2016, 10, 24852490,  DOI: 10.1021/acsnano.5b07328
    (b) Fu, M.; Tamarat, P.; Huang, H.; Even, J.; Rogach, A. L.; Lounis, B. Neutral and Charged Exciton Fine Structure in Single Lead Halide Perovskite Nanocrystals Revealed by Magneto-optical Spectroscopy. Nano Lett. 2017, 17, 28952901,  DOI: 10.1021/acs.nanolett.7b00064
    (c) Fu, M.; Tamarat, P.; Trebbia, J. B.; Bodnarchuk, M. I.; Kovalenko, M. V.; Even, J.; Lounis, B. Unraveling Exciton-Phonon Coupling in Individual FAPbI3 Nanocrystals Emitting near-infrared Single Photons. Nat. Commun. 2018, 9, 33183328,  DOI: 10.1038/s41467-018-05876-0
    (d) Tong, Y.; Fu, M.; Bladt, E.; Huang, H.; Richter, A. F.; Wang, K.; Muller-Buschbaum, P.; Bals, S.; Tamarat, P.; Lounis, B.; Feldmann, J.; Polavarapu, L. Chemical Cutting of Perovskite Nanowires into Single-Photon Emissive Low-Aspect-Ratio CsPbX3 (X = Cl, Br, I) Nanorods. Angew. Chem., Int. Ed. 2018, 57, 1609416098,  DOI: 10.1002/anie.201810110
    (e) Li, B.; Huang, H.; Zhang, G. F.; Yang, C. G.; Guo, W. L.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Biju, V. P.; Rogach, A. L.; Xiao, L. T.; Jia, S. T. Excitons and Biexciton Dynamics in Single CsPbBr3 Perovskite Quantum Dots. J. Phys. Chem. Lett. 2018, 9, 69346940,  DOI: 10.1021/acs.jpclett.8b03098
    (f) Becker, M. A.; Scarpelli, L.; Nedelcu, G.; Raino, G.; Masia, F.; Borri, P.; Stoferle, T.; Kovalenko, M. V.; Langbein, W.; Mahrt, R. F. Long Exciton Dephasing Time and Coherent Phonon Coupling in CsPbBr2Cl Perovskite Nanocrystals. Nano Lett. 2018, 18, 75467551,  DOI: 10.1021/acs.nanolett.8b03027
    (g) Becker, M. A.; Vaxenburg, R.; Nedelcu, G.; Sercel, P. C.; Shabaev, A.; Mehl, M. J.; Michopoulos, J. G.; Lambrakos, S. G.; Bernstein, N.; Lyons, J. L.; Stoferle, T.; Mahrt, R. F.; Kovalenko, M. V.; Norris, D. J.; Raino, G.; Efros, A. L. Bright Triplet Excitons in Caesium Lead Halide Perovskites. Nature 2018, 553, 189193,  DOI: 10.1038/nature25147
    (h) Utzat, H.; Sun, W.; Kaplan, A. E. K.; Krieg, F.; Ginterseder, M.; Spokoyny, B.; Klein, N. D.; Shulenberger, K. E.; Perkinson, C. F.; Kovalenko, M. V.; Bawendi, M. G. Coherent Single-Photon Emission from Colloidal Lead Halide Perovskite Quantum Dots. Science 2019, 363, 10681072,  DOI: 10.1126/science.aau7392
    (i) Tamarat, P.; Bodnarchuk, M. I.; Trebbia, J. B.; Erni, R.; Kovalenko, M. V.; Even, J.; Lounis, B. The Ground Exciton State of Formamidinium Lead Bromide Perovskite Nanocrystals is a Singlet Dark State. Nat. Mater. 2019, 18, 717724,  DOI: 10.1038/s41563-019-0364-x
    (j) Raino, G.; Landuyt, A.; Krieg, F.; Bernasconi, C.; Ochsenbein, S. T.; Dirin, D. N.; Bodnarchuk, M. I.; Kovalenko, M. V. Underestimated Effect of a Polymer Matrix on the Light Emission of Single CsPbBr3 Nanocrystals. Nano Lett. 2019, 19, 36483653,  DOI: 10.1021/acs.nanolett.9b00689
  8. 8
    (a) NREL Best Research-Cell Efficiency Chart; https://www.nrel.gov/pv/cell-efficiency.html (accessed Aug 26, 2019).
    (b) Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum Dot–Induced Phase Stabilization of a-CsPbI3 Perovskite for High-Efficiency Photovoltaics. Science 2016, 354, 9295,  DOI: 10.1126/science.aag2700
    (c) Sanehira, E. M.; Marshall, A. R.; Christians, J. A.; Harvey, S. P.; Ciesielski, P. N.; Wheeler, L. M.; Schulz, P.; Lin, L. Y.; Beard, M. C.; Luther, J. M. Enhanced mobility CsPbI3 Quantum Dot Arrays for Record-Efficiency, High-Voltage Photovoltaic Cells. Sci. Adv. 2017, 3, eaao4204,  DOI: 10.1126/sciadv.aao4204
    (d) Wheeler, L. M.; Sanehira, E. M.; Marshall, A. R.; Schulz, P.; Suri, M.; Anderson, N. C.; Christians, J. A.; Nordlund, D.; Sokaras, D.; Kroll, T.; Harvey, S. P.; Berry, J. J.; Lin, L. Y.; Luther, J. M. Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics. J. Am. Chem. Soc. 2018, 140, 1050410513,  DOI: 10.1021/jacs.8b04984
    (e) Song, Z.; Chen, C.; Li, C.; Awni, R. A.; Zhao, D.; Yan, Y. Wide-Bandgap, Low-Bandgap, and Tandem Perovskite Solar Cells. Semicond. Semicond. Sci. Technol. 2019, 34, 093001093032,  DOI: 10.1088/1361-6641/ab27f7
    (f) Fu, H. Colloidal Metal Halide Perovskite Nanocrystals: a Promising Juggernaut in Photovoltaic Applications. J. Mater. Chem. A 2019, 7, 1435714379,  DOI: 10.1039/C8TA12509K
  9. 9
    Miao, J.; Zhang, F. Recent Progress on Highly Sensitive Perovskite Photodetectors. J. Mater. Chem. C 2019, 7, 17411791,  DOI: 10.1039/C8TC06089D
  10. 10
    (a) Talapin, D. V.; Lee, J.-S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem. Rev. 2010, 110, 389458,  DOI: 10.1021/cr900137k
    (b) Boles, M. A.; Ling, D.; Hyeon, T.; Talapin, D. V. The Surface Science of Nanocrystals. Nat. Mater. 2016, 15, 141153,  DOI: 10.1038/nmat4526
    (c) Houtepen, A. J.; Hens, Z.; Owen, J. S.; Infante, I. On the Origin of Surface Traps in Colloidal II-VI Semiconductor Nanocrystals. Chem. Mater. 2017, 29, 752761,  DOI: 10.1021/acs.chemmater.6b04648
  11. 11
    (a) Weiss, E. A. Organic Molecules as Tools To Control the Growth, Surface Structure, and Redox Activity of Colloidal Quantum Dots. Acc. Chem. Res. 2013, 46, 26072615,  DOI: 10.1021/ar400078u
    (b) Ling, D. S.; Hackett, M. J.; Hyeon, T. Surface Ligands in Synthesis, Modification, Assembly and Biomedical Applications of Nanoparticles. Nano Today 2014, 9, 457477,  DOI: 10.1016/j.nantod.2014.06.005
    (c) Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V. Building Devices from Colloidal Quantum Dots. Science 2016, 353, aac5523,  DOI: 10.1126/science.aac5523
    (d) ten Brinck, S.; Infante, I. Surface Termination, Morphology, and Bright Photoluminescence of Cesium Lead Halide Perovskite Nanocrystals. ACS Energy Lett. 2016, 1, 12661272,  DOI: 10.1021/acsenergylett.6b00595
  12. 12
    (a) Ravi, V. K.; Santra, P. K.; Joshi, N.; Chugh, J.; Singh, S. K.; Rensmo, H.; Ghosh, P.; Nag, A. Origin of the Substitution Mechanism for the Binding of Organic Ligands on the Surface of CsPbBr3 Perovskite Nanocubes. J. Phys. Chem. Lett. 2017, 8, 49884994,  DOI: 10.1021/acs.jpclett.7b02192
    (b) Nenon, D. P.; Pressler, K.; Kang, J.; Koscher, B. A.; Olshansky, J. H.; Osowiecki, W. T.; Koc, M. A.; Wang, L. W.; Alivisatos, A. P. Design Principles for Trap-Free CsPbX3 Nanocrystals: Enumerating and Eliminating Surface Halide Vacancies with Softer Lewis Bases. J. Am. Chem. Soc. 2018, 140, 1776017772,  DOI: 10.1021/jacs.8b11035
    (c) Bodnarchuk, M. I.; Boehme, S. C.; ten Brinck, S.; Bernasconi, C.; Shynkarenko, Y.; Krieg, F.; Widmer, R.; Aeschlimann, B.; Günther, G.; Kovalenko, M. V.; Infante, I. Rationalizing and Controlling the Surface Structure and Electronic Passivation of Cesium Lead Halide Nanocrystals. ACS Energy Lett. 2019, 4, 6374,  DOI: 10.1021/acsenergylett.8b01669
    (d) Quarta, D.; Imran, M.; Capodilupo, A.-L.; Petralanda, U.; van Beek, B.; De Angelis, F.; Manna, L.; Infante, I.; De Trizio, L.; Giansante, C. Stable Ligand Coordination at the Surface of Colloidal CsPbBr3 Nanocrystals. J. Phys. Chem. Lett. 2019, 10, 37153726,  DOI: 10.1021/acs.jpclett.9b01634
  13. 13
    (a) De Roo, J.; Ibanez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals. ACS Nano 2016, 10, 207181,  DOI: 10.1021/acsnano.5b06295
    (b) Smock, S. R.; Williams, T. J.; Brutchey, R. L. Quantifying the Thermodynamics of Ligand Binding to CsPbBr3 Quantum Dots. Angew. Chem., Int. Ed. 2018, 57, 1171111715,  DOI: 10.1002/anie.201806916
    (c) Grisorio, R.; Di Clemente, M. E.; Fanizza, E.; Allegretta, I.; Altamura, D.; Striccoli, M.; Terzano, R.; Giannini, C.; Irimia-Vladu, M.; Suranna, G. P. Exploring the surface chemistry of cesium lead halide perovskite nanocrystals. Nanoscale 2019, 11, 986999,  DOI: 10.1039/C8NR08011A
  14. 14
    (a) Koh, W.; Park, S.; Ham, Y. Phosphonic Acid Stabilized Colloidal CsPbX3 (X = Br, I) Perovskite Nanocrystals and Their Surface Chemistry. Chemistry Select 2016, 1, 34793482,  DOI: 10.1002/slct.201600809
    (b) Wang, C.; Chesman, A. S.; Jasieniak, J. J. Stabilizing the Cubic Perovskite Phase of CsPbI3 Nanocrystals by Using an Alkyl Phosphinic Acid. Chem. Commun. 2017, 53, 232235,  DOI: 10.1039/C6CC08282C
    (c) Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum dot–induced phase stabilization of a-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 9295,  DOI: 10.1126/science.aag2700
    (d) Lu, C.; Li, H.; Kolodziejski, K.; Dun, C.; Huang, W.; Carroll, D.; Geyer, S. M. Enhanced Stabilization of inorganic Cesium Lead Triiodide (CsPbI3) Perovskite Quantum Dots with Tri-Octylphosphine. Nano Res. 2018, 11, 762768,  DOI: 10.1007/s12274-017-1685-1
    (e) Wu, L.; Zhong, Q.; Yang, D.; Chen, M.; Hu, H.; Pan, Q.; Liu, H.; Cao, M.; Xu, Y.; Sun, B.; Zhang, Q. Improving the Stability and Size Tunability of Cesium Lead Halide Perovskite Nanocrystals Using Trioctylphosphine Oxide as the Capping Ligand. Langmuir 2017, 33, 1268912696,  DOI: 10.1021/acs.langmuir.7b02963
    (f) Liu, F.; Zhang, Y.; Ding, C.; Kobayashi, S.; Izuishi, T.; Nakazawa, N.; Toyoda, T.; Ohta, T.; Hayase, S.; Minemoto, T.; Yoshino, K.; Dai, S.; Shen, Q. Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield. ACS Nano 2017, 11, 1037310383,  DOI: 10.1021/acsnano.7b05442
    (g) Di Stasio, F.; Christodoulou, S.; Huo, N.; Konstantatos, G. Near-Unity Photoluminescence Quantum Yield in CsPbBr3 Nanocrystal Solid-State Films via Postsynthesis Treatment with Lead Bromide. Chem. Mater. 2017, 29, 76637667,  DOI: 10.1021/acs.chemmater.7b02834
