ACS Publications. Most Trusted. Most Cited. Most Read
Carbocatalytic Acetylene Cyclotrimerization: A Key Role of Unpaired Electron Delocalization
My Activity

Figure 1Loading Img
    Article

    Carbocatalytic Acetylene Cyclotrimerization: A Key Role of Unpaired Electron Delocalization
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (2)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2020, 142, 8, 3784–3796
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.9b10887
    Published February 14, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Development of sustainable catalysts for synthetic transformations is one of the most challenging and demanding goals. The high prices of precious metals and the unavoidable leaching of toxic metal species leading to environmental contamination make the transition metal-free catalytic systems especially important. Here we demonstrate that carbene active centers localized on carbon atoms at the zigzag edge of graphene represent an alternative platform for efficient catalytic carbon–carbon bond formation in the synthesis of benzene. The studied acetylene trimerization reaction is an efficient atom-economic route to build an aromatic ring—a step ubiquitously important in organic synthesis and industrial applications. Computational modeling of the reaction mechanism reveals a principal role of the reversible spin density oscillations that govern the overall catalytic cycle, facilitate the product formation, and regenerate the catalytically active centers. Dynamic π-electron interactions in 2D carbon systems open new opportunities in the field of carbocatalysis, unachievable by means of transition metal-catalyzed transformations. The theoretical findings are confirmed experimentally by generating key moieties of the carbon catalyst and performing the acetylene conversion to benzene.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.9b10887.

    • Additional details on theoretical calculations and experiments (PDF)

    • Optimized molecular structures (XYZ)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 35 publications.

