Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
CO2 Activation by Lewis Pairs Generated Under Copper Catalysis Enables Difunctionalization of Imines
My Activity

Figure 1Loading Img
    Article

    CO2 Activation by Lewis Pairs Generated Under Copper Catalysis Enables Difunctionalization of Imines
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (4)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2020, 142, 4, 1966–1974
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.9b11423
    Published January 8, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Integration of distinct substrate activation modes in a catalytic circle is critical for the development of new, powerful synthetic methodologies toward complex and value-added chemicals from simple and readily available feedstocks. Here, we describe a highly selective difunctionalization of imines through incorporation of activation of CO2 by intramolecular N/B Lewis pairs into a copper catalytic cycle. Experimental and computational studies on the mechanistic aspect revealed an α-borylalkylamido intermediate, a metal amide-based Lewis pair formed by borylation of a C–N double bond, and enabled an unprecedented CO2 fixation pattern that is in sharp contrast to the traditional CO2 insertion into transition-metal-element bonds. The unique lithium cyclic boracarbamate products could be easily transformed into multifunctional N-carboxylated α-amino boronates. The highly diastereoselective reactions of chiral N-tert-butanesulfinyl aldimines were also achieved. We hope that our findings may inspire further development of selective multicomponent reactions by incorporation of Lewis pair chemistry into transition-metal catalysis.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.9b11423.

    • Experimental and computational details and characterization data for all new compounds (PDF)

    • X-ray crystallographic data of 2 (CIF)

    • X-ray crystallographic data of 3a-DME (CIF)

    • X-ray crystallographic data of 4a-THF (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 57 publications.