    (h) Koscher, B. A.; Swabeck, J. K.; Bronstein, N. D.; Alivisatos, A. P. Essentially Trap-Free CsPbBr3 Colloidal Nanocrystals by Postsynthetic Thiocyanate Surface Treatment. J. Am. Chem. Soc. 2017, 139, 65666569,  DOI: 10.1021/jacs.7b02817
    (i) Woo, J. Y.; Kim, Y.; Bae, J.; Kim, T. G.; Kim, J. W.; Lee, D. C.; Jeong, S. Highly Stable Cesium Lead Halide Perovskite Nanocrystals through in Situ Lead Halide Inorganic Passivation. Chem. Mater. 2017, 29, 70887092,  DOI: 10.1021/acs.chemmater.7b02669
    (j) Almeida, G.; Ashton, O. J.; Goldoni, L.; Maggioni, D.; Petralanda, U.; Mishra, N.; Akkerman, Q. A.; Infante, I.; Snaith, H. J.; Manna, L. The Phosphine Oxide Route toward Lead Halide Perovskite Nanocrystals. J. Am. Chem. Soc. 2018, 140, 1487814886,  DOI: 10.1021/jacs.8b08978
    (k) Krieg, F.; Ochsenbein, S. T.; Yakunin, S.; ten Brinck, S.; Aellen, P.; Süess, A.; Clerc, B.; Guggisberg, D.; Nazarenko, O.; Shynkarenko, Y.; Kumar, S.; Shih, C.-J.; Infante, I.; Kovalenko, M. V. Colloidal CsPbX3 (X = Cl, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability. ACS Energy Lett. 2018, 3, 641646,  DOI: 10.1021/acsenergylett.8b00035
    (l) Tan, Y.; Zou, Y.; Wu, L.; Huang, Q.; Yang, D.; Chen, M.; Ban, M.; Wu, C.; Wu, T.; Bai, S.; Song, T.; Zhang, Q.; Sun, B. Highly Luminescent and Stable Perovskite Nanocrystals with Octylphosphonic Acid as a Ligand for Efficient Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2018, 10, 37843792,  DOI: 10.1021/acsami.7b17166
    (m) Dong, Y.; Qiao, T.; Kim, D.; Parobek, D.; Rossi, D.; Son, D. H. Precise Control of Quantum Confinement in Cesium Lead Halide Perovskite Quantum Dots via Thermodynamic Equilibrium. Nano Lett. 2018, 18, 37163722,  DOI: 10.1021/acs.nanolett.8b00861
    (n) Imran, M.; Caligiuri, V.; Wang, M.; Goldoni, L.; Prato, M.; Krahne, R.; De Trizio, L.; Manna, L. Benzoyl Halides as Alternative Precursors for the Colloidal Synthesis of Lead-Based Halide Perovskite Nanocrystals. J. Am. Chem. Soc. 2018, 140, 26562664,  DOI: 10.1021/jacs.7b13477
    (o) Bohn, B. J.; Tong, Y.; Gramlich, M.; Lai, M. L.; Döblinger, M.; Wang, K.; Hoye, R. L. Z.; Müller-Buschbaum, P.; Stranks, S. D.; Urban, A. S.; Polavarapu, L.; Feldmann, J. Boosting Tunable Blue Luminescence of Halide Perovskite Nanoplatelets through Postsynthetic Surface Trap Repair. Nano Lett. 2018, 18, 52315238,  DOI: 10.1021/acs.nanolett.8b02190
    (p) Uddin, M. A.; Mobley, J. K.; Masud, A. A.; Liu, T.; Calabro, R. L.; Kim, D.-Y.; Richards, C. I.; Graham, K. R. Mechanistic Exploration of Dodecanethiol-Treated Colloidal CsPbBr3 Nanocrystals with Photoluminescence Quantum Yields Reaching Near 100%. J. Phys. Chem. C 2019, 123, 1810318112,  DOI: 10.1021/acs.jpcc.9b05612
    (q) Imran, M.; Ijaz, P.; Goldoni, L.; Maggioni, D.; Petralanda, U.; Prato, M.; Almeida, G.; Infante, I.; Manna, L. Simultaneous Cationic and Anionic Ligand Exchange For Colloidally Stable CsPbBr3 Nanocrystals. ACS Energy Lett. 2019, 4, 819824,  DOI: 10.1021/acsenergylett.9b00140
  15. 15
    Debuch, H. Über die enzymatische Spaltung des Lecithins aus Sojabohnen. Hoppe-Seyler's Z. Physiol. Chem. 1957, 306, 279286 DOI: 10.1515/bchm2.1957.306.1-2.279
  16. 16
    (a) Zhang, X.; Wang, H. C.; Tang, A. C.; Lin, S. Y.; Tong, H. C.; Chen, C. Y.; Lee, Y. C.; Tsai, T. L.; Liu, R. S. Robust and Stable Narrow-Band Green Emitter: An Option for Advanced Wide-Color-Gamut Backlight Display. Chem. Mater. 2016, 28, 84938497,  DOI: 10.1021/acs.chemmater.6b04107
    (b) Zhou, Q.; Bai, Z.; Lu, W. G.; Wang, Y.; Zou, B.; Zhong, H. In Situ Fabrication of Halide Perovskite Nanocrystal-Embedded Polymer Composite Films with Enhanced Photoluminescence for Display Backlights. Adv. Mater. 2016, 28, 91639168,  DOI: 10.1002/adma.201602651
    (c) Wang, Y.; He, J.; Chen, H.; Chen, J.; Zhu, R.; Ma, P.; Towers, A.; Lin, Y.; Gesquiere, A. J.; Wu, S. T.; Dong, Y. Ultrastable, Highly Luminescent Organic-Inorganic Perovskite-Polymer Composite Films. Adv. Mater. 2016, 28, 1071010717,  DOI: 10.1002/adma.201603964
    (d) Raja, S. N.; Bekenstein, Y.; Koc, M. A.; Fischer, S.; Zhang, D.; Lin, L.; Ritchie, R. O.; Yang, P.; Alivisatos, A. P. Encapsulation of Perovskite Nanocrystals into Macroscale Polymer Matrices: Enhanced Stability and Polarization. ACS Appl. Mater. Interfaces 2016, 8, 3552335533,  DOI: 10.1021/acsami.6b09443
    (e) Meyns, M.; Peralvarez, M.; Heuer-Jungemann, A.; Hertog, W.; Ibanez, M.; Nafria, R.; Genc, A.; Arbiol, J.; Kovalenko, M. V.; Carreras, J.; Cabot, A.; Kanaras, A. G. Polymer-Enhanced Stability of Inorganic Perovskite Nanocrystals and Their Application in Color Conversion LEDs. ACS Appl. Mater. Interfaces 2016, 8, 1957919586,  DOI: 10.1021/acsami.6b02529
    (f) Guhrenz, C.; Benad, A.; Ziegler, C.; Haubold, D.; Gaponik, N.; Eychmüller, A. Solid-State Anion Exchange Reactions for Color Tuning of CsPbX3 Perovskite Nanocrystals. Chem. Mater. 2016, 28, 90339040,  DOI: 10.1021/acs.chemmater.6b03980
    (g) Huang, H.; Chen, B.; Wang, Z.; Hung, T. F.; Susha, A. S.; Zhong, H.; Rogach, A. L. Water resistant CsPbX3 Nanocrystals Coated with Polyhedral Oligomeric Silsesquioxane and their Use as Solid State Luminophores in All-Perovskite White Light-Emitting Devices. Chem. Sci. 2016, 7, 56995703,  DOI: 10.1039/C6SC01758D
    (h) Xu, L.; Chen, J.; Song, J.; Li, J.; Xue, J.; Dong, Y.; Cai, B.; Shan, Q.; Han, B.; Zeng, H. Double-Protected All-Inorganic Perovskite Nanocrystals by Crystalline Matrix and Silica for Triple-Modal Anti-Counterfeiting Codes. ACS Appl. Mater. Interfaces 2017, 9, 2655626564,  DOI: 10.1021/acsami.7b06436
    (i) Li, Z.; Kong, L.; Huang, S.; Li, L. Highly Luminescent and Ultrastable CsPbBr3 Perovskite Quantum Dots Incorporated into a Silica/Alumina Monolith. Angew. Chem., Int. Ed. 2017, 56, 81348138,  DOI: 10.1002/anie.201703264
    (j) Quan, L. N.; Quintero-Bermudez, R.; Voznyy, O.; Walters, G.; Jain, A.; Fan, J. Z.; Zheng, X.; Yang, Z.; Sargent, E. H. Highly Emissive Green Perovskite Nanocrystals in a Solid State Crystalline Matrix. Adv. Mater. 2017, 29, 16059451605951,  DOI: 10.1002/adma.201605945
    (k) Gonzalez-Pedro, V.; Veldhuis, S. A.; Begum, R.; Banuls, M. J.; Bruno, A.; Mathews, N.; Mhaisalkar, S.; Maquieira, A. Recovery of Shallow Charge-Trapping Defects in CsPbX3 Nanocrystals through Specific Binding and Encapsulation with AminoFunctionalized Silanes. ACS Energy Lett. 2018, 3, 14091414,  DOI: 10.1021/acsenergylett.8b00498
    (l) Zhou, Y. Y.; Zhao, Y. X. Chemical Stability and Instability of Inorganic Halide Perovskites. Energy Environ. Sci. 2019, 12, 14951511,  DOI: 10.1039/C8EE03559H
  17. 17
    (a) Chen, H.; He, J.; Wu, S.-T. Recent Advances on Quantum-Dot-Enhanced Liquid-Crystal Displays. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 111,  DOI: 10.1109/JSTQE.2017.2649466
    (b) Ko, Y. H.; Jalalah, M.; Lee, S. J.; Park, J. G. Super Ultra-High Resolution Liquid-Crystal-Display Using Perovskite Quantum-Dot Functional Color-Filters. Sci. Rep. 2018, 8, 128812888,  DOI: 10.1038/s41598-018-30742-w
    (c) Wei, Y.; Cheng, Z. Y.; Lin, J. An Overview on Enhancing the Stability of Lead Halide Perovskite Quantum Dots and their Applications in Phosphor-Converted LEDs. Chem. Soc. Rev. 2019, 48, 310350,  DOI: 10.1039/C8CS00740C
  18. 18
    Yin, Y.; Alivisatos, A. P. Colloidal Nanocrystal Synthesis and the Organic-Inorganic Interface. Nature 2005, 437, 664670,  DOI: 10.1038/nature04165
  19. 19
    (a) De Gennes, P. G. Polymer Solutions near an Interface. 1. Adsorption and Depletion Layers. Macromolecules 1981, 14, 16371644,  DOI: 10.1021/ma50007a007
    (b) De Gennes, P. G. Polymers at an Interface. 2. Interaction between two Plates Carrying Adsorbed Polymer Layers. Macromolecules 1982, 15, 492500,  DOI: 10.1021/ma00230a055
    (c) De Gennes, P. G. Polymers at an Interface: A Simplified View. Adv. Colloid Interface Sci. 1987, 27, 189209,  DOI: 10.1016/0001-8686(87)85003-0
  20. 20
    Milner, S. T. Polymer Brushes. Science 1991, 251, 905914,  DOI: 10.1126/science.251.4996.905
  21. 21
    Milner, S. T.; Witten, T. A.; Cates, M. E. Effects of Polydispersity in the End-Grafted Polymer Brush. Macromolecules 1989, 22, 853861,  DOI: 10.1021/ma00192a057
  22. 22
    (a) Milner, S. T.; Witten, T. A.; Cates, M. E. A Parabolic Density Profile for Grafted Polymers. Europhys. Lett. 1988, 5, 413418,  DOI: 10.1209/0295-5075/5/5/006
    (b) Milner, S. T.; Witten, T. A.; Cates, M. E. Theory of the Grafted Polymer Brush. Macromolecules 1988, 21, 26102619,  DOI: 10.1021/ma00186a051
  23. 23
    (a) Yang, Y.; Qin, H.; Peng, X. Intramolecular Entropy and Size-Dependent Solution Properties of Nanocrystal-Ligands Complexes. Nano Lett. 2016, 16, 21272132,  DOI: 10.1021/acs.nanolett.6b00737
    (b) Yang, Y.; Qin, H.; Jiang, M.; Lin, L.; Fu, T.; Dai, X.; Zhang, Z.; Niu, Y.; Cao, H.; Jin, Y.; Zhao, F.; Peng, X. Entropic Ligands for Nanocrystals: From Unexpected Solution Properties to Outstanding Processability. Nano Lett. 2016, 16, 21332138,  DOI: 10.1021/acs.nanolett.6b00730
  24. 24
    (a) Chakrabarti, A.; Nelson, P.; Toral, R. Interpenetrations in Polymer Brushes. J. Chem. Phys. 1994, 100, 748749,  DOI: 10.1063/1.466945
    (b) Israelachvili, J. N. Repulsive “Steric” or “Overlap” Forces between Polymer-Covered Surfaces. Intramolecular and surface forces, 3rd ed.; Elsevier, 2011; pp 387393.