    1. Alexandr S. Shmakov, Matvey K. Shurikov, Denis V. Korchagin, Darya E. Votkina, Pavel S. Postnikov, Aleksander V. Akimov, Pavel V. Petunin, Evgeny V. Tretyakov. The Ground State of Multispin Systems Based on Verdazyl and Nitrene Radicals: An EPR and Quantum-Chemical Study. The Journal of Physical Chemistry A 2025, 129 (7) , 1808-1816. https://doi.org/10.1021/acs.jpca.4c06823
    2. Botao Wang, Zhiqiang Wang, Xinjie You, Zheng Li, Jinhui Yang. One-Step Construction of 2-Methylquinazolin-4(3H)-ones Using Solid Calcium Carbide as an Alternative to Gaseous Acetylene. The Journal of Organic Chemistry 2025, 90 (1) , 385-393. https://doi.org/10.1021/acs.joc.4c02341
    3. Evgeniy O. Pentsak, Maria S. Murga, Valentine P. Ananikov. Role of Acetylene in the Chemical Evolution of Carbon Complexity. ACS Earth and Space Chemistry 2024, 8 (5) , 798-856. https://doi.org/10.1021/acsearthspacechem.3c00223
    4. Bogdan Ya. Karlinskii, Alexander Yu. Kostyukovich, Fedor A. Kucherov, Konstantin I. Galkin, Kirill S. Kozlov, Valentine P. Ananikov. Directing-Group-Free, Carbonyl Group-Promoted Catalytic C–H Arylation of Bio-Based Furans. ACS Catalysis 2020, 10 (19) , 11466-11480. https://doi.org/10.1021/acscatal.0c02143
    5. Xuhan Li, Fei Sun, Min Xie, Zhibin Qu, Junfeng Li, Guangbo Zhao. Metal-free carbon catalyst with nitrogen dopant and vacancy site achieving 100 % NO conversion: a synergistic promotional mechanism for the fast NH3-SCR reaction. Separation and Purification Technology 2025, 374 , 133644. https://doi.org/10.1016/j.seppur.2025.133644
    6. Xuhan Li, Xiao Zhu, Fei Sun, Jingjie Wang, Zhibin Qu, Yanhui Xu, Junfeng Li, Guangbo Zhao, Junhua Li. Synergistic regulation of nitrogen-doping environment and microporous structure in metal-free carbon catalyst enabling coupling effect on selective catalytic reduction of NO with NH3. Carbon 2025, 243 , 120516. https://doi.org/10.1016/j.carbon.2025.120516
    7. Ruslan R. Shaydullin, Alexey S. Galushko, Valentina V. Ilyushenkova, Yulia S. Vlasova, Valentine P. Ananikov. Are activation barriers of 50–70 kcal mol −1 accessible for transformations in organic synthesis in solution?. Chemical Science 2025, 16 (12) , 5289-5298. https://doi.org/10.1039/D4SC08243E
    8. Ángel Manu Martínez, Gema Domínguez, Javier Pérez-Castells. [2+2+2] Cycloadditions. 2025https://doi.org/10.1016/B978-0-323-96025-0.00141-1
    9. M. S. Murga. Acetylene trimerization on the silicon carbide surface in the envelopes of AGB stars: an astrochemical estimation. Astronomičeskij žurnal 2024, 101 (12) , 1068-1077. https://doi.org/10.31857/S0004629924120046
    10. M. S. Murga. Acetylene Trimerization on the Silicon Carbide Surface in the Envelopes of AGB Stars: An Astrochemical Estimation. Astronomy Reports 2024, 68 (12) , 1176-1184. https://doi.org/10.1134/S1063772924700999
    11. Maria S. Murga. Evolution of carbon particles from the stage of asymptotic giant branch stars to planetary nebulae: observations, experiments, and theory. Physics-Uspekhi 2024, 67 (10) , 961-987. https://doi.org/10.3367/UFNe.2023.12.039614
    12. Maria S. Murga. Evolution of carbon particles from the stage of asymptotic giant branch stars to planetary nebulae: observations, experiments, and theory. Uspekhi Fizicheskih Nauk 2024, 194 (10) , 1017-1045. https://doi.org/10.3367/UFNr.2023.12.039614
    13. M. P. Egorov, V. P. Ananikov, E. G. Baskir, S. E. Boganov, V. I. Bogdan, A. N. Vereshchagin, V. A. Vil’, I. L. Dalinger, A. D. Dilman, O. L. Eliseev, S. G. Zlotin, E. A. Knyazeva, V. M. Kogan, L. O. Kononov, M. M. Krayushkin, V. B. Krylov, L. M. Kustov, V. V. Levin, B. V. Lichitsky, M. G. Medvedev, N. E. Nifantiev, O. A. Rakitin, A. M. Sakharov, I. V. Svitanko, G. A. Smirnov, A. Yu. Stakheev, M. A. Syroeshkin, A. O. Terent’ev, Yu. V. Tomilov, E. V. Tretyakov, I. V. Trushkov, L. L. Fershtat, V. A. Chaliy, V. Z. Shirinian. Current trends in organic chemistry: contribution of the N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences. Russian Chemical Bulletin 2024, 73 (9) , 2423-2532. https://doi.org/10.1007/s11172-024-4366-8
    14. Yegor M. Kedalo, Yulia G. Polynskaya, Nikita A. Matsokin, Andrey A. Knizhnik, Alexander S. Sinitsa, Boris V. Potapkin. Theoretical study of the mechanism of hydrogen production by catalytic methane decomposition on the carbon black catalyst. Journal of Analytical and Applied Pyrolysis 2024, 181 , 106611. https://doi.org/10.1016/j.jaap.2024.106611
    15. Alice Magubane, Prakash M. Gangatharan, Pumza Mente, Tumelo N. Phaahlamohlaka, Manoko S. Maubane-Nkadimeng, Michael Lee, Jacques O’Connell, Neil J. Coville. Hydrogenation of Cinnamaldehyde Using Carbon Dots Reduced Palladium Nanoparticles. Catalysis Letters 2024, 154 (7) , 3212-3224. https://doi.org/10.1007/s10562-023-04540-7
    16. Rabindranath Singha, Puja Basak, Pranab Ghosh. Catalytic applications of graphene oxide towards the synthesis of bioactive scaffolds through the formation of carbon–carbon and carbon–heteroatom bonds. Physical Sciences Reviews 2023, 8 (11) , 3993-4016. https://doi.org/10.1515/psr-2021-0096
