ACS Publications. Most Trusted. Most Cited. Most Read
Hot Electrons Generated in Chiral Plasmonic Nanocrystals as a Mechanism for Surface Photochemistry and Chiral Growth
My Activity

Figure 1Loading Img
    Article

    Hot Electrons Generated in Chiral Plasmonic Nanocrystals as a Mechanism for Surface Photochemistry and Chiral Growth
    Click to copy article linkArticle link copied!

    • Larousse Khosravi Khorashad
      Larousse Khosravi Khorashad
      Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
      Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
    • Lucas V. Besteiro
      Lucas V. Besteiro
      Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
      Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel Boulet, Varennes, QC J3X 1S2, Canada
    • Miguel A. Correa-Duarte
      Miguel A. Correa-Duarte
      Department of Physical Chemistry, Center for Biomedical Research (CINBIO), Southern Galicia Institute of Health Research (IISGS), and Biomedical Research, Networking Center for Mental Health (CIBERSAM), Universidade de Vigo, 36310 Vigo, Spain
    • Sven Burger
      Sven Burger
      Zuse Institute Berlin, Takustrasse 7, 14195 Berlin, Germany
      More by Sven Burger
    • Zhiming M. Wang*
      Zhiming M. Wang
      Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
      *Email: [email protected]
    • Alexander O. Govorov*
      Alexander O. Govorov
      Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
      Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, United States
      *Email: [email protected]
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2020, 142, 9, 4193–4205
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.9b11124
    Published February 6, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The realization of chiral photochemical reactions at the molecular level has proven to be a challenging task, with invariably low efficiencies originating from very small optical circular dichroism signals. On the contrary, colloidal nanocrystals offer a very large differential response to circularly polarized light when designed with chiral geometries. We propose taking advantage of this capability, introducing a novel mechanism driving surface photochemistry in a chiral nanocrystal. Plasmonic nanocrystals exhibit anomalously large asymmetry factors in optical circular dichroism (CD), and the related hot-electron generation shows in turn a very strong asymmetry, serving as a mechanism for chiral growth. Through theoretical modeling, we show that chiral plasmonic nanocrystals can enable chiral surface growth based on the generation of energetic (hot) electrons. Using simple and realistic phenomenological models, we illustrate how this kind of surface photochemistry can be observed experimentally. The proposed mechanism is efficient if it operates on an already strongly chiral nanocrystal, whereas our proposed mechanism does not show chiral growth for initially nonchiral structures in a solution. The asymmetry factors for the chiral effects, driven by hot electrons, exceed the values observed in chiral molecular photophysics at least 10-fold. The proposed chiral-growth mechanism for the transformation of plasmonic colloids is fundamentally different to the traditional schemes of chiral photochemistry at the molecular level.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.9b11124.