  25. 25
    Pang, Z.; Zhang, J.; Cao, W.; Kong, X.; Peng, X. Partitioning Surface Ligands on Nanocrystals for Maximal Solubility. Nat. Commun. 2019, 10, 24542462,  DOI: 10.1038/s41467-019-10389-5
  26. 26
    Bertolotti, F.; Protesescu, L.; Kovalenko, M. V.; Yakunin, S.; Cervellino, A.; Billinge, S. J. L.; Terban, M. W.; Pedersen, J. S.; Masciocchi, N.; Guagliardi, A. Coherent Nanotwins and Dynamic Disorder in Cesium Lead Halide Perovskite Nanocrystals. ACS Nano 2017, 11, 38193831,  DOI: 10.1021/acsnano.7b00017
  27. 27
    (a) Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 87068715,  DOI: 10.1021/ja00072a025
    (b) Guzelian, A. A.; Katari, J. E. B.; Kadavanich, A. V.; Banin, U.; Hamad, K.; Juban, E.; Alivisatos, A. P.; Wolters, R. H.; Arnold, C. C.; Heath, J. R. Synthesis of Size-Selected, Surface-Passivated InP Nanocrystals. J. Phys. Chem. 1996, 100, 72127219,  DOI: 10.1021/jp953719f
    (c) Poznyak, S. K.; Osipovich, N. P.; Shavel, A.; Talapin, D. V.; Gao, M.; Eychmüller, A.; Gaponik, N. Size-Dependent Electrochemical Behavior of Thiol-Capped CdTe Nanocrystals in Aqueous Solution. J. Phys. Chem. B 2005, 109, 10941100,  DOI: 10.1021/jp0460801
  28. 28
    Sercel, P. C.; Lyons, J. L.; Wickramaratne, D.; Vaxenburg, R.; Bernstein, N.; Efros, A. L. Exciton Fine Structure in Perovskite Nanocrystals. Nano Lett. 2019, 19, 40684077,  DOI: 10.1021/acs.nanolett.9b01467
  29. 29
    (a) Park, Y. S.; Guo, S.; Makarov, N. S.; Klimov, V. I. Room Temperature Single-Photon Emission from Individual Perovskite Quantum Dots. ACS Nano 2015, 9, 1038610393,  DOI: 10.1021/acsnano.5b04584
    (b) Utzat, H.; Shulenberger, K. E.; Achorn, O. B.; Nasilowski, M.; Sinclair, T. S.; Bawendi, M. G. Probing Linewidths and Biexciton Quantum Yields of Single Cesium Lead Halide Nanocrystals in Solution. Nano Lett. 2017, 17, 68386846,  DOI: 10.1021/acs.nanolett.7b03120
  30. 30
    (a) Carney, R. P.; Kim, J. Y.; Qian, H.; Jin, R.; Mehenni, H.; Stellacci, F.; Bakr, O. M. Determination of Nanoparticle Size Distribution Together with Density or Molecular Weight by 2D Analytical Ultracentrifugation. Nat. Commun. 2011, 2, 335343,  DOI: 10.1038/ncomms1338
    (b) Demeler, B.; Nguyen, T. L.; Gorbet, G. E.; Schirf, V.; Brookes, E. H.; Mulvaney, P.; El-Ballouli, A. O.; Pan, J.; Bakr, O. M.; Demeler, A. K.; Hernandez Uribe, B. I.; Bhattarai, N.; Whetten, R. L. Characterization of size, anisotropy, and density heterogeneity of nanoparticles by sedimentation velocity. Anal. Chem. 2014, 86, 768895,  DOI: 10.1021/ac501722r
    (c) Walter, J.; Gorbet, G.; Akdas, T.; Segets, D.; Demeler, B.; Peukert, W. 2D analysis of polydisperse core-shell nanoparticles using analytical ultracentrifugation. Analyst 2017, 142, 206217,  DOI: 10.1039/C6AN02236G
    (d) Planken, K. L.; Colfen, H. Analytical ultracentrifugation of colloids. Nanoscale 2010, 2, 184969,  DOI: 10.1039/c0nr00215a
  31. 31
    Schuck, P. Size-Distribution Analysis of Macromolecules by Sedimentation Velocity Ultracentrifugation and Lamm Equation Modeling. Biophys. J. 2000, 78, 16061619,  DOI: 10.1016/S0006-3495(00)76713-0
  32. 32
    (a) Hammersley, A. P.; Svensson, S. O.; Thompson, A.; Graafsma, H.; Kvick, Å.; Moy, J. P. Calibration and Correction of Distortions in Two-Dimensional Detector Systems. Rev. Sci. Instrum. 1995, 66, 27292733,  DOI: 10.1063/1.1145618
    (b) Glatter, O. Determination of Particle-size Distribution Functions from Small-Angle Scattering Data by means of the Indirect Transformation Method. J. Appl. Crystallogr. 1980, 13, 711,  DOI: 10.1107/S0021889880011429
  33. 33
    (a) Burian, M.; Fritz-Popovski, G.; He, M.; Kovalenko, M. V.; Paris, O.; Lechner, R. T. Considerations on the Model-Free Shape Retrieval of Inorganic Nanocrystals from Small-Angle Scattering Data. J. Appl. Crystallogr. 2015, 48, 857868,  DOI: 10.1107/S1600576715006846
    (b) Burian, M.; Amenitsch, H. Dummy-atom modelling of stacked and helical nanostructures from solution scattering data. IUCrJ 2018, 5, 390401,  DOI: 10.1107/S2052252518005493
  34. 34
    (a) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591,  DOI: 10.1038/srep00591
    (b) Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 40884093,  DOI: 10.1039/c1nr10867k
  35. 35
    Mooney, M. The Viscosity of a Concentrated Suspension of Spherical Particles. J. Colloid Sci. 1951, 6, 162170,  DOI: 10.1016/0095-8522(51)90036-0
  36. 36
    Yuan, G.; Ritchie, C.; Ritter, M.; Murphy, S.; Gómez, D. E.; Mulvaney, P. The Degradation and Blinking of Single CsPbI3 Perovskite Quantum Dots. J. Phys. Chem. C 2018, 122, 1340713415,  DOI: 10.1021/acs.jpcc.7b11168

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 147 publications.

  1. Daniele Conelli, Anastasia Matuhina, Carlo Nazareno Dibenedetto, G. Krishnamurthy Grandhi, Nicola Margiotta, Elisabetta Fanizza, Marinella Striccoli, Paola Vivo, Gian Paolo Suranna, Roberto Grisorio. Surface-Engineered Cesium Lead Bromide Perovskite Nanocrystals for Enabling Photoreduction Activity. ACS Applied Materials & Interfaces 2024, 16 (18) , 24029-24038. https://doi.org/10.1021/acsami.4c02071
  2. Peuli Nath, Matteo Patrone, Aniruddha Ray. Multishell Nanophotonic Particles with Perovskite Core for Ratiometric Biochemical Sensing and Imaging. ACS Applied Optical Materials 2024, 2 (4) , 556-564. https://doi.org/10.1021/acsaom.3c00467
  3. Bo Wang, Jia Wei Melvin Lim, Siow Mean Loh, Rishikanta Mayengbam, Senyun Ye, Minjun Feng, Huajun He, Xiao Liang, Rui Cai, Qiannan Zhang, Leong-Chuan Kwek, Hilmi Volkan Demir, Subodh G. Mhaisalkar, Steven A. Blundell, Tze Chien Sum. Weakly Confined Organic–Inorganic Halide Perovskite Quantum Dots as High-Purity Room-Temperature Single Photon Sources. ACS Nano 2024, 18 (16) , 10807-10817. https://doi.org/10.1021/acsnano.3c12311
  4. Purbita Purkayastha, Shaun Gallagher, Yuxi Jiang, Chang-Min Lee, Gillian Shen, David Ginger, Edo Waks. Purcell Enhanced Emission and Saturable Absorption of Cavity-Coupled CsPbBr3 Quantum Dots. ACS Photonics 2024, 11 (4) , 1638-1644. https://doi.org/10.1021/acsphotonics.3c01847
  5. Christopher Cueto, Mingqiu Hu, Thomas P. Russell, Todd Emrick. Conjugated Zwitterionic Oligomers as Ligands on Perovskite Nanocrystals: Hybrid Structures with Tunable Interparticle Spacing. Journal of the American Chemical Society 2024, 146 (12) , 8189-8197. https://doi.org/10.1021/jacs.3c12723
  6. Xiao Yang, Shuli Wang, Yaqi Hou, Yuhui Wang, Tianqi Zhang, Yihang Chen, Guolong Chen, Chenming Zhong, Xiaotong Fan, Xuemin Kong, Tingzhu Wu, Yijun Lu, Yue Lin, Zhong Chen. Dual-Ligand Red Perovskite Ink for Electrohydrodynamic Printing Color Conversion Arrays over 2540 dpi in Near-Eye Micro-LED Display. Nano Letters 2024, 24 (12) , 3661-3669. https://doi.org/10.1021/acs.nanolett.3c04927
  7. Marcel Aebli, Christoph J. Kaul, Nuri Yazdani, Franziska Krieg, Caterina Bernasconi, Dominic Guggisberg, Malwina Marczak, Viktoriia Morad, Laura Piveteau, Maryna I. Bodnarchuk, René Verel, Vanessa Wood, Maksym V. Kovalenko. Disorder and Halide Distributions in Cesium Lead Halide Nanocrystals as Seen by Colloidal 133Cs Nuclear Magnetic Resonance Spectroscopy. Chemistry of Materials 2024, 36 (6) , 2767-2775. https://doi.org/10.1021/acs.chemmater.3c02901
  8. Abhinav Anand, Matteo L. Zaffalon, Andrea Erroi, Francesca Cova, Francesco Carulli, Sergio Brovelli. Advances in Perovskite Nanocrystals and Nanocomposites for Scintillation Applications. ACS Energy Letters 2024, 9 (3) , 1261-1287. https://doi.org/10.1021/acsenergylett.3c02763
  9. Maryna I. Bodnarchuk, Leon G. Feld, Chenglian Zhu, Simon C. Boehme, Federica Bertolotti, Jonathan Avaro, Marcel Aebli, Showkat Hassan Mir, Norberto Masciocchi, Rolf Erni, Sudip Chakraborty, Antonietta Guagliardi, Gabriele Rainò, Maksym V. Kovalenko. Colloidal Aziridinium Lead Bromide Quantum Dots. ACS Nano 2024, 18 (7) , 5684-5697. https://doi.org/10.1021/acsnano.3c11579
  10. Clara Bujalance, Laura Caliò, Dmitry N. Dirin, David O. Tiede, Juan F. Galisteo-López, Johannes Feist, Francisco J. García-Vidal, Maksym V. Kovalenko, Hernán Míguez. Strong Light–Matter Coupling in Lead Halide Perovskite Quantum Dot Solids. ACS Nano 2024, 18 (6) , 4922-4931. https://doi.org/10.1021/acsnano.3c10358
  11. Chih-Wei Wang, Ebube E. Oyeka, Alison B. Altman, Dong Hee Son. Effects of Pressure on Exciton Absorption and Emission in Strongly Quantum-Confined CsPbBr3 Quantum Dots and Nanoplatelets. The Journal of Physical Chemistry C 2024, 128 (5) , 2062-2069. https://doi.org/10.1021/acs.jpcc.3c08029
  12. Seongmoon Jun, Joonyun Kim, Minho Choi, Byung Su Kim, Jinu Park, Daehan Kim, Byungha Shin, Yong-Hoon Cho. Ultrafast and Bright Quantum Emitters from the Cavity-Coupled Single Perovskite Nanocrystals. ACS Nano 2024, 18 (2) , 1396-1403. https://doi.org/10.1021/acsnano.3c06760
  13. Jia Wei Melvin Lim, Yuanyuan Guo, Minjun Feng, Rui Cai, Tze Chien Sum. Making and Breaking of Exciton Cooling Bottlenecks in Halide Perovskite Nanocrystals. Journal of the American Chemical Society 2024, 146 (1) , 437-449. https://doi.org/10.1021/jacs.3c09761
  14. Marianna D’Amato, Lucien Belzane, Corentin Dabard, Mathieu Silly, Gilles Patriarche, Quentin Glorieux, Hanna Le Jeannic, Emmanuel Lhuillier, Alberto Bramati. Highly Photostable Zn-Treated Halide Perovskite Nanocrystals for Efficient Single Photon Generation. Nano Letters 2023, 23 (22) , 10228-10235. https://doi.org/10.1021/acs.nanolett.3c02739
  15. Xinyi Mei, Jianxun Wang, Xiaoyu Zhang, Rongshan Zhuang, Yong Hua, Kege He, Weitao Zheng, Xiaoliang Zhang. In Situ Ligand Compensation of Perovskite Quantum Dots for Efficient Light-Emitting Diodes. ACS Energy Letters 2023, 8 (10) , 4386-4396. https://doi.org/10.1021/acsenergylett.3c01686