    1. Zhi-Lei Wu, Yu-Ting Zhai, Ge−Ge Bian, Ling-Jing Guo, Ya-Xin Zhang, Hai-Ying Wei. Conversion of Propargylic Amines with CO2 Catalyzed by a Highly Stable Copper(I) Iodide Thorium-Based Heterometal–Organic Framework. Inorganic Chemistry 2024, 63 (29) , 13450-13458. https://doi.org/10.1021/acs.inorgchem.4c01453
    2. Cheng Zhang, Clément Mazet. Access to Cyclic Borates by Cu-Catalyzed Borylation of Unactivated Vinylcyclopropanes. Organic Letters 2024, 26 (25) , 5386-5390. https://doi.org/10.1021/acs.orglett.4c01938
    3. Ao Yu, Shengwen Liu, Wei Zhang, Yang Yang. Molten Salt Electrolytic CO2-Derived Carbon-Based Nanomaterials for Energy Storage and Electrocatalysis: A Review. ACS Applied Nano Materials 2024, Article ASAP.
    4. Emanuele Marsili, Basile F. E. Curchod. A Theoretical Perspective on the Photochemistry of Boron–Nitrogen Lewis Adducts. The Journal of Physical Chemistry A 2024, 128 (6) , 996-1008. https://doi.org/10.1021/acs.jpca.3c07016
    5. Sudong Zhang, Liping Li, Dingxi Li, You-Yun Zhou, Yong Tang. Catalytic Regio- and Enantioselective Boracarboxylation of Arylalkenes with CO2 and Diboron. Journal of the American Chemical Society 2024, 146 (5) , 2888-2894. https://doi.org/10.1021/jacs.3c12720
    6. Harekrishna Sahoo, Liang Zhang, Jianhua Cheng, Masayoshi Nishiura, Zhaomin Hou. Auto-Tandem Copper-Catalyzed Carboxylation of Undirected Alkenyl C–H Bonds with CO2 by Harnessing β-Hydride Elimination. Journal of the American Chemical Society 2022, 144 (51) , 23585-23594. https://doi.org/10.1021/jacs.2c10754
    7. Steven W. Knowlden, Brian V. Popp. Regioselective Boracarboxylation of α-Substituted Vinyl Arenes. Organometallics 2022, 41 (14) , 1883-1891. https://doi.org/10.1021/acs.organomet.2c00184
    8. Zhengwei Ding, Zhi Liu, Zhijun Wang, Tao Yu, Ming Xu, Jingru Wen, Kaiyan Yang, Hailong Zhang, Liang Xu, Pengfei Li. Catalysis with Diboron(4)/Pyridine: Application to the Broad-Scope [3 + 2] Cycloaddition of Cyclopropanes and Alkenes. Journal of the American Chemical Society 2022, 144 (19) , 8870-8882. https://doi.org/10.1021/jacs.2c03673
    9. Wrya Aframehr, Banafsheh Molki, Rouhollah Bagheri, Nahid Sarami. Capturing CO2 by a Fixed-Site-Carrier Polyvinylamine-/Matrimid-Facilitated Transport Membrane. ACS Applied Polymer Materials 2022, 4 (5) , 3380-3393. https://doi.org/10.1021/acsapm.1c01603
    10. Qingde Zhuo, Jimin Yang, Zhenbo Mo, Xiaoxi Zhou, Takanori Shima, Yi Luo, Zhaomin Hou. Dinitrogen Cleavage and Functionalization with Carbon Dioxide in a Dititanium Dihydride Framework. Journal of the American Chemical Society 2022, 144 (15) , 6972-6980. https://doi.org/10.1021/jacs.2c01851
    11. Ratan Logdi, Arijit Bag, Ashwani K. Tiwari. Schematic Design of Metal-Free NHC-Mediated Sequestering and Complete Conversion of SO2 to Thiocarbonyl S-Oxide Derivatives at Room Temperature. The Journal of Physical Chemistry A 2022, 126 (2) , 221-229. https://doi.org/10.1021/acs.jpca.1c07918
    12. Fabien J. T. Talbot, Shibo Zhang, Bishnupada Satpathi, Gareth P. Howell, Gregory J. P. Perry, Giacomo E. M. Crisenza, David J. Procter. Modular Synthesis of Stereodefined Benzocyclobutene Derivatives via Sequential Cu- and Pd-Catalysis. ACS Catalysis 2021, 11 (23) , 14448-14455. https://doi.org/10.1021/acscatal.1c04496
    13. Abhishek Kumar, Jusaina Eyyathiyil, Joyanta Choudhury. Reduction of Carbon Dioxide with Ammonia-Borane under Ambient Conditions: Maneuvering a Catalytic Way. Inorganic Chemistry 2021, 60 (15) , 11684-11692. https://doi.org/10.1021/acs.inorgchem.1c01803
    14. Xueying Guo, Zhenyang Lin. Mechanistic Insights into Activation of Carbon Monoxide, Carbon Dioxide, and Nitrous Oxide by Acyclic Silylene. Inorganic Chemistry 2021, 60 (12) , 8998-9007. https://doi.org/10.1021/acs.inorgchem.1c00903
    15. Xueying Guo, Tilong Yang, Fu Kit Sheong, Zhenyang Lin. Beyond the Nucleophilic Role of Metal–Boryl Complexes in Borylation Reactions. ACS Catalysis 2021, 11 (9) , 5061-5068. https://doi.org/10.1021/acscatal.1c00752
    16. Notashia N. Baughman, Novruz G. Akhmedov, Jeffrey L. Petersen, Brian V. Popp. Experimental and Computational Analysis of CO2 Addition Reactions Relevant to Copper-Catalyzed Boracarboxylation of Vinyl Arenes: Evidence for a Phosphine-Promoted Mechanism. Organometallics 2021, 40 (1) , 23-37. https://doi.org/10.1021/acs.organomet.0c00488