    • Numerical data for the chiroptical and chiro-electronic properties of Au helices (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 67 publications.

    1. Charlène Brissaud, Swareena Jain, Olivier Henrotte, Emilie Pouget, Matthias Pauly, Alberto Naldoni, Miguel Comesaña-Hermo. Plasmonic Chirality Meets Reactivity: Challenges and Opportunities. The Journal of Physical Chemistry C 2025, 129 (7) , 3361-3373. https://doi.org/10.1021/acs.jpcc.4c08454
    2. Alina Muravitskaya, Artur Movsesyan, Oscar Ávalos-Ovando, Verónica A. Bahamondes Lorca, Miguel A. Correa-Duarte, Lucas V. Besteiro, Tim Liedl, Peng Yu, Zhiming Wang, Gil Markovich, Alexander O. Govorov. Hot Electrons and Electromagnetic Effects in the Broadband Au, Ag, and Ag–Au Nanocrystals: The UV, visible, and NIR Plasmons. ACS Photonics 2024, 11 (1) , 68-84. https://doi.org/10.1021/acsphotonics.3c00951
    3. Polina Bainova, Jean-Patrick Joly, Marie Urbanova, Daria Votkina, Mariia Erzina, Barbora Vokata, Andrii Trelin, Premysl Fitl, Gérard Audran, Nicolas Vanthuyne, Jaromír Vinklarek, Václav Svorcik, Pavel Postnikov, Sylvain R. A. Marque, Oleksiy Lyutakov. Plasmon-Assisted Chemistry Using Chiral Gold Helicoids: Toward Asymmetric Organic Catalysis. ACS Catalysis 2023, 13 (19) , 12859-12867. https://doi.org/10.1021/acscatal.3c02958
    4. Hanyu Liu, András E. Vladár, Peng-Peng Wang, Min Ouyang. Tuning Geometric Chirality in Metallic and Hybrid Nanostructures by Controlled Nanoscale Crystal Symmetry Breaking. Journal of the American Chemical Society 2023, 145 (13) , 7495-7503. https://doi.org/10.1021/jacs.3c00503
    5. Natalia Kowalska, Filip Bandalewicz, Jakub Kowalski, Sergio Gómez-Graña, Maciej Bagiński, Isabel Pastoriza-Santos, Marek Grzelczak, Joanna Matraszek, Jorge Pérez-Juste, Wiktor Lewandowski. Hydrophobic Gold Nanoparticles with Intrinsic Chirality for the Efficient Fabrication of Chiral Plasmonic Nanocomposites. ACS Applied Materials & Interfaces 2022, 14 (44) , 50013-50023. https://doi.org/10.1021/acsami.2c11925
    6. Emiliano Cortés, Fedja J. Wendisch, Luca Sortino, Andrea Mancini, Simone Ezendam, Seryio Saris, Leonardo de S. Menezes, Andreas Tittl, Haoran Ren, Stefan A. Maier. Optical Metasurfaces for Energy Conversion. Chemical Reviews 2022, 122 (19) , 15082-15176. https://doi.org/10.1021/acs.chemrev.2c00078
    7. Oscar Ávalos-Ovando, Eva Yazmin Santiago, Artur Movsesyan, Xiang-Tian Kong, Peng Yu, Lucas V. Besteiro, Larousse Khosravi Khorashad, Hiromi Okamoto, Joseph M. Slocik, Miguel A. Correa-Duarte, Miguel Comesaña-Hermo, Tim Liedl, Zhiming Wang, Gil Markovich, Sven Burger, Alexander O. Govorov. Chiral Bioinspired Plasmonics: A Paradigm Shift for Optical Activity and Photochemistry. ACS Photonics 2022, 9 (7) , 2219-2236. https://doi.org/10.1021/acsphotonics.2c00445
    8. Cristián G. Sánchez, Matias Berdakin. Plasmon-Induced Hot Carriers: An Atomistic Perspective of the First Tens of Femtoseconds. The Journal of Physical Chemistry C 2022, 126 (24) , 10015-10023. https://doi.org/10.1021/acs.jpcc.2c02147