  16. Jinwoo Park, Kyung Yeon Jang, Song Hee Lee, Dong-Hyeok Kim, So-Hye Cho, Tae-Woo Lee. Stable Orthorhombic CsPbBr3 Light Emitters: Encapsulation-Assisted In Situ Synthesis. Chemistry of Materials 2023, 35 (16) , 6266-6273. https://doi.org/10.1021/acs.chemmater.3c00732
  17. Christopher Kirsch, Tassilo Naujoks, Philipp Haizmann, Philipp Frech, Heiko Peisert, Thomas Chassé, Wolfgang Brütting, Marcus Scheele. Zwitterionic Carbazole Ligands Enhance the Stability and Performance of Perovskite Nanocrystals in Light-Emitting Diodes. ACS Applied Materials & Interfaces 2023, 15 (27) , 32744-32752. https://doi.org/10.1021/acsami.3c05756
  18. Luca De Trizio, Ivan Infante, Liberato Manna. Surface Chemistry of Lead Halide Perovskite Colloidal Nanocrystals. Accounts of Chemical Research 2023, 56 (13) , 1815-1825. https://doi.org/10.1021/acs.accounts.3c00174
  19. Chenjia Mi, Matthew L. Atteberry, Varun Mapara, Lamia Hidayatova, Gavin C. Gee, Madalina Furis, Wai Tak Yip, Binbin Weng, Yitong Dong. Biexciton-like Auger Blinking in Strongly Confined CsPbBr3 Perovskite Quantum Dots. The Journal of Physical Chemistry Letters 2023, 14 (23) , 5466-5474. https://doi.org/10.1021/acs.jpclett.3c01145
  20. Wei Shen, Yujun Dai, Bo Cai, Shuo Chen, Hao Yang, Yangzhi Ma, Yanfeng Chen, Zhan Su, Jianbin Zhang, Yue Qiu, Yun Wang, Jiayu Jiang, Lihui Liu, Kun Cao, Shufen Chen. Ligand-Assisted Breaking Crystal Symmetry to Achieve Stable γ-CsPbI3 Nanorods with Strong Polarization Response. ACS Energy Letters 2023, 8 (6) , 2561-2569. https://doi.org/10.1021/acsenergylett.3c00457
  21. Jonathan De Roo. The Surface Chemistry of Colloidal Nanocrystals Capped by Organic Ligands. Chemistry of Materials 2023, 35 (10) , 3781-3792. https://doi.org/10.1021/acs.chemmater.3c00638
  22. Dominic Guggisberg, Sergii Yakunin, Christoph Neff, Marcel Aebli, Detlef Günther, Maksym V. Kovalenko, Dmitry N. Dirin. Colloidal CsPbX3 Nanocrystals with Thin Metal Oxide Gel Coatings. Chemistry of Materials 2023, 35 (7) , 2827-2834. https://doi.org/10.1021/acs.chemmater.2c03562
  23. Matthias Ginterseder, Weiwei Sun, Wenbi Shcherbakov-Wu, Alexandra R. McIsaac, David B. Berkinsky, Alexander E. K. Kaplan, Lili Wang, Chantalle Krajewska, Tara Šverko, Collin F. Perkinson, Hendrik Utzat, William A. Tisdale, Troy Van Voorhis, Moungi G. Bawendi. Lead Halide Perovskite Nanocrystals with Low Inhomogeneous Broadening and High Coherent Fraction through Dicationic Ligand Engineering. Nano Letters 2023, 23 (4) , 1128-1134. https://doi.org/10.1021/acs.nanolett.2c03354
  24. Nadesh Fiuza-Maneiro, Kun Sun, Iago López-Fernández, Sergio Gómez-Graña, Peter Müller-Buschbaum, Lakshminarayana Polavarapu. Ligand Chemistry of Inorganic Lead Halide Perovskite Nanocrystals. ACS Energy Letters 2023, 8 (2) , 1152-1191. https://doi.org/10.1021/acsenergylett.2c02363
  25. Virendra Kumar, Harish Chandr Chauhan, Vandana Nagal, Aurangzeb Khurram Hafiz, Kedar Singh. Lattice-Distortion-Induced Change in the Magnetic Properties in Br-Defect Host CsPbBr3 Perovskite Quantum Dots. The Journal of Physical Chemistry Letters 2023, 14 (4) , 888-896. https://doi.org/10.1021/acs.jpclett.2c03576
  26. Federico Montanarella, Quinten A. Akkerman, Dennis Bonatz, Maaike M. van der Sluijs, Johanna C. van der Bok, P. Tim Prins, Marcel Aebli, Alf Mews, Daniel Vanmaekelbergh, Maksym V. Kovalenko. Growth and Self-Assembly of CsPbBr3 Nanocrystals in the TOPO/PbBr2 Synthesis as Seen with X-ray Scattering. Nano Letters 2023, 23 (2) , 667-676. https://doi.org/10.1021/acs.nanolett.2c04532
  27. Chen Wang, Aaron Malinoski, Jingheng Yuan, Courtney Brea, Guoxiang Hu. A Surface Engineering Approach for Promoting Dexter Energy Transfer from Lead Halide Perovskite Nanocrystals. The Journal of Physical Chemistry C 2023, 127 (2) , 1135-1144. https://doi.org/10.1021/acs.jpcc.2c07664
  28. Mihir Manna, Srimanta Pal, Tanmay Goswami, Satyapriya Bhandari, Tushar Debnath. Halide-Driven Halogen–Hydrogen Bonding versus Chelation in Perovskite Nanocrystals: A Concept of Charge Transfer Bridging. The Journal of Physical Chemistry Letters 2023, 14 (2) , 354-362. https://doi.org/10.1021/acs.jpclett.2c03738
  29. Lingling Zheng, Xianli Li, Xin Lian, Ruijie Xu, Xiaohui Liu, Tongtong Xuan, Ruosheng Zeng, Wen-Xiu Ni, Binbin Luo. Weakening Ligand–Liquid Affinity to Suppress the Desorption of Surface-Passivated Ligands from Perovskite Nanocrystals. Langmuir 2022, 38 (50) , 15747-15755. https://doi.org/10.1021/acs.langmuir.2c02630
  30. Hao Yu, Tianheng Chen, Ziqing Han, Jiacheng Fan, Qibing Pei. Liquid Scintillators Loaded with up to 40 Weight Percent Cesium Lead Bromide Quantum Dots for Gamma Scintillation. ACS Applied Nano Materials 2022, 5 (10) , 14572-14581. https://doi.org/10.1021/acsanm.2c02930
  31. Qi Pan, Jingjing Hu, Jie Fu, Yi Lin, Chen Zou, Dawei Di, Yunjun Wang, Qiao Zhang, Muhan Cao. Ultrahigh Stability of Perovskite Nanocrystals by Using Semiconducting Molecular Species for Displays. ACS Nano 2022, 16 (8) , 12253-12261. https://doi.org/10.1021/acsnano.2c03062
  32. Jie Chen, Xu Huang, Zelian Xu, Yuwu Chi. Alcohol-Stable Perovskite Nanocrystals and Their In Situ Capsulation with Polystyrene. ACS Applied Materials & Interfaces 2022, 14 (29) , 33703-33711. https://doi.org/10.1021/acsami.2c07707
  33. Wasim J. Mir, Ahmed Alamoudi, Jun Yin, Khursand E. Yorov, Partha Maity, Rounak Naphade, Bingyao Shao, Jiayi Wang, Muhammad Naufal Lintangpradipto, Saidkhodzha Nematulloev, Abdul-Hamid Emwas, Alessandro Genovese, Omar F. Mohammed, Osman M. Bakr. Lecithin Capping Ligands Enable Ultrastable Perovskite-Phase CsPbI3 Quantum Dots for Rec. 2020 Bright-Red Light-Emitting Diodes. Journal of the American Chemical Society 2022, 144 (29) , 13302-13310. https://doi.org/10.1021/jacs.2c04637
  34. Ha-Chi V. Tran, Bora Kim, Hyojung Kim, Sungwook Park, Ju Young Woo, Sohee Jeong. Unraveling the Role of Triiodides in Halide Precursors for Facile Anion Exchange in Lead Halide Perovskite Nanocrystals. Chemistry of Materials 2022, 34 (14) , 6402-6407. https://doi.org/10.1021/acs.chemmater.2c00938
  35. Sisi Wang, Wentao Wang, Selin Donmez, Yan Xin, Hedi Mattoussi. Engineering Highly Fluorescent and Colloidally Stable Blue-Emitting CsPbBr3 Nanoplatelets Using Polysalt/PbBr2 Ligands. Chemistry of Materials 2022, 34 (11) , 4924-4936. https://doi.org/10.1021/acs.chemmater.2c00082
  36. Einav Scharf, Franziska Krieg, Orian Elimelech, Meirav Oded, Adar Levi, Dmitry N. Dirin, Maksym V. Kovalenko, Uri Banin. Ligands Mediate Anion Exchange between Colloidal Lead-Halide Perovskite Nanocrystals. Nano Letters 2022, 22 (11) , 4340-4346. https://doi.org/10.1021/acs.nanolett.2c00611
  37. Roberto Grisorio, Francesca Fasulo, Ana Belén Muñoz-García, Michele Pavone, Daniele Conelli, Elisabetta Fanizza, Marinella Striccoli, Ignazio Allegretta, Roberto Terzano, Nicola Margiotta, Paola Vivo, Gian Paolo Suranna. In Situ Formation of Zwitterionic Ligands: Changing the Passivation Paradigms of CsPbBr3 Nanocrystals. Nano Letters 2022, 22 (11) , 4437-4444. https://doi.org/10.1021/acs.nanolett.2c00937
  38. Zhangdi Lu, Yanxiu Li, Yilei Xue, Wentao Zhou, Steevanson Bayer, Ian D. Williams, Andrey L. Rogach, Stefan Nagl. Water-Stable CsPbBr3/Cs4PbBr6 Nanocrystals with a Mixed Fluoropolymer Shell for Optical Temperature Sensing. ACS Applied Nano Materials 2022, 5 (4) , 5025-5034. https://doi.org/10.1021/acsanm.2c00050
  39. Federica Bertolotti, Anna Vivani, Fabio Ferri, Pietro Anzini, Antonio Cervellino, Maryna I. Bodnarchuk, Georgian Nedelcu, Caterina Bernasconi, Maksym V. Kovalenko, Norberto Masciocchi, Antonietta Guagliardi. Size Segregation and Atomic Structural Coherence in Spontaneous Assemblies of Colloidal Cesium Lead Halide Nanocrystals. Chemistry of Materials 2022, 34 (2) , 594-608. https://doi.org/10.1021/acs.chemmater.1c03162
  40. Junfu Leng, Tian Wang, Zhi-Kuang Tan, Ya-Ju Lee, Chun-Chieh Chang, Kaoru Tamada. Tuning the Emission Wavelength of Lead Halide Perovskite NCs via Size and Shape Control. ACS Omega 2022, 7 (1) , 565-577. https://doi.org/10.1021/acsomega.1c05001
  41. Federico Montanarella, Kyle M. McCall, Kostiantyn Sakhatskyi, Sergii Yakunin, Pavel Trtik, Caterina Bernasconi, Ihor Cherniukh, David Mannes, Maryna I. Bodnarchuk, Markus Strobl, Bernhard Walfort, Maksym V. Kovalenko. Highly Concentrated, Zwitterionic Ligand-Capped Mn2+:CsPb(BrxCl1–x)3 Nanocrystals as Bright Scintillators for Fast Neutron Imaging. ACS Energy Letters 2021, 6 (12) , 4365-4373. https://doi.org/10.1021/acsenergylett.1c01923
  42. ChaeHyun Lee, YeJi Shin, Alexis Villanueva-Antolí, Samrat Das Adhikari, Jhonatan Rodriguez-Pereira, Jan M. Macak, Camilo A. Mesa, Sixto Giménez, Seog Joon Yoon, Andrés. F. Gualdrón-Reyes, Iván Mora-Seró. Efficient and Stable Blue- and Red-Emitting Perovskite Nanocrystals through Defect Engineering: PbX2 Purification. Chemistry of Materials 2021, 33 (22) , 8745-8757. https://doi.org/10.1021/acs.chemmater.1c02772
  43. Yaochang Yue, Jiyu Zhou, Qian Cheng, Xuning Zhang, Boxin Wang, Yanxun Li, Shilin Li, Ruiqi Cao, Kaiyuan Wang, Hui Wang, Huiqiong Zhou, Yuan Zhang. Peculiar Steric Hindrance Assists Monoclinic Phase Formation toward High-Quality All-Inorganic Perovskites. The Journal of Physical Chemistry Letters 2021, 12 (45) , 11228-11237. https://doi.org/10.1021/acs.jpclett.1c03021
  44. Mengling Liao, Beibei Shan, Ming Li. Role of Trap States in Excitation Wavelength-Dependent Photoluminescence of Strongly Quantum-Confined All-Inorganic CsPbBr3 Perovskites with Varying Dimensionalities. The Journal of Physical Chemistry C 2021, 125 (38) , 21062-21069. https://doi.org/10.1021/acs.jpcc.1c06394
  45. Suman Bera, Sanjib Shyamal, Narayan Pradhan. Chemically Spiraling CsPbBr3 Perovskite Nanorods. Journal of the American Chemical Society 2021, 143 (36) , 14895-14906. https://doi.org/10.1021/jacs.1c07231