    17. Wen-Bin Huang, Fang-Yu Ren, Ming-Wei Wang, Li-Qi Qiu, Kai-Hong Chen, Liang-Nian He. Cu(II)-Catalyzed Phosphonocarboxylative Cyclization Reaction of Propargylic Amines and Phosphine Oxide with CO2. The Journal of Organic Chemistry 2020, 85 (21) , 14109-14120. https://doi.org/10.1021/acs.joc.0c02172
    18. Ignacio Migliaro, Thomas R. Cundari. Density Functional Study of Methane Activation by Frustrated Lewis Pairs with Group 13 Trihalides and Group 15 Pentahalides and a Machine Learning Analysis of Their Barrier Heights. Journal of Chemical Information and Modeling 2020, 60 (10) , 4958-4966. https://doi.org/10.1021/acs.jcim.0c00862
    19. Alexa Torelli, Andrew Whyte, Iuliia Polishchuk, Jonathan Bajohr, Mark Lautens. Stereoselective Construction of γ-Lactams via Copper-Catalyzed Borylacylation. Organic Letters 2020, 22 (20) , 7915-7919. https://doi.org/10.1021/acs.orglett.0c02837
    20. Zhenghua Li, Liang Zhang, Masayoshi Nishiura, Gen Luo, Yi Luo, Zhaomin Hou. Enantioselective Cyanoborylation of Allenes by N-Heterocyclic Carbene-Copper Catalysts. ACS Catalysis 2020, 10 (20) , 11685-11692. https://doi.org/10.1021/acscatal.0c03018
    21. Andrew Whyte, Alexa Torelli, Bijan Mirabi, Anji Zhang, Mark Lautens. Copper-Catalyzed Borylative Difunctionalization of π-Systems. ACS Catalysis 2020, 10 (19) , 11578-11622. https://doi.org/10.1021/acscatal.0c02758
    22. Cheng-Jian Zhang, Shao-Qi Wu, Senthil Boopathi, Xing-Hong Zhang, Xin Hong, Yves Gnanou, Xiao-Shuang Feng. Versatility of Boron-Mediated Coupling Reaction of Oxetanes and Epoxides with CO2: Selective Synthesis of Cyclic Carbonates or Linear Polycarbonates. ACS Sustainable Chemistry & Engineering 2020, 8 (34) , 13056-13063. https://doi.org/10.1021/acssuschemeng.0c04768
    23. Wenfang Xiong, Fuxing Shi, Ruixiang Cheng, Baiyao Zhu, Lu Wang, Pengquan Chen, Hongming Lou, Wanqing Wu, Chaorong Qi, Ming Lei, Huanfeng Jiang. Palladium-Catalyzed Highly Regioselective Hydrocarboxylation of Alkynes with Carbon Dioxide. ACS Catalysis 2020, 10 (14) , 7968-7978. https://doi.org/10.1021/acscatal.0c01687
    24. Lekuan Yang, Chaochen Wang, Yufeng Li, Wangxin Ge, Lei Tang, Jianhua Shen, Yihua Zhu, Chunzhong Li. Frustrated Lewis Pairs on Zr Single Atoms Supported N‐Doped TiO 2‐x Catalysts for Electrochemical Nitrate Reduction To Ammonia. Advanced Functional Materials 2024, 34 (36) https://doi.org/10.1002/adfm.202401094
    25. Shan Jiang, Haoze Li, Wenke Gui, Yingbing Zhang, Chenchen Zhang, Lei Zhang, Jianping Yang, Li Wang. Promoting photoreduction selectivity via synergetic utilization between vacancy and nanofiber structure over flexible Zr/TiO 2− x nanofiber films. Journal of Materials Chemistry C 2024, 12 (15) , 5377-5385. https://doi.org/10.1039/D4TC00098F
    26. Junhong Wang, Bianling Wang, Xuehong Wei, Zhiqiang Guo. One-pot two-step reduction of CO2 with amines and NaBH4 to N-substituted compounds at atmospheric pressure. Journal of CO2 Utilization 2024, 82 , 102741. https://doi.org/10.1016/j.jcou.2024.102741
    27. Suma Basappa, Ramesh Karupnaswamy, Shubhankar Kumar Bose. Transforming carbon dioxide and carbon monoxide into value-added products: boracarboxylation and boracarbonylation. Catalysis Science & Technology 2023, 13 (24) , 6878-6902. https://doi.org/10.1039/D3CY01181J
    28. Rex S. C. Charman, Josie A. Hobson, Ross A. Jackson, Mary F. Mahon, Samuel E. Neale, David J. Liptrot. Acyclic Boryl Complexes of Copper(I). Chemistry – A European Journal 2023, 34 https://doi.org/10.1002/chem.202302704
    29. Hisayasu Ishibashi, Soshi Nishino, Koki Shibata, Toshiyuki Kamei. Nickel‐catalyzed Nucleophilic C ‐Borylation of Imines. Chemistry – An Asian Journal 2023, 18 (18) https://doi.org/10.1002/asia.202300437
    30. Maxime Ferrer, Ibon Alkorta, Josep M. Oliva-Enrich, José Elguero. Borane derivatives of five-membered N-heterocyclic rings as frustrated Lewis pairs: activation of CO2. Structural Chemistry 2023, 34 (4) , 1591-1601. https://doi.org/10.1007/s11224-023-02170-8
    31. Sylwia Ostrowska, Pierre Arnaut, David J. Liptrot, Catherine S. J. Cazin, Steven P. Nolan. An air-stable [Cu(NHC)(OR)] (R = C(H)(CF 3 ) 2 ) complex for C–H, N–H and S–H bond activation. Chemical Communications 2023, 59 (59) , 9126-9129. https://doi.org/10.1039/D3CC02318D