    9. Lauren A. Warning, Ali Rafiei Miandashti, Anastasiia Misiura, Christy F. Landes, Stephan Link. Naturally Occurring Proteins Direct Chiral Nanorod Aggregation. The Journal of Physical Chemistry C 2022, 126 (5) , 2656-2668. https://doi.org/10.1021/acs.jpcc.1c09644
    10. Yoel Negrín-Montecelo, Artur Movsesyan, Jie Gao, Sven Burger, Zhiming M. Wang, Sylvain Nlate, Emilie Pouget, Reiko Oda, Miguel Comesaña-Hermo, Alexander O. Govorov, Miguel A. Correa-Duarte. Chiral Generation of Hot Carriers for Polarization-Sensitive Plasmonic Photocatalysis. Journal of the American Chemical Society 2022, 144 (4) , 1663-1671. https://doi.org/10.1021/jacs.1c10526
    11. Lucas V. Besteiro, Artur Movsesyan, Oscar Ávalos-Ovando, Seunghoon Lee, Emiliano Cortés, Miguel A. Correa-Duarte, Zhiming M. Wang, Alexander O. Govorov. Local Growth Mediated by Plasmonic Hot Carriers: Chirality from Achiral Nanocrystals Using Circularly Polarized Light. Nano Letters 2021, 21 (24) , 10315-10324. https://doi.org/10.1021/acs.nanolett.1c03503
    12. Cuiping Ma, Peng Yu, Wenhao Wang, Yisong Zhu, Feng Lin, Jiaying Wang, Zhimin Jing, Xiang-Tian Kong, Peihang Li, Alexander O. Govorov, Dong Liu, Hongxing Xu, Zhiming Wang. Chiral Optofluidics with a Plasmonic Metasurface Using the Photothermal Effect. ACS Nano 2021, 15 (10) , 16357-16367. https://doi.org/10.1021/acsnano.1c05658
    13. Oscar Ávalos-Ovando, Lucas V. Besteiro, Artur Movsesyan, Gil Markovich, Tim Liedl, Kevin Martens, Zhiming Wang, Miguel A. Correa-Duarte, Alexander O. Govorov. Chiral Photomelting of DNA-Nanocrystal Assemblies Utilizing Plasmonic Photoheating. Nano Letters 2021, 21 (17) , 7298-7308. https://doi.org/10.1021/acs.nanolett.1c02479
    14. Daniele Toffoli, Andrea Russi, Giovanna Fronzoni, Emanuele Coccia, Mauro Stener, Luca Sementa, Alessandro Fortunelli. Circularly Polarized Plasmons in Chiral Gold Nanowires via Quantum-Mechanical Design. The Journal of Physical Chemistry Letters 2021, 12 (25) , 5829-5835. https://doi.org/10.1021/acs.jpclett.1c01364
    15. Stephan Link, (Senior Editor, The Journal of Physical Chemistry C)Gregory V. Hartland (Deputy Editor, The Journal of Physical Chemistry C). Virtual Issue on Chiral Plasmonics. The Journal of Physical Chemistry C 2021, 125 (19) , 10175-10178. https://doi.org/10.1021/acs.jpcc.1c03401
    16. Felix Binkowski, Tong Wu, Philippe Lalanne, Sven Burger, Alexander O. Govorov. Hot Electron Generation through Near-Field Excitation of Plasmonic Nanoresonators. ACS Photonics 2021, 8 (4) , 1243-1250. https://doi.org/10.1021/acsphotonics.1c00231
    17. Yisong Zhu, Peng Yu, Tianji Liu, Hongxing Xu, Alexander O. Govorov, Zhiming Wang. Nanolayered Tamm Plasmon-Based Multicolor Hot Electron Photodetection for O- and C-Band Telecommunication. ACS Applied Electronic Materials 2021, 3 (2) , 639-650. https://doi.org/10.1021/acsaelm.0c00710
    18. Emiliano Cortés, Lucas V. Besteiro, Alessandro Alabastri, Andrea Baldi, Giulia Tagliabue, Angela Demetriadou, Prineha Narang. Challenges in Plasmonic Catalysis. ACS Nano 2020, 14 (12) , 16202-16219. https://doi.org/10.1021/acsnano.0c08773
    19. Piotr Szustakiewicz, Natalia Kowalska, Dorota Grzelak, Tetsuya Narushima, Monika Góra, Maciej Bagiński, Damian Pociecha, Hiromi Okamoto, Luis M. Liz-Marzán, Wiktor Lewandowski. Supramolecular Chirality Synchronization in Thin Films of Plasmonic Nanocomposites. ACS Nano 2020, 14 (10) , 12918-12928. https://doi.org/10.1021/acsnano.0c03964