  46. Wenbi Shcherbakov-Wu, Peter C. Sercel, Franziska Krieg, Maksym V. Kovalenko, William A. Tisdale. Temperature-Independent Dielectric Constant in CsPbBr3 Nanocrystals Revealed by Linear Absorption Spectroscopy. The Journal of Physical Chemistry Letters 2021, 12 (33) , 8088-8095. https://doi.org/10.1021/acs.jpclett.1c01822
  47. Anna Loiudice, Ona Segura Lecina, Aurélien Bornet, Joseph M. Luther, Raffaella Buonsanti. Ligand Locking on Quantum Dot Surfaces via a Mild Reactive Surface Treatment. Journal of the American Chemical Society 2021, 143 (33) , 13418-13427. https://doi.org/10.1021/jacs.1c06777
  48. Andriy Stelmakh, Marcel Aebli, Andrij Baumketner, Maksym V. Kovalenko. On the Mechanism of Alkylammonium Ligands Binding to the Surface of CsPbBr3 Nanocrystals. Chemistry of Materials 2021, 33 (15) , 5962-5973. https://doi.org/10.1021/acs.chemmater.1c01081
  49. Amrita Dey, Junzhi Ye, Apurba De, Elke Debroye, Seung Kyun Ha, Eva Bladt, Anuraj S. Kshirsagar, Ziyu Wang, Jun Yin, Yue Wang, Li Na Quan, Fei Yan, Mengyu Gao, Xiaoming Li, Javad Shamsi, Tushar Debnath, Muhan Cao, Manuel A. Scheel, Sudhir Kumar, Julian A. Steele, Marina Gerhard, Lata Chouhan, Ke Xu, Xian-gang Wu, Yanxiu Li, Yangning Zhang, Anirban Dutta, Chuang Han, Ilka Vincon, Andrey L. Rogach, Angshuman Nag, Anunay Samanta, Brian A. Korgel, Chih-Jen Shih, Daniel R. Gamelin, Dong Hee Son, Haibo Zeng, Haizheng Zhong, Handong Sun, Hilmi Volkan Demir, Ivan G. Scheblykin, Iván Mora-Seró, Jacek K. Stolarczyk, Jin Z. Zhang, Jochen Feldmann, Johan Hofkens, Joseph M. Luther, Julia Pérez-Prieto, Liang Li, Liberato Manna, Maryna I. Bodnarchuk, Maksym V. Kovalenko, Maarten B. J. Roeffaers, Narayan Pradhan, Omar F. Mohammed, Osman M. Bakr, Peidong Yang, Peter Müller-Buschbaum, Prashant V. Kamat, Qiaoliang Bao, Qiao Zhang, Roman Krahne, Raquel E. Galian, Samuel D. Stranks, Sara Bals, Vasudevanpillai Biju, William A. Tisdale, Yong Yan, Robert L. Z. Hoye, Lakshminarayana Polavarapu. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano 2021, 15 (7) , 10775-10981. https://doi.org/10.1021/acsnano.0c08903
  50. Félix Boussoufi, Marc Pousthomis, Alexis Kuntzmann, Michele D’Amico, Gilles Patriarche, Benoit Dubertret. Spray-Drying Polymer Encapsulation of CsPbBr3 Perovskite Nanocrystals with Enhanced Photostability for LED Downconverters. ACS Applied Nano Materials 2021, 4 (7) , 7502-7512. https://doi.org/10.1021/acsanm.1c01552
  51. Theodore A. Cohen, Yunping Huang, Nico A. Bricker, Connor S. Juhl, Tyler J. Milstein, J. Devin MacKenzie, Christine K. Luscombe, Daniel R. Gamelin. Modular Zwitterion-Functionalized Poly(isopropyl methacrylate) Polymers for Hosting Luminescent Lead Halide Perovskite Nanocrystals. Chemistry of Materials 2021, 33 (10) , 3779-3790. https://doi.org/10.1021/acs.chemmater.1c00902
  52. Sara R. Smock, Yunhua Chen, Aaron J. Rossini, Richard L. Brutchey. The Surface Chemistry and Structure of Colloidal Lead Halide Perovskite Nanocrystals. Accounts of Chemical Research 2021, 54 (3) , 707-718. https://doi.org/10.1021/acs.accounts.0c00741
  53. Franziska Krieg, Peter C. Sercel, Max Burian, Hordii Andrusiv, Maryna I. Bodnarchuk, Thilo Stöferle, Rainer F. Mahrt, Denys Naumenko, Heinz Amenitsch, Gabriele Rainò, Maksym V. Kovalenko. Monodisperse Long-Chain Sulfobetaine-Capped CsPbBr3 Nanocrystals and Their Superfluorescent Assemblies. ACS Central Science 2021, 7 (1) , 135-144. https://doi.org/10.1021/acscentsci.0c01153
  54. Dmitry Baranov, Antonio Fieramosca, Ruo Xi Yang, Laura Polimeno, Giovanni Lerario, Stefano Toso, Carlo Giansante, Milena De Giorgi, Liang Z. Tan, Daniele Sanvitto, Liberato Manna. Aging of Self-Assembled Lead Halide Perovskite Nanocrystal Superlattices: Effects on Photoluminescence and Energy Transfer. ACS Nano 2021, 15 (1) , 650-664. https://doi.org/10.1021/acsnano.0c06595
  55. Avijit Pramanik, Shamily Patibandla, Ye Gao, Kaelin Gates, Paresh Chandra Ray. Water Triggered Synthesis of Highly Stable and Biocompatible 1D Nanowire, 2D Nanoplatelet, and 3D Nanocube CsPbBr3 Perovskites for Multicolor Two-Photon Cell Imaging. JACS Au 2021, 1 (1) , 53-65. https://doi.org/10.1021/jacsau.0c00038
  56. Ji-Song Yao, Jia-Chen Zhang, Li Wang, Kun-Hua Wang, Xue-Chen Ru, Jun-Nan Yang, Jing-Jing Wang, Xing Chen, Yong-Hui Song, Yi-Chen Yin, Yi-Feng Lan, Qun Zhang, Hong-Bin Yao. Suppressing Auger Recombination in Cesium Lead Bromide Perovskite Nanocrystal Film for Bright Light-Emitting Diodes. The Journal of Physical Chemistry Letters 2020, 11 (21) , 9371-9378. https://doi.org/10.1021/acs.jpclett.0c02777
  57. Taylor Moot, Desislava R. Dikova, Abhijit Hazarika, Tracy H. Schloemer, Severin N. Habisreutinger, Noemi Leick, Sean P. Dunfield, Bryan A. Rosales, Steven P. Harvey, Jason R. Pfeilsticker, Glenn Teeter, Lance M. Wheeler, Bryon W. Larson, Joseph M. Luther. Beyond Strain: Controlling the Surface Chemistry of CsPbI3 Nanocrystal Films for Improved Stability against Ambient Reactive Oxygen Species. Chemistry of Materials 2020, 32 (18) , 7850-7860. https://doi.org/10.1021/acs.chemmater.0c02543
  58. Aaron Forde, Jeffrey A. Fagan, Richard D. Schaller, Salim A. Thomas, Samuel L. Brown, Matthew B. Kurtti, Reed J. Petersen, Dmitri S. Kilin, Erik K. Hobbie. Brightly Luminescent CsPbBr3 Nanocrystals through Ultracentrifugation. The Journal of Physical Chemistry Letters 2020, 11 (17) , 7133-7140. https://doi.org/10.1021/acs.jpclett.0c01936
  59. Stefano Pierini, Marianna D’Amato, Mayank Goyal, Quentin Glorieux, Elisabeth Giacobino, Emmanuel Lhuillier, Christophe Couteau, Alberto Bramati. Highly Photostable Perovskite Nanocubes: Toward Integrated Single Photon Sources Based on Tapered Nanofibers. ACS Photonics 2020, 7 (8) , 2265-2272. https://doi.org/10.1021/acsphotonics.0c00820
  60. Sisi Wang, Liang Du, Zhicheng Jin, Yan Xin, Hedi Mattoussi. Enhanced Stabilization and Easy Phase Transfer of CsPbBr3 Perovskite Quantum Dots Promoted by High-Affinity Polyzwitterionic Ligands. Journal of the American Chemical Society 2020, 142 (29) , 12669-12680. https://doi.org/10.1021/jacs.0c03682
  61. Ashkan Mokhtar, Ryuki Morinaga, Yuji Akaishi, Manami Shimoyoshi, Sunnam Kim, Seiji Kurihara, Tetsuya Kida, Tuyoshi Fukaminato. Reversible Luminescence Photoswitching of Colloidal CsPbBr3 Nanocrystals Hybridized with a Diarylethene Photoswitch. ACS Materials Letters 2020, 2 (7) , 727-735. https://doi.org/10.1021/acsmaterialslett.0c00131
  62. Jeffrey T. DuBose, Prashant V. Kamat. Surface Chemistry Matters. How Ligands Influence Excited State Interactions between CsPbBr3 and Methyl Viologen. The Journal of Physical Chemistry C 2020, 124 (24) , 12990-12998. https://doi.org/10.1021/acs.jpcc.0c03004
  63. Javad Shamsi, Dominik Kubicki, Miguel Anaya, Yun Liu, Kangyu Ji, Kyle Frohna, Clare P. Grey, Richard H. Friend, Samuel D. Stranks. Stable Hexylphosphonate-Capped Blue-Emitting Quantum-Confined CsPbBr3 Nanoplatelets. ACS Energy Letters 2020, 5 (6) , 1900-1907. https://doi.org/10.1021/acsenergylett.0c00935
  64. Shuo Qi, Eslam M. Hamed, Pengfei Ma, Wenbo Cao, Sam Fong Yau Li, Zhouping Wang. Perovskite nanocrystals (PNCs) served as an emerging optical indicator for food safety and quality assessment: progress, challenges, and opportunities. Coordination Chemistry Reviews 2024, 514 , 215925. https://doi.org/10.1016/j.ccr.2024.215925
  65. Clara Otero‐Martínez, Junzhi Ye, Luca De Trizio, Luca Goldoni, Akshay Rao, Jorge Pérez‐Juste, Robert L. Z. Hoye, Liberato Manna, Lakshminarayana Polavarapu. Organic A‐Site Cations Improve the Resilience of Inorganic Lead‐Halide Perovskite Nanocrystals to Surface Defect Formation. Advanced Functional Materials 2024, https://doi.org/10.1002/adfm.202404399
  66. Yitong Dong, Chenjia Mi, Gavin Gee, Chance Lander, Matthew Atteberry, Novruz Akhmedov, Lamia Hidayatova, Jesse DiCenso, Wai Tak Yip, Yihan Shao. Towards non-blinking perovskite quantum dots. 2024https://doi.org/10.21203/rs.3.rs-4214840/v1
  67. Xiaoshan Zhang, Yikun Wang, Xiang Wu, Feilong Wang, Qiongrong Ou, Shuyu Zhang. A Comprehensive Review on Mechanisms and Applications of Rare‐Earth Based Perovskite Nanocrystals †. Chinese Journal of Chemistry 2024, 42 (9) , 1032-1056. https://doi.org/10.1002/cjoc.202300344
  68. Yangwen Hou, Man Dong, Fanfei Meng, Jingting He, Xiao Li, Jing Sun, Xinlong Wang, Zhongmin Su, Chunyi Sun. Enhanced stability and confinement effects of Cs4PbBr6 quantum dots via mechanochemical immobilization on MOF nodes. Journal of Alloys and Compounds 2024, 985 , 173880. https://doi.org/10.1016/j.jallcom.2024.173880
  69. Yue Tang, Yao Jing, Tze Chien Sum, Annalisa Bruno, Subodh G. Mhaisalkar. Superfluorescence in Metal Halide Perovskites. Advanced Energy Materials 2024, 563 https://doi.org/10.1002/aenm.202400322
  70. Lian-Yue Li, Yong-Hui Song, Jun-Nan Yang, Xue-Chen Ru, Yi-Chen Yin, Hong-Bin Yao. Short-branched alkyl sulfobetaine-passivated CsPbBr 3 nanocrystals for efficient green light emitting diodes. Nanoscale 2024, 16 (15) , 7387-7395. https://doi.org/10.1039/D4NR00965G
  71. Hao Lin, Pei‐Li Gao, Jia‐Yi Dong, Jie‐Lei Li, Zhen‐Dong Lian, Jin‐Cheng Xu, Kar Wei Ng, Shi Chen, Shi‐Chen Su, Hong‐Chao Liu, Zhao‐Xin Wu, Shuang‐Peng Wang. Bi‐Functional Chelating Ligand Enables Ultra‐Stable Blue Emissive CsPbBr 3 Nanoplatelets Film. Advanced Optical Materials 2024, 15 https://doi.org/10.1002/adom.202400214
  72. Yiyuan Tang, Zhen Wu, Xin Zhang, Kaifeng Liao, Guojie Wang. Synergistic Passivation Inducing Long‐Term Stability for Fluorescent CsPbI 3 Perovskite Nanocrystals. Advanced Optical Materials 2024, 12 (10) https://doi.org/10.1002/adom.202302193
  73. . Perovskite Green Light‐Emitting Materials and Devices. 2024, 129-167. https://doi.org/10.1002/9783527844951.ch5