    17. Aleksan G. Shahkhatuni, Arpine S. Harutyunyan, Astghik A. Shahkhatuni, Alexander Yu. Kostyukovich, Valentine P. Ananikov. The influence of superbasic conditions and solvent effects on NMR spectra and structural parameters of acetylene in solution. Journal of Molecular Liquids 2023, 385 , 122381. https://doi.org/10.1016/j.molliq.2023.122381
    18. Shiwei Lü, Zipeng Wang, Xiang Gao, Kai Chen, Shifa Zhu. 1,2‐Difunctionalization of Acetylene Enabled by Light. Angewandte Chemie 2023, 135 (16) https://doi.org/10.1002/ange.202300268
    19. Shiwei Lü, Zipeng Wang, Xiang Gao, Kai Chen, Shifa Zhu. 1,2‐Difunctionalization of Acetylene Enabled by Light. Angewandte Chemie International Edition 2023, 62 (16) https://doi.org/10.1002/anie.202300268
    20. Zhicong Lin, Boxiang Liu, Yu Wang, Siju Li, Shifa Zhu. Synthesis of vinyl-substituted alcohols using acetylene as a C2 building block. Chemical Science 2023, 14 (7) , 1912-1918. https://doi.org/10.1039/D2SC06400F
    21. Xuhan Li, Fei Sun, Zhibin Qu, Xiao Zhu, Jihui Gao, Guangbo Zhao, Liqiang Zhang. Insight into synergistic effects of oxygen and nitrogen dual-dopants in carbon catalysts on selective catalytic reduction of NOx with NH3: A combined computational and experimental verification. Chemical Engineering Journal 2023, 454 , 140098. https://doi.org/10.1016/j.cej.2022.140098
    22. Chong Wang, Chen Guo. Nitrogen atom coordination tuned transition metal catalysts for NO oxidation and reduction. Chemosphere 2022, 309 , 136735. https://doi.org/10.1016/j.chemosphere.2022.136735
    23. Linzheng Wang, Nachuan Li, Shaozhuo Niu, Ruizhi Zhang, Yonghao Luo. Continuous soot surface growth over carbene active site through spin density migration and spontaneous dehydrogenation: A DFT study. Fuel 2022, 329 , 125497. https://doi.org/10.1016/j.fuel.2022.125497
    24. Bo Yang, Shaodong Lu, Yongdong Wang, Shifa Zhu. Diverse synthesis of C2-linked functionalized molecules via molecular glue strategy with acetylene. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-29556-2
    25. Shiwei Lü, Zipeng Wang, Shifa Zhu. Thiol-Yne click chemistry of acetylene-enabled macrocyclization. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-32723-0
    26. S. P. Bedenko, K. I. Dement’ev, A. L. Maximov. Modern Processes for Petrochemistry Based on Acetylene (A Review). Petroleum Chemistry 2022, 62 (9) , 989-1026. https://doi.org/10.1134/S0965544122090031
    27. Maria S. Ledovskaya, Vladimir V. Voronin, Konstantin S. Rodygin, Valentine P. Ananikov. Acetylene and Ethylene: Universal C2 Molecular Units in Cycloaddition Reactions. Synthesis 2022, 54 (04) , 999-1042. https://doi.org/10.1055/a-1654-2318
    28. Linzheng Wang, Nachuan Li, Shaozhuo Niu, Ruizhi Zhang, Yonghao Luo. Dft Study of Soot Surface Growth Mechanism Over Carbene Active Site: From Initial Capture to Further Growth. SSRN Electronic Journal 2022, 179 https://doi.org/10.2139/ssrn.4138262
    29. Yu. V. Smirnova. General Meeting of the Department of Chemistry and Materials Science of the Russian Academy of Sciences. Russian Chemical Bulletin 2021, 70 (8) , 1622-1628. https://doi.org/10.1007/s11172-021-3260-x
    30. Shuchang Wu, Linhui Yu, Guodong Wen, Zailai Xie, Yangming Lin. Recent progress of carbon-based metal-free materials in thermal-driven catalysis. Journal of Energy Chemistry 2021, 58 , 318-335. https://doi.org/10.1016/j.jechem.2020.10.011
    31. Daniil A. Boiko, Evgeniy O. Pentsak, Vera A. Cherepanova, Evgeniy G. Gordeev, Valentine P. Ananikov. Deep neural network analysis of nanoparticle ordering to identify defects in layered carbon materials. Chemical Science 2021, 12 (21) , 7428-7441. https://doi.org/10.1039/D0SC05696K
    32. Elena K. Beloglazkina, Tatiana V. Bogatova, Valentine G. Nenajdenko. Nikolay Zelinsky (1861–1953): Mendeleev's Protege, a Brilliant Scientist, and the Top Soviet Chemist of the Stalin Era. Angewandte Chemie 2020, 132 (47) , 20928-20936. https://doi.org/10.1002/ange.202005233
    33. Elena K. Beloglazkina, Tatiana V. Bogatova, Valentine G. Nenajdenko. Nikolay Zelinsky (1861–1953): Mendeleev's Protege, a Brilliant Scientist, and the Top Soviet Chemist of the Stalin Era. Angewandte Chemie International Edition 2020, 59 (47) , 20744-20752. https://doi.org/10.1002/anie.202005233
    34. E. O. Pentsak, E. G. Gordeev, V. P. Ananikov. Carbocatalysis: From Acetylene Trimerization to Modern Organic Synthesis. A Review. Doklady Physical Chemistry 2020, 493 (2) , 95-122. https://doi.org/10.1134/S0012501620380017
    35. Muhammad Sohail Ahmad, Yuta Nishina. Graphene-based carbocatalysts for carbon–carbon bond formation. Nanoscale 2020, 12 (23) , 12210-12227. https://doi.org/10.1039/D0NR02984J

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2020, 142, 8, 3784–3796
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.9b10887
    Published February 14, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    2799

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.