    20. Wenxiao Guo, Aaron C. Johnston-Peck, Yuchao Zhang, Yue Hu, Jiawei Huang, Wei David Wei. Cooperation of Hot Holes and Surface Adsorbates in Plasmon-Driven Anisotropic Growth of Gold Nanostars. Journal of the American Chemical Society 2020, 142 (25) , 10921-10925. https://doi.org/10.1021/jacs.0c03342
    21. Xiaobing Pan, Haoyu Li, Xuan Chen, Shenli Wang, Stefanos Mourdikoudis, Taotao Luo, Kwok‐yin Wong, Guangchao Zheng. Colorimetric Detection of Glucose Based on Discrete Chiral Au Nanorods. Advanced Optical Materials 2025, 24 https://doi.org/10.1002/adom.202403422
    22. Fang Wang, Weimin Yang, Qi Ding, Xinhe Xing, Liguang Xu, Hengwei Lin, Chuanlai Xu, Si Li. Chiral Au@CeO 2 Helical Nanorods with Spatially Separated Structures for Polarization‐Dependent N 2 Photofixation. Angewandte Chemie 2025, 137 (3) https://doi.org/10.1002/ange.202415031
    23. Fang Wang, Weimin Yang, Qi Ding, Xinhe Xing, Liguang Xu, Hengwei Lin, Chuanlai Xu, Si Li. Chiral Au@CeO 2 Helical Nanorods with Spatially Separated Structures for Polarization‐Dependent N 2 Photofixation. Angewandte Chemie International Edition 2025, 64 (3) https://doi.org/10.1002/anie.202415031
    24. Fengchun Wang, Qian Wang, Anyu Yue, Wenqiang Wu, Songwang Shan, Zhen Chi, Yanping Liu, Xia Ran, Yulu He, Lijun Guo. Regulated chiroptical activity and chirality-dependent plasmonic photocatalysis of GNH I@TiO2 nanoparticles. Ceramics International 2025, 556 https://doi.org/10.1016/j.ceramint.2025.01.025
    25. Yu Wang, Bin Ai, Yun Jiang, Zengyao Wang, Chong Chen, Zifan Xiao, Ge Xiao, Gang Zhang. Swiss roll nanoarrays for chiral plasmonic photocatalysis. Journal of Colloid and Interface Science 2025, 678 , 818-826. https://doi.org/10.1016/j.jcis.2024.08.215
    26. Chao Ding, Lei Sun, Yueheng Du, Mingwen Zhao. Chiral electromagnetic near field of polaritons in two-dimensional anisotropic materials. Physical Review B 2024, 110 (24) https://doi.org/10.1103/PhysRevB.110.L241408
    27. Bing Ni, Guillermo González‐Rubio, Kyle Van Gordon, Sara Bals, Nicholas A. Kotov, Luis M. Liz‐Marzán. Seed‐Mediated Growth and Advanced Characterization of Chiral Gold Nanorods. Advanced Materials 2024, 36 (47) https://doi.org/10.1002/adma.202412473
    28. Shuchi Zhang, Deqi Fan, Qingdian Yan, Yi Lu, Donglei Wu, Bing Fu, Ming Zhao. Single-molecule fluorescence imaging of photocatalytic nanomaterials. Journal of Materials Chemistry A 2024, 12 (31) , 19627-19662. https://doi.org/10.1039/D4TA02347A
    29. L. Khosravi Khorashad, A. Reicks, A. Erickson, J.E. Shield, D. Alexander, A. Laraoui, G. Gogos, C. Zuhlke, C. Argyropoulos. Unraveling the formation dynamics of metallic femtosecond laser induced periodic surface structures. Optics & Laser Technology 2024, 171 , 110410. https://doi.org/10.1016/j.optlastec.2023.110410
    30. Seunghoon Lee, Chenghao Fan, Artur Movsesyan, Johannes Bürger, Fedja J. Wendisch, Leonardo de S. Menezes, Stefan A. Maier, Haoran Ren, Tim Liedl, Lucas V. Besteiro, Alexander O. Govorov, Emiliano Cortés. Unraveling the Chirality Transfer from Circularly Polarized Light to Single Plasmonic Nanoparticles. Angewandte Chemie 2024, 136 (11) https://doi.org/10.1002/ange.202319920