  74. Bin Li, Guofeng Zhang, Yuke Gao, Xiaopeng Chen, Ruiyun Chen, Chengbing Qin, Jianyong Hu, Ruixiang Wu, Liantuan Xiao, Suotang Jia. Single quantum dot spectroscopy for exciton dynamics. Nano Research 2024, 116 https://doi.org/10.1007/s12274-024-6504-x
  75. Federica Bertolotti, Nicola Dengo, Antonio Cervellino, Maryna I. Bodnarchuk, Caterina Bernasconi, Ihor Cherniukh, Yuliia Berezovska, Simon C. Boehme, Maksym V. Kovalenko, Norberto Masciocchi, Antonietta Guagliardi. Size‐ and Temperature‐Dependent Lattice Anisotropy and Structural Distortion in CsPbBr 3 Quantum Dots by Reciprocal Space X‐ray Total Scattering Analysis. Small Structures 2024, 5 (3) https://doi.org/10.1002/sstr.202300264
  76. Yoarhy A. Amador-Sánchez, Brenda Vargas, Josué E. Romero-Ibarra, Rubén Mendoza-Cruz, Estrella Ramos, Diego Solis-Ibarra. Surfactant-tail control of CsPbBr 3 nanocrystal morphology. Nanoscale Horizons 2024, 9 (3) , 472-478. https://doi.org/10.1039/D3NH00409K
  77. Na Jiang, Guoquan Ma, Dandan Song, Bo Qiao, Zhiqin Liang, Zheng Xu, Swelm Wageh, Ahmed Al-Ghamdi, Suling Zhao. Defects in lead halide perovskite light-emitting diodes under electric field: from behavior to passivation strategies. Nanoscale 2024, 16 (8) , 3838-3880. https://doi.org/10.1039/D3NR06547B
  78. Viktoriia Morad, Andriy Stelmakh, Mariia Svyrydenko, Leon G. Feld, Simon C. Boehme, Marcel Aebli, Joel Affolter, Christoph J. Kaul, Nadine J. Schrenker, Sara Bals, Yesim Sahin, Dmitry N. Dirin, Ihor Cherniukh, Gabriele Raino, Andrij Baumketner, Maksym V. Kovalenko. Designer phospholipid capping ligands for soft metal halide nanocrystals. Nature 2024, 626 (7999) , 542-548. https://doi.org/10.1038/s41586-023-06932-6
  79. Haiyang He, Yifeng Xing, Zhongjie Cui, Shuaitao Qin, Zhuoqi Wen, Dan Yang, Haijiao Xie, Shiliang Mei, Wanlu Zhang, Ruiqian Guo. Regulating Phase Distribution of Dion–Jacobson Perovskite Colloidal Multiple Quantum Wells Toward Highly Stable Deep‐Blue Emission. Small 2024, 20 (5) https://doi.org/10.1002/smll.202305191
  80. M.A. Sandzhieva, L.E. Zelenkov, L. Otpuschenikov, S. Miltsov, E.V. Zhukova, L.S. Litvinova, S.A. Cherevkov, I.M. Sevastianova, D. Shestakov, A.V. Yakimansky, S.V. Makarov. Highly luminescent polyfluorene-based composite with CsPbX3 perovskite nanocrystals for light-emitting devices. Photonics and Nanostructures - Fundamentals and Applications 2024, 10 , 101239. https://doi.org/10.1016/j.photonics.2024.101239
  81. Sung Hoon Noh, Kyeong Ho Lee, Han Sol Yang, Jaemin Jung, Eui Hyun Suh, Jong Gyu Oh, Ungyu Paik, Seul Chan Park, Jaeyoung Jang. Monodentate binding of zwitterionic ligands for boosting photocatalytic H2 production of perovskite nanocrystals. Chemical Engineering Journal 2024, 481 , 148127. https://doi.org/10.1016/j.cej.2023.148127
  82. Xiao Huang, Xinli Wang, Jie Gao, Yang Sun, Jun Zhan, Yi Wang, Xi-Cheng Ai, Jian-Ping Zhang. Simultaneously improved photoluminescence, stability, and carrier transport of perovskite nanocrystals by post-synthetic perfluorobutanesulfonic acid treatment. Nanoscale 2024, 16 (3) , 1115-1119. https://doi.org/10.1039/D3NR05232J
  83. Chujie Wang, Sri K. Matta, Chun Kiu Ng, Chang Cao, Manoj Sharma, Anthony S. R. Chesman, Salvy P. Russo, Jacek J. Jasieniak. Direct synthesis of CsPbX 3 perovskite nanocrystal assemblies. Nanoscale 2024, 15 https://doi.org/10.1039/D3NR04285E
  84. Ananthakumar Soosaimanickam, Alejandro Saura, Noemi Farinós, Rafael Abargues. Influence of Binary Ligands in Designing Cesium Lead Halide (CsPbX3, X = Cl, Br, I) Perovskite Nanocrystals-Oleic Acid and Oleylamine. Nanoenergy Advances 2023, 3 (4) , 376-400. https://doi.org/10.3390/nanoenergyadv3040019
  85. Guanguan Zhao, Miao Zhang, Huixin Li, Yangyang Guo, Taihong Liu, Hongqiang Wang, Hongyue Wang, Yu Fang. Velocity field distribution control in antisolvent flow realizing highly stable and efficient perovskite nanocrystals. Journal of Colloid and Interface Science 2023, 649 , 214-222. https://doi.org/10.1016/j.jcis.2023.06.114
  86. Lev E. Zelenkov, Pavel Smirnov, Georgii Baranov, Altana Tsyrinova, Stepan Ilyin, Eduard Danilovskiy, Sergey Makarov, Polina Kapitanova. Bright and Stable Perovskite Nanocrystals Lighted Up Remotely by Means of Wireless Power Transfer. Advanced Optical Materials 2023, 11 (22) https://doi.org/10.1002/adom.202301123
  87. José A.S. Laranjeira, Sérgio A. Azevedo, Guilherme S.L. Fabris, Anderson R. Albuquerque, Mateus M. Ferrer, Julio R. Sambrano. Influence of anion hardness in (001) surface of CsPbX3 (X = F, Cl, Br and I) halide perovskites. Journal of Solid State Chemistry 2023, 326 , 124181. https://doi.org/10.1016/j.jssc.2023.124181
  88. Tianju Chen, Qi Yang, Peng Zhang, Ruihao Chen, Yuke Lin, Weifang Zhou, Laizhi Sui, Xuan Zheng, Guoliang Chen, Feiming Li. Stapled ligand for synthesis of highly emissive and stable CsPbBr 3 perovskite nanocrystals in polar organic solvent. Inorganic Chemistry Frontiers 2023, 10 (18) , 5303-5310. https://doi.org/10.1039/D3QI00719G
  89. Miao Zhang, Jingyun Zhang, Guanguan Zhao, Guanghui Wang, Peng Liu, Huixin Li, Xiaoqiang Hou, Pengpeng Qiang, Yingjun Yang, Qingmei Su, Gaohui Du, Bingshe Xu, Hongyue Wang. Efficient blue CsPbBr3 perovskite nanocrystals synthesis with the assistance of zwitterionic straight chain amino acids. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023, 673 , 131793. https://doi.org/10.1016/j.colsurfa.2023.131793
  90. Jun-Nan Yang, Jing-Jing Wang, Yi-Chen Yin, Hong-Bin Yao. Mitigating halide ion migration by resurfacing lead halide perovskite nanocrystals for stable light-emitting diodes. Chemical Society Reviews 2023, 52 (16) , 5516-5540. https://doi.org/10.1039/D3CS00179B
  91. Wei Zhao, Jianguo Zhang, Fanjun Kong, Tengling Ye. Application of Perovskite Nanocrystals as Fluorescent Probes in the Detection of Agriculture- and Food-Related Hazardous Substances. Polymers 2023, 15 (13) , 2873. https://doi.org/10.3390/polym15132873
  92. Yaofang Zhang, Yingwen Pan, Jian Ni, Zirui Yan, Nanping Deng, Wei Sun, Weimin Kang. In situ growth of CsPbBr3@PS flexible fiber papers by one step electrospinning with high stability toward fluorescent sensor. Journal of Luminescence 2023, 259 , 119832. https://doi.org/10.1016/j.jlumin.2023.119832
  93. Liuli Yang, Jianhua Huang, Yike Tan, Wei Lu, Ziwei Li, Anlian Pan. All-inorganic lead halide perovskite nanocrystals applied in advanced display devices. Materials Horizons 2023, 10 (6) , 1969-1989. https://doi.org/10.1039/D3MH00062A
  94. Andrés F. Gualdrón‐Reyes, Roser Fernández‐Climent, Sofia Masi, Camilo A. Mesa, Carlos Echeverría‐Arrondo, Federica Aiello, Federica Balzano, Gloria Uccello‐Barretta, Jhonatan Rodríguez‐Pereira, Sixto Giménez, Iván Mora‐Seró. Efficient Ligand Passivation Enables Ultrastable CsPbX 3 Perovskite Nanocrystals in Fully Alcohol Environments. Advanced Optical Materials 2023, 11 (12) https://doi.org/10.1002/adom.202203096
  95. Megha Shrivastava, Franziska Krieg, Maksym V. Kovalenko, K. V. Adarsh. Photon‐dressed biexciton‐mediated anomalous optical Stark effect in CsPbBr 3 nanocrystals. Surface and Interface Analysis 2023, 55 (6-7) , 501-506. https://doi.org/10.1002/sia.7153
  96. Stefania Milanese, Giovanni Morello, Maria Luisa De Giorgi, Arianna Cretì, Hordii Andrusiv, Maryna I. Bodnarchuk, Antonio Qualtieri, Mauro Lomascolo, Maksym V. Kovalenko, Marco Anni. Air-sensitive amplified spontaneous emission in lecithin-capped CsPbBr3 nanocrystals thin films. Materials Today Physics 2023, 35 , 101098. https://doi.org/10.1016/j.mtphys.2023.101098
  97. Humberto Emmanuel Sánchez-Godoy, Andrés Fabián Gualdrón-Reyes. Recent Insights to Prepare High-Quality Perovskite Nanocrystals via “Green” and Ecofriendly Solvents and Capping Agents. Applied Sciences 2023, 13 (10) , 6227. https://doi.org/10.3390/app13106227
  98. Yusaku Morikawa, Ryota Sato, Naoaki Oshita, Taisei Kimura, Kenshin Yoshida, Mao Goto, Satoshi Asakura, Motofumi Kashiwagi, Akito Masuhara. Perovskite quantum dots with potassium oleate ligands for light-emitting diode applications. Applied Physics Express 2023, 16 (5) , 055001. https://doi.org/10.35848/1882-0786/accf5f
  99. Jung Hyeon Yoo, Seok Bin Kwon, Ho Chan Yoo, Seung Hee Choi, Young Hyun Song, Bong Kyun Kang, Young Soo Seo, Tianyong Li, Yuhua Wang, Dae Ho Yoon. Simultaneous Encapsulation of Mixed‐Halide Perovskite on Synthesis Step Using a Thermally Expandable Lamellar Capsule to Fabricate the Multi‐Conversion Layer. Advanced Optical Materials 2023, 11 (8) https://doi.org/10.1002/adom.202202393
  100. Cynthia Collantes, William Teixeira, Victoria González Pedro, Maria-José Bañuls, Ángel Maquieira. Designing stable lead halide perovskite nanocrystals: From a single particle to nanocomposites. Applied Materials Today 2023, 31 , 101775. https://doi.org/10.1016/j.apmt.2023.101775
Load all citations
  • Abstract

    Figure 1

    Figure 1. (a) Schematic of a lecithin-ligand brush on a CsPbX3 surface; h indicates the brush height. (b) Chemical structure of lecithin and statistical occurrence of side chains in soy lecithin. (15) (c) Plot comparing the saturation concentration CsPbBr3 NCs (ca. 7 nm) capped with different ligands: oleic acid (OA) and oleylamine (OLA), ASC8 [3-(N,N-dimethyloctylammonio)propanesulfonate] and its longer chain analogues (ASC12 and ASC18, having C12 and C18 carbon chains in place of octyl, see also an earlier study in ref (14k)). The highest concentration of above 400 mg/mL (inorganic content per mL of toluene) is obtained with soy lecithin as a combined result of its higher chain length and natural lengths dispersity and, comparatively to all other studied ligands, higher grafting density (two vs one long chains per headgroup; i.e., 3.6 vs 2 tails/nm2). For comparison, ACS18-capped NCs exhibit a saturated concentration of ca. 90 mg/mL.

    Figure 2

    Figure 2. (a and b) Vials containing lecithin-covered ∼8 nm CsPbBr3 NCs at various concentrations (indicated on the figure) under day light and UV light, respectively. (c) Typical absorption spectra (gray, as synthesized; black, fraction 8) and emission spectrum (green, fraction 8), (d) high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) image, (e) HR-TEM image, and (f) high-resolution HAADF-STEM image of CsPbBr3 NCs from fraction 8 obtained by size fractioning; full size-selected series is given in Figure 3a and 3b as well as Figures S15 and S16.

    Figure 3

    Figure 3. (a) Absorption and (b) photoluminescence spectra of size-selected fractions of CsPbBr3 NCs (130 °C synthesis, 20% initial size distribution). NC size decreases with increasing fraction number. (c) Schematic of the AUC principle. (d) C(s,f/f0) distributions estimated by Sedfit from absorbance scans at 500 nm for fractions 6–9 (these fractions together sum up to 59% of the whole ensemble). Unit Sv “Svedberg” is equal to 10–13 s. From the distributions, solvodynamic particle size and core size were calculated and tabulated on the right. Core size refers to the average edge length of the NC. Results are tabulated in Table S4.

    Figure 4

    Figure 4. (a) SAXS traces of NCs from fraction 8 (green) fitted with a monodisperse orthorhombic (violet) and polydisperse cubic (orange) and orthorhombic (black) models. Best fit was found for an orthorhombic model with 6.5% polydispersity on the edge lengths (fitting results Table S5). (b) Model-free fit of the small angle scattering data along with the NC shape that allowed for the a full 3D reconstruction, shown from 3 sides. Shape found from reconstruction of the scattering pattern agrees with the best-fit model, TEM statistics (Figure 2 d–f), and AUC data (Figure 3d). Measurements and fittings for NCs from fraction 9 can be found in Figure S21.

    Figure 5

    Figure 5. (a) Film thickness (AFM) under identical spin-coating conditions as a function of ink concentration (underlying AFM images Figures S22 and S23). (Green) Films made from toluene solutions of lecithin-capped CsPbBr3 NCs and (black) films from toluene solutions of ASC18-capped CsPbBr3 NCs. Error bars indicate film roughness. Lines are power-law fits. For the lecithin NCs the power is 0.5. (b) Photo of a 1 × 1 cm film 1 μm thick showing optical transparency; (c) AFM scan of a 1 μm thick film with roughness less than 13 nm; (d) SEM image of an identically prepared film showing long-range thickness homogeneity; (e) 80 consecutive spectra of a single lecithin-covered CsPbBr3 NC showing spectral stability due to good ligand passivation; (f) normalized correlogram indicating a single emitter is measured.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 36 other publications.

    1. 1
      (a) Schmidt, L. C.; Pertegas, A.; Gonzalez-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Minguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Perez-Prieto, J. Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. J. Am. Chem. Soc. 2014, 136, 850853,  DOI: 10.1021/ja4109209
      (b) Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 36926,  DOI: 10.1021/nl5048779
      (c) Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Bertolotti, F.; Masciocchi, N.; Guagliardi, A.; Kovalenko, M. V. Monodisperse Formamidinium Lead Bromide Nanocrystals with Bright and Stable Green Photoluminescence. J. Am. Chem. Soc. 2016, 138, 1420214205,  DOI: 10.1021/jacs.6b08900
      (d) Swarnkar, A.; Chulliyil, R.; Ravi, V. K.; Irfanullah, M.; Chowdhury, A.; Nag, A. Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots. Angew. Chem., Int. Ed. 2015, 54, 1542415428,  DOI: 10.1002/anie.201508276
      (e) Huang, H.; Polavarapu, L.; Sichert, J. A.; Susha, A. S.; Urban, A. S.; Rogach, A. L. Colloidal Lead Halide Perovskite Nanocrystals: Synthesis, Optical Properties and Applications. NPG Asia Mater. 2016, 8, e328e328,  DOI: 10.1038/am.2016.167
      (f) Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and Potential Optoelectronic Applications of Lead Halide Perovskite Nanocrystals. Science 2017, 358, 745750,  DOI: 10.1126/science.aam7093
      (g) Zhang, J.; Yang, X. K.; Deng, H.; Qiao, K. K.; Farooq, U.; Ishaq, M.; Yi, F.; Liu, H.; Tang, J.; Song, H. S. Low-Dimensional Halide Perovskites and Their Advanced Optoelectronic Applications. Nano-Micro Lett. 2017, 9, 3662,  DOI: 10.1007/s40820-017-0137-5
      (h) Li, X.; Cao, F.; Yu, D.; Chen, J.; Sun, Z.; Shen, Y.; Zhu, Y.; Wang, L.; Wei, Y.; Wu, Y.; Zeng, H. All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications. Small 2017, 13, 16039961604020,  DOI: 10.1002/smll.201603996
      (i) Akkerman, Q. A.; Raino, G.; Kovalenko, M. V.; Manna, L. Genesis, Challenges and Opportunities for Colloidal Lead Halide Perovskite Nanocrystals. Nat. Mater. 2018, 17, 394405,  DOI: 10.1038/s41563-018-0018-4
      (j) Adinolfi, V.; Peng, W.; Walters, G.; Bakr, O. M.; Sargent, E. H. The Electrical and Optical Properties of Organometal Halide Perovskites Relevant to Optoelectronic Performance. Adv. Mater. 2018, 30, 17007641700777,  DOI: 10.1002/adma.201700764
      (k) Zhao, Y.; Li, J.; Dong, Y.; Song, J. Synthesis of Colloidal Halide Perovskite Quantum Dots/Nanocrystals: Progresses and Advances. Isr. J. Chem. 2019, 59, 649660,  DOI: 10.1002/ijch.201900009
      (l) Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties. Chem. Rev. 2019, 119, 32963348,  DOI: 10.1021/acs.chemrev.8b00644
      (m) Zheng, X. P.; Hou, Y.; Sun, H. T.; Mohammed, O. F.; Sargent, E. H.; Bakr, O. M. Reducing Defects in Halide Perovskite Nanocrystals for Light-Emitting Applications. J. Phys. Chem. Lett. 2019, 10, 26292640,  DOI: 10.1021/acs.jpclett.9b00689
      (n) Dutta, A.; Pradhan, N. Phase-Stable Red-Emitting CsPbI3 Nanocrystals: Successes and Challenges. ACS Energy Lett. 2019, 4, 709719,  DOI: 10.1021/acsenergylett.9b00138
    2. 2
      (a) Giansante, C.; Infante, I. Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective. J. Phys. Chem. Lett. 2017, 8, 52095215,  DOI: 10.1021/acs.jpclett.7b02193
      (b) Huang, H.; Bodnarchuk, M. I.; Kershaw, S. V.; Kovalenko, M. V.; Rogach, A. L. Lead Halide Perovskite Nanocrystals in the Research Spotlight: Stability and Defect Tolerance. ACS Energy Lett. 2017, 2, 20712083,  DOI: 10.1021/acsenergylett.7b00547
      (c) Motti, S. G.; Meggiolaro, D.; Martani, S.; Sorrentino, R.; Barker, A. J.; De Angelis, F.; Petrozza, A. Defect Activity in Metal-Halide Perovskites. Adv. Mater. 2019, 31, 1901183,  DOI: 10.1002/adma.201901183
    3. 3
      (a) Kovalenko, M. V.; Bodnarchuk, M. I. Lead Halide Perovskite Nanocrystals: From Discovery to Self-assembly and Applications. Chimia 2017, 71, 461470,  DOI: 10.2533/chimia.2017.461
      (b) Zhao, X.; Ng, J. D. A.; Friend, R. H.; Tan, Z.-K. Opportunities and Challenges in Perovskite Light-Emitting Devices. ACS Photonics 2018, 5, 38663875,  DOI: 10.1021/acsphotonics.8b00745
      (c) Van Le, Q.; Jang, H. W.; Kim, S. Y. Recent Advances toward High-Efficiency Halide Perovskite Light emitting diodes Review and Perspective. Small Methods 2018, 2, 17004191700437,  DOI: 10.1002/smtd.201700419
      (d) Chiba, T.; Kido, J. Lead Halide Perovskite Quantum Dots for Light Emitting Devices. J. Mater. Chem. C 2018, 6, 11868,  DOI: 10.1039/C8TC03561J
      (e) Zhang, F.; Song, J.; Han, B.; Fang, T.; Li, J.; Zeng, H. High-Efficiency Pure-Color Inorganic Halide Perovskite Emitters for Ultrahigh-Definition Displays: Progress for Backlighting Displays and Electrically Driven Devices. Small Methods 2018, 2, 17003821700391,  DOI: 10.1002/smtd.201700382
      (f) Kim, Y.-H.; Kim, S.; Jo, S. H.; Lee, T.-W. Metal Halide Perovskites: From Crystal Formations to Light-Emitting-Diode Applications. Small Methods 2018, 2, 18000931800114,  DOI: 10.1002/smtd.201800093
      (g) Chang, S.; Bai, Z.; Zhong, H. In Situ Fabricated Perovskite Nanocrystals: A Revolution in Optical Materials. Adv. Opt. Mater. 2018, 6, 18003801800399,  DOI: 10.1002/adom.201800380
      (h) Chen, N.; Bai, Z.; Wang, Z.; Ji, H.; Liu, R.; Cao, C.; Wang, H.; Jiang, F.; Zhong, H. Low Cost Quantum Dot Film based Wide Color Gamut Backlight Unit for LCD TVs. Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp. 2018, 49, 16571659,  DOI: 10.1002/sdtp.12303
      (i) Yoon, H. C.; Lee, H.; Kang, H.; Oh, J. H.; Do, Y. R. Highly Efficient Wide-Color-Gamut QD-Emissive LCDs using Red and Green Perovskite Core/Shell QDs. J. Mater. Chem. C 2018, 6, 1302313033,  DOI: 10.1039/C8TC04537B
      (j) Lu, M.; Zhang, Y.; Wang, S.; Guo, J.; Yu, W. W.; Rogach, A. L. Metal Halide Perovskite Light-Emitting Devices: Promising Technology for Next-Generation Displays. Adv. Funct. Mater. 2019, 29, 19020081902043,  DOI: 10.1002/adfm.201902008
      (k) He, Z.; Zhang, C.; Dong, Y.; Wu, S.-T. Emerging Perovskite Nanocrystals-Enhanced Solid-State Lighting and Liquid-Crystal Displays. Crystals 2019, 9, 59,  DOI: 10.3390/cryst9020059
    4. 4