    31. Seunghoon Lee, Chenghao Fan, Artur Movsesyan, Johannes Bürger, Fedja J. Wendisch, Leonardo de S. Menezes, Stefan A. Maier, Haoran Ren, Tim Liedl, Lucas V. Besteiro, Alexander O. Govorov, Emiliano Cortés. Unraveling the Chirality Transfer from Circularly Polarized Light to Single Plasmonic Nanoparticles. Angewandte Chemie International Edition 2024, 63 (11) https://doi.org/10.1002/anie.202319920
    32. Ting Li, Yidan Liu, Rongrong Jia, Lei Huang. Fabrication of heterogeneous bimetallic nanochains through photochemical welding for promoting the electrocatalytic hydrogen evolution reaction. Journal of Colloid and Interface Science 2024, 656 , 399-408. https://doi.org/10.1016/j.jcis.2023.11.121
    33. Lili Tan, Wenlong Fu, Qi Gao, Peng‐peng Wang. Chiral Plasmonic Hybrid Nanostructures: A Gateway to Advanced Chiroptical Materials. Advanced Materials 2024, 36 (3) https://doi.org/10.1002/adma.202309033
    34. Guohua Liu. Engineering Applications. 2024, 107-177. https://doi.org/10.1007/978-981-97-8332-8_5
    35. Yun-Cheng Ku, Mao-Kuen Kuo, Jiunn-Woei Liaw. Streamlines of the Poynting Vector and Chirality Flux around a Plasmonic Bowtie Nanoantenna. Nanomaterials 2024, 14 (1) , 61. https://doi.org/10.3390/nano14010061
    36. Lingling Zhang, Yilin Chen, Jiapeng Zheng, George R. Lewis, Xinyue Xia, Emilie Ringe, Wei Zhang, Jianfang Wang. Chiral Gold Nanorods with Five‐Fold Rotational Symmetry and Orientation‐Dependent Chiroptical Properties of Their Monomers and Dimers. Angewandte Chemie 2023, 135 (52) https://doi.org/10.1002/ange.202312615
    37. Lingling Zhang, Yilin Chen, Jiapeng Zheng, George R. Lewis, Xinyue Xia, Emilie Ringe, Wei Zhang, Jianfang Wang. Chiral Gold Nanorods with Five‐Fold Rotational Symmetry and Orientation‐Dependent Chiroptical Properties of Their Monomers and Dimers. Angewandte Chemie International Edition 2023, 62 (52) https://doi.org/10.1002/anie.202312615
    38. Jing Wang, Jiapeng Zheng, Kwai Hei Li, Jianfang Wang, Hai‐Qing Lin, Lei Shao. Excitation of Chiral Cavity Plasmon Resonances in Film‐Coupled Chiral Au Nanoparticles. Advanced Optical Materials 2023, 11 (18) https://doi.org/10.1002/adom.202202865
    39. Artur Movsesyan, Alina Muravitskaya, Lucas V. Besteiro, Eva Yazmin Santiago, Oscar Ávalos‐Ovando, Miguel A. Correa‐Duarte, Zhiming Wang, Gil Markovich, Alexander O. Govorov. Creating Chiral Plasmonic Nanostructures Using Chiral Light in a Solution and on a Substrate: The Near‐Field and Hot‐Electron Routes. Advanced Optical Materials 2023, 11 (18) https://doi.org/10.1002/adom.202300013
    40. Yuyuan Luo, Jin Liu, Haima Yang, Haishan Liu, Guohui Zeng, Bo Huang. Enhanced Circular Dichroism by F-Type Chiral Metal Nanostructures. Photonics 2023, 10 (9) , 1028. https://doi.org/10.3390/photonics10091028
    41. A. Olshtrem, I. Panov, S. Chertopalov, K. Zaruba, B. Vokata, P. Sajdl, J. Lancok, J. Storch, V. Církva, V. Svorcik, M. Kartau, A. S. Karimullah, J. Vana, O. Lyutakov. Chiral Plasmonic Response of 2D Ti 3 C 2 T x Flakes: Realization and Applications. Advanced Functional Materials 2023, 33 (30) https://doi.org/10.1002/adfm.202212786
    42. Xiangyang Wang, Ming Chen, Wanli Zhao, Xinyu Shi, Wenhao Han, Renjie Li, Jinbiao Liu, Chuanxin Teng, Shijie Deng, Yu Cheng, Libo Yuan. Terahertz broadband tunable chiral metamirror based on VO 2 -metal hybrid structure. Optics Express 2023, 31 (13) , 22144. https://doi.org/10.1364/OE.492961