      (a) Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold Amplified Spontaneous Emission and Lasing from Colloidal Nanocrystals of Caesium Lead Halide Perovskites. Nat. Commun. 2015, 6, 80568064,  DOI: 10.1038/ncomms9056
      (b) Stylianakis, M. M.; Maksudov, T.; Panagiotopoulos, A.; Kakavelakis, G.; Petridis, K. Inorganic and Hybrid Perovskite Based Laser Devices: A Review. Materials 2019, 12, 859,  DOI: 10.3390/ma12060859
      (c) Zhang, Y.; Lim, C.-K.; Dai, Z.; Yu, G.; Haus, J. W.; Zhang, H.; Prasad, P. N. Photonics and Optoelectronics using Nano-Structured Hybrid Perovskite Media and their Optical Cavities. Phys. Rep. 2019, 795, 151,  DOI: 10.1016/j.physrep.2019.01.005
    5. 5
      (a) Wu, Y.; Li, X.; Wei, Y.; Gu, Y.; Zeng, H. Perovskite Photodetectors with both Visible-Infrared Dual-Mode Response and Super-Narrowband Characteristics towards Photo-Communication Encryption Application. Nanoscale 2018, 10, 359365,  DOI: 10.1039/C7NR06193E
      (b) Mei, S.; Liu, X.; Zhang, W.; Liu, R.; Zheng, L.; Guo, R.; Tian, P. High-Bandwidth White-Light System Combining a Micro-LED with Perovskite Quantum Dots for Visible Light Communication. ACS Appl. Mater. Interfaces 2018, 10, 56415648,  DOI: 10.1021/acsami.7b17810
      (c) Zhang, Y.; Wang, L.; Wang, K.; Wong, K. S.; Wu, K. Recent Advances in the Hardware of Visible Light Communication. IEEE Access 2019, 7, 9109391104,  DOI: 10.1109/ACCESS.2019.2927054
      (d) Cen, G.; Liu, Y.; Zhao, C.; Wang, G.; Fu, Y.; Yan, G.; Yuan, Y.; Su, C.; Zhao, Z.; Mai, W. Atomic-Layer Deposition-Assisted Double-Side Interfacial Engineering for High-Performance Flexible and Stable CsPbBr3 Perovskite Photodetectors toward Visible Light Communication Applications. Small 2019, 15, 1902135,  DOI: 10.1002/smll.201902135
    6. 6
      (a) Chen, Q.; Wu, J.; Ou, X.; Huang, B.; Almutlaq, J.; Zhumekenov, A. A.; Guan, X.; Han, S.; Liang, L.; Yi, Z.; Li, J.; Xie, X.; Wang, Y.; Li, Y.; Fan, D.; Teh, D. B. L.; All, A. H.; Mohammed, O. F.; Bakr, O. M.; Wu, T.; Bettinelli, M.; Yang, H.; Huang, W.; Liu, X. All-Inorganic Perovskite Nanocrystal Scintillators. Nature 2018, 561, 8893,  DOI: 10.1038/s41586-018-0451-1
      (b) Maddalena, F.; Tjahjana, L.; Xie, A.; Arramel; Zeng, S.; Wang, H.; Coquet, P.; Drozdowski, W.; Dujardin, C.; Dang, C.; Birowosuto, M. Inorganic, Organic, and Perovskite Halides with Nanotechnology for High–Light Yield X- and γ-ray Scintillators. Crystals 2019, 9, 88117,  DOI: 10.3390/cryst9020088
    7. 7
      (a) Raino, G.; Nedelcu, G.; Protesescu, L.; Bodnarchuk, M. I.; Kovalenko, M. V.; Mahrt, R. F.; Stoferle, T. Single Cesium Lead Halide Perovskite Nanocrystals at Low Temperature: Fast Single-Photon Emission, Reduced Blinking, and Exciton Fine Structure. ACS Nano 2016, 10, 24852490,  DOI: 10.1021/acsnano.5b07328
      (b) Fu, M.; Tamarat, P.; Huang, H.; Even, J.; Rogach, A. L.; Lounis, B. Neutral and Charged Exciton Fine Structure in Single Lead Halide Perovskite Nanocrystals Revealed by Magneto-optical Spectroscopy. Nano Lett. 2017, 17, 28952901,  DOI: 10.1021/acs.nanolett.7b00064
      (c) Fu, M.; Tamarat, P.; Trebbia, J. B.; Bodnarchuk, M. I.; Kovalenko, M. V.; Even, J.; Lounis, B. Unraveling Exciton-Phonon Coupling in Individual FAPbI3 Nanocrystals Emitting near-infrared Single Photons. Nat. Commun. 2018, 9, 33183328,  DOI: 10.1038/s41467-018-05876-0
      (d) Tong, Y.; Fu, M.; Bladt, E.; Huang, H.; Richter, A. F.; Wang, K.; Muller-Buschbaum, P.; Bals, S.; Tamarat, P.; Lounis, B.; Feldmann, J.; Polavarapu, L. Chemical Cutting of Perovskite Nanowires into Single-Photon Emissive Low-Aspect-Ratio CsPbX3 (X = Cl, Br, I) Nanorods. Angew. Chem., Int. Ed. 2018, 57, 1609416098,  DOI: 10.1002/anie.201810110
      (e) Li, B.; Huang, H.; Zhang, G. F.; Yang, C. G.; Guo, W. L.; Chen, R. Y.; Qin, C. B.; Gao, Y.; Biju, V. P.; Rogach, A. L.; Xiao, L. T.; Jia, S. T. Excitons and Biexciton Dynamics in Single CsPbBr3 Perovskite Quantum Dots. J. Phys. Chem. Lett. 2018, 9, 69346940,  DOI: 10.1021/acs.jpclett.8b03098
      (f) Becker, M. A.; Scarpelli, L.; Nedelcu, G.; Raino, G.; Masia, F.; Borri, P.; Stoferle, T.; Kovalenko, M. V.; Langbein, W.; Mahrt, R. F. Long Exciton Dephasing Time and Coherent Phonon Coupling in CsPbBr2Cl Perovskite Nanocrystals. Nano Lett. 2018, 18, 75467551,  DOI: 10.1021/acs.nanolett.8b03027
      (g) Becker, M. A.; Vaxenburg, R.; Nedelcu, G.; Sercel, P. C.; Shabaev, A.; Mehl, M. J.; Michopoulos, J. G.; Lambrakos, S. G.; Bernstein, N.; Lyons, J. L.; Stoferle, T.; Mahrt, R. F.; Kovalenko, M. V.; Norris, D. J.; Raino, G.; Efros, A. L. Bright Triplet Excitons in Caesium Lead Halide Perovskites. Nature 2018, 553, 189193,  DOI: 10.1038/nature25147
      (h) Utzat, H.; Sun, W.; Kaplan, A. E. K.; Krieg, F.; Ginterseder, M.; Spokoyny, B.; Klein, N. D.; Shulenberger, K. E.; Perkinson, C. F.; Kovalenko, M. V.; Bawendi, M. G. Coherent Single-Photon Emission from Colloidal Lead Halide Perovskite Quantum Dots. Science 2019, 363, 10681072,  DOI: 10.1126/science.aau7392
      (i) Tamarat, P.; Bodnarchuk, M. I.; Trebbia, J. B.; Erni, R.; Kovalenko, M. V.; Even, J.; Lounis, B. The Ground Exciton State of Formamidinium Lead Bromide Perovskite Nanocrystals is a Singlet Dark State. Nat. Mater. 2019, 18, 717724,  DOI: 10.1038/s41563-019-0364-x
      (j) Raino, G.; Landuyt, A.; Krieg, F.; Bernasconi, C.; Ochsenbein, S. T.; Dirin, D. N.; Bodnarchuk, M. I.; Kovalenko, M. V. Underestimated Effect of a Polymer Matrix on the Light Emission of Single CsPbBr3 Nanocrystals. Nano Lett. 2019, 19, 36483653,  DOI: 10.1021/acs.nanolett.9b00689
    8. 8
      (a) NREL Best Research-Cell Efficiency Chart; https://www.nrel.gov/pv/cell-efficiency.html (accessed Aug 26, 2019).
      (b) Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Quantum Dot–Induced Phase Stabilization of a-CsPbI3 Perovskite for High-Efficiency Photovoltaics. Science 2016, 354, 9295,  DOI: 10.1126/science.aag2700
      (c) Sanehira, E. M.; Marshall, A. R.; Christians, J. A.; Harvey, S. P.; Ciesielski, P. N.; Wheeler, L. M.; Schulz, P.; Lin, L. Y.; Beard, M. C.; Luther, J. M. Enhanced mobility CsPbI3 Quantum Dot Arrays for Record-Efficiency, High-Voltage Photovoltaic Cells. Sci. Adv. 2017, 3, eaao4204,  DOI: 10.1126/sciadv.aao4204
      (d) Wheeler, L. M.; Sanehira, E. M.; Marshall, A. R.; Schulz, P.; Suri, M.; Anderson, N. C.; Christians, J. A.; Nordlund, D.; Sokaras, D.; Kroll, T.; Harvey, S. P.; Berry, J. J.; Lin, L. Y.; Luther, J. M. Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics. J. Am. Chem. Soc. 2018, 140, 1050410513,  DOI: 10.1021/jacs.8b04984
      (e) Song, Z.; Chen, C.; Li, C.; Awni, R. A.; Zhao, D.; Yan, Y. Wide-Bandgap, Low-Bandgap, and Tandem Perovskite Solar Cells. Semicond. Semicond. Sci. Technol. 2019, 34, 093001093032,  DOI: 10.1088/1361-6641/ab27f7
      (f) Fu, H. Colloidal Metal Halide Perovskite Nanocrystals: a Promising Juggernaut in Photovoltaic Applications. J. Mater. Chem. A 2019, 7, 1435714379,  DOI: 10.1039/C8TA12509K
    9. 9
      Miao, J.; Zhang, F. Recent Progress on Highly Sensitive Perovskite Photodetectors. J. Mater. Chem. C 2019, 7, 17411791,  DOI: 10.1039/C8TC06089D
    10. 10
      (a) Talapin, D. V.; Lee, J.-S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem. Rev. 2010, 110, 389458,  DOI: 10.1021/cr900137k
      (b) Boles, M. A.; Ling, D.; Hyeon, T.; Talapin, D. V. The Surface Science of Nanocrystals. Nat. Mater. 2016, 15, 141153,  DOI: 10.1038/nmat4526
      (c) Houtepen, A. J.; Hens, Z.; Owen, J. S.; Infante, I. On the Origin of Surface Traps in Colloidal II-VI Semiconductor Nanocrystals. Chem. Mater. 2017, 29, 752761,  DOI: 10.1021/acs.chemmater.6b04648
    11. 11
      (a) Weiss, E. A. Organic Molecules as Tools To Control the Growth, Surface Structure, and Redox Activity of Colloidal Quantum Dots. Acc. Chem. Res. 2013, 46, 26072615,  DOI: 10.1021/ar400078u
      (b) Ling, D. S.; Hackett, M. J.; Hyeon, T. Surface Ligands in Synthesis, Modification, Assembly and Biomedical Applications of Nanoparticles. Nano Today 2014, 9, 457477,  DOI: 10.1016/j.nantod.2014.06.005
      (c) Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V. Building Devices from Colloidal Quantum Dots. Science 2016, 353, aac5523,  DOI: 10.1126/science.aac5523
      (d) ten Brinck, S.; Infante, I. Surface Termination, Morphology, and Bright Photoluminescence of Cesium Lead Halide Perovskite Nanocrystals. ACS Energy Lett. 2016, 1, 12661272,  DOI: 10.1021/acsenergylett.6b00595
    12. 12
      (a) Ravi, V. K.; Santra, P. K.; Joshi, N.; Chugh, J.; Singh, S. K.; Rensmo, H.; Ghosh, P.; Nag, A. Origin of the Substitution Mechanism for the Binding of Organic Ligands on the Surface of CsPbBr3 Perovskite Nanocubes. J. Phys. Chem. Lett. 2017, 8, 49884994,  DOI: 10.1021/acs.jpclett.7b02192
      (b) Nenon, D. P.; Pressler, K.; Kang, J.; Koscher, B. A.; Olshansky, J. H.; Osowiecki, W. T.; Koc, M. A.; Wang, L. W.; Alivisatos, A. P. Design Principles for Trap-Free CsPbX3 Nanocrystals: Enumerating and Eliminating Surface Halide Vacancies with Softer Lewis Bases. J. Am. Chem. Soc. 2018, 140, 1776017772,  DOI: 10.1021/jacs.8b11035