    43. Nikita B. Leonov, Igor A. Gladskikh, Anton A. Starovoytov. Effect of media on plasmon resonance of silver nanoparticles. Applied Physics A 2023, 129 (6) https://doi.org/10.1007/s00339-023-06715-w
    44. Gaoyang Wang, Hongyu Zhang, Hua Kuang, Chuanlai Xu, Liguang Xu. Chiral inorganic nanomaterials for bioapplications. Matter 2023, 6 (6) , 1752-1781. https://doi.org/10.1016/j.matt.2023.04.002
    45. Jiaju Wu, Haitao Jiang, ZhiWei Guo, Yong Sun, Yunhui Li, Hong Chen. Giant optical chirality in dielectric metasurfaces induced by toroidal dipole resonances. Optics Letters 2023, 48 (4) , 916. https://doi.org/10.1364/OL.482857
    46. Tangyou Sun, Wenke Song, Zubin Qin, Wenjing Guo, Peihua Wangyang, Zhiping Zhou, Yanrong Deng. Tunable Plasmonic Perfect Absorber for Hot Electron Photodetection in Gold-Coated Silicon Nanopillars. Photonics 2023, 10 (1) , 60. https://doi.org/10.3390/photonics10010060
    47. Hiromi Okamoto. Optical manipulation with nanoscale chiral fields and related photochemical phenomena. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2022, 52 , 100531. https://doi.org/10.1016/j.jphotochemrev.2022.100531
    48. Larousse Khosravi Khorashad, Christos Argyropoulos. Unraveling the temperature dynamics and hot electron generation in tunable gap-plasmon metasurface absorbers. Nanophotonics 2022, 11 (17) , 4037-4052. https://doi.org/10.1515/nanoph-2022-0048
    49. Artur Movsesyan, Lucas V. Besteiro, Xiang‐Tian Kong, Zhiming Wang, Alexander O. Govorov. Engineering Strongly Chiral Plasmonic Lattices with Achiral Unit Cells for Sensing and Photodetection. Advanced Optical Materials 2022, 10 (14) https://doi.org/10.1002/adom.202101943
    50. Wenmei Zhang, . Broadband Design of Midinfrared Chiral Metamaterials Based on the Indium Tin Oxide Conical Helix. International Journal of Analytical Chemistry 2022, 2022 , 1-5. https://doi.org/10.1155/2022/3644004
    51. Lili Tan, Shang‐Jie Yu, Yiran Jin, Jiaming Li, Peng‐peng Wang. Inorganic Chiral Hybrid Nanostructures for Tailored Chiroptics and Chirality‐Dependent Photocatalysis. Angewandte Chemie 2022, 134 (24) https://doi.org/10.1002/ange.202112400
    52. Lili Tan, Shang‐Jie Yu, Yiran Jin, Jiaming Li, Peng‐peng Wang. Inorganic Chiral Hybrid Nanostructures for Tailored Chiroptics and Chirality‐Dependent Photocatalysis. Angewandte Chemie International Edition 2022, 61 (24) https://doi.org/10.1002/anie.202112400
    53. Artur Movsesyan, Eva Yazmin Santiago, Sven Burger, Miguel A. Correa‐Duarte, Lucas V. Besteiro, Zhiming Wang, Alexander O. Govorov. Plasmonic Nanocrystals with Complex Shapes for Photocatalysis and Growth: Contrasting Anisotropic Hot‐Electron Generation with the Photothermal Effect. Advanced Optical Materials 2022, 10 (10) https://doi.org/10.1002/adom.202102663
    54. Jianmei Li, Jingyi Liu, Zirui Guo, Zeyu Chang, Yang Guo. Engineering Plasmonic Environments for 2D Materials and 2D-Based Photodetectors. Molecules 2022, 27 (9) , 2807. https://doi.org/10.3390/molecules27092807
    55. Mihir Dass, Lilli Kuen, Gregor Posnjak, Sven Burger, Tim Liedl. Visible wavelength spectral tuning of absorption and circular dichroism of DNA-assembled Au/Ag core–shell nanorod assemblies. Materials Advances 2022, 3 (8) , 3438-3445. https://doi.org/10.1039/D1MA01211H
    56. Bowen Kang, Tingting Zhang, Lei Yan, Chengxiang Gou, Zihe Jiang, Min Ji, Li Chen, Zhenglong Zhang, Hairong Zheng, Hongxing Xu. Local controllability of hot electron and thermal effects enabled by chiral plasmonic nanostructures. Nanophotonics 2022, 11 (6) , 1195-1202. https://doi.org/10.1515/nanoph-2021-0780
    57. Ting Li, Wentao Jiang, Yidan Liu, Rongrong Jia, Liyi Shi, Lei Huang. Localized surface plasmon resonance induced assembly of bimetal nanochains. Journal of Colloid and Interface Science 2022, 607 , 1888-1897. https://doi.org/10.1016/j.jcis.2021.10.001
    58. Jiawei Lv, Xiaoqing Gao, Bing Han, Yanfei Zhu, Ke Hou, Zhiyong Tang. Self-assembled inorganic chiral superstructures. Nature Reviews Chemistry 2022, 6 (2) , 125-145. https://doi.org/10.1038/s41570-021-00350-w
    59. Yang Chen, Wei Du, Qing Zhang, Oscar Ávalos-Ovando, Jing Wu, Qing-Hua Xu, Na Liu, Hiromi Okamoto, Alexander O. Govorov, Qihua Xiong, Cheng-Wei Qiu. Multidimensional nanoscopic chiroptics. Nature Reviews Physics 2022, 4 (2) , 113-124. https://doi.org/10.1038/s42254-021-00391-6
    60. Wenbing Wu, Matthias Pauly. Chiral plasmonic nanostructures: recent advances in their synthesis and applications. Materials Advances 2022, 3 (1) , 186-215. https://doi.org/10.1039/D1MA00915J
    61. Daniele Toffoli, Marco Medves, Giovanna Fronzoni, Emanuele Coccia, Mauro Stener, Luca Sementa, Alessandro Fortunelli. Plasmonic Circular Dichroism in Chiral Gold Nanowire Dimers. Molecules 2022, 27 (1) , 93. https://doi.org/10.3390/molecules27010093
    62. Ting Li, Yidan Liu, Rongrong Jia, Muhammad Yaseen, Liyi Shi, Lei Huang. Irradiation regulates the size of Pt nanoparticles on Au@MnO 2 nanosheets for electrocatalytic hydrogen evolution. New Journal of Chemistry 2021, 45 (47) , 22327-22334. https://doi.org/10.1039/D1NJ04433H
    63. Yameng Zhu, Mengdan Guan, Jin Wang, Huixiang Sheng, Yaqi Chen, Yan Liang, Qiming Peng, Gang Lu. Plasmon-mediated photochemical transformation of inorganic nanocrystals. Applied Materials Today 2021, 24 , 101125. https://doi.org/10.1016/j.apmt.2021.101125
    64. Lucas V. Besteiro, Xiang‐Tian Kong, Zhiming M. Wang, Alexander O. Govorov. Theory of Plasmonic Excitations. 2021, 1-35. https://doi.org/10.1002/9783527826971.ch1
    65. Yisong Zhu, Hongxing Xu, Peng Yu, Zhiming Wang. Engineering plasmonic hot carrier dynamics toward efficient photodetection. Applied Physics Reviews 2021, 8 (2) https://doi.org/10.1063/5.0029050
    66. Jiaying Wang, Yisong Zhu, Wenhao Wang, Yunze Li, Rui Gao, Peng Yu, Hongxing Xu, Zhiming Wang. Broadband Tamm plasmon-enhanced planar hot-electron photodetector. Nanoscale 2020, 12 (47) , 23945-23952. https://doi.org/10.1039/D0NR06294D
    67. Peng Yu, Bao-Qing Wang, Xiao-Hu Wu, Wen-Hao Wang, Hong-Xing Xu, Zhi-Ming Wang, , , . Circular dichroism of honeycomb-shaped elliptical hole absorber. Acta Physica Sinica 2020, 69 (20) , 207101. https://doi.org/10.7498/aps.69.20200843

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2020, 142, 9, 4193–4205
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.9b11124
    Published February 6, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    4119

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.