    32. Xinyi Song, Hongli Wu, Jinjin Yang, Wentao Zhao, Genping Huang. Mechanism and origins of ligand-controlled regioselectivity of copper-catalyzed borocarbonylation of imines with B 2 pin 2 and alkyl iodides: a computational study. Organic Chemistry Frontiers 2023, 10 (8) , 2024-2032. https://doi.org/10.1039/D3QO00093A
    33. Jacob O. Rothbaum, Alessandro Motta, Yosi Kratish, Tobin J. Marks. Mechanistic study of homoleptic trisamidolanthanide-catalyzed aldehyde and ketone hydroboration. Chemically non-innocent ligand participation. Chemical Science 2023, 14 (12) , 3247-3256. https://doi.org/10.1039/D2SC06442A
    34. Baoxin Ni, Guiru Zhang, Huiming Wang, Yulin Min, Kun Jiang, Hexing Li. Correlating Oxidation State and Surface Ligand Motifs with the Selectivity of CO 2 Photoreduction to C 2 Products. Angewandte Chemie 2023, 135 (6) https://doi.org/10.1002/ange.202215574
    35. Baoxin Ni, Guiru Zhang, Huiming Wang, Yulin Min, Kun Jiang, Hexing Li. Correlating Oxidation State and Surface Ligand Motifs with the Selectivity of CO 2 Photoreduction to C 2 Products. Angewandte Chemie International Edition 2023, 62 (6) https://doi.org/10.1002/anie.202215574
    36. Sandip B. Jadhav, Soumya Ranjan Dash, Sundaram Maurya, Jagadeesh Babu Nanubolu, Kumar Vanka, Rambabu Chegondi. Enantioselective Cu(I)-catalyzed borylative cyclization of enone-tethered cyclohexadienones and mechanistic insights. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-28288-7
    37. Robin Cauwenbergh, Vishakha Goyal, Rakesh Maiti, Kishore Natte, Shoubhik Das. Challenges and recent advancements in the transformation of CO 2 into carboxylic acids: straightforward assembly with homogeneous 3d metals. Chemical Society Reviews 2022, 51 (22) , 9371-9423. https://doi.org/10.1039/D1CS00921D
    38. Xiaolei Zhang, Alexandra Friedrich, Todd B. Marder. Copper‐Catalyzed Borylation of Acyl Chlorides with an Alkoxy Diboron Reagent: A Facile Route to Acylboron Compounds. Chemistry – A European Journal 2022, 28 (42) https://doi.org/10.1002/chem.202201329
    39. Ming Xu, Yizhao Ouyang, Linghua Wang, Shuai Zhang, Pengfei Li. Enantioselective synthesis of cyclic α-aminoboronates via copper-catalyzed dearomative borylation of 4-quinolinols. Chemical Communications 2022, 58 (22) , 3677-3680. https://doi.org/10.1039/D2CC00027J
    40. Peibo Chen, Tingkai Xiong, Yingming Pan, Ying Liang. Recent Progress on N ‐heterocyclic Carbene Catalysts in Chemical Fixation of CO 2. Asian Journal of Organic Chemistry 2022, 11 (3) https://doi.org/10.1002/ajoc.202100738
    41. Thomas M. Horsley Downie, Rex S. C. Charman, Jonathan W. Hall, Mary F. Mahon, John P. Lowe, David J. Liptrot. A stable ring-expanded NHC-supported copper boryl and its reactivity towards heterocumulenes. Dalton Transactions 2021, 50 (44) , 16336-16342. https://doi.org/10.1039/D1DT03540A
    42. Giulio Bertuzzi, Alessandro Cerveri, Lorenzo Lombardi, Marco Bandini. Tandem Functionalization‐Carboxylation Reactions of π‐Systems with CO 2 . Chinese Journal of Chemistry 2021, 39 (11) , 3116-3126. https://doi.org/10.1002/cjoc.202100450
    43. Yang Yuan, Fu-Peng Wu, Xiao-Feng Wu. Copper-catalyzed borofunctionalization of styrenes with B 2 pin 2 and CO. Chemical Science 2021, 12 (41) , 13777-13781. https://doi.org/10.1039/D1SC04774D
    44. Thomas K. Britten, Ashley J. Basson, Dean D. Roberts, Mark G. McLaughlin. Aza-Peterson Olefinations: Rapid Synthesis of (E)-Alkenes. Synthesis 2021, 53 (19) , 3535-3544. https://doi.org/10.1055/a-1493-6670
    45. Xueying Guo, Zhenyang Lin. Understanding the insertion reactions of CO 2 , aldehyde and alkene into Cu–X (X = B, C, O) bonds. New Journal of Chemistry 2021, 45 (33) , 15022-15027. https://doi.org/10.1039/D0NJ06094A
    46. Wenfang Xiong, Bowen Wu, Baiyao Zhu, Xiaobin Tan, Lu Wang, Wanqing Wu, Chaorong Qi, Huanfeng Jiang. One‐Pot Palladium‐Catalyzed Carbonylative Sonogashira Coupling using Carbon Dioxide as Carbonyl Source. ChemCatChem 2021, 13 (12) , 2843-2851. https://doi.org/10.1002/cctc.202100051
    47. Shi Nan, Wang Hai-Bin, Gao Li, Zhang Jing-Yao, Guo Jian-Feng, Wang Fang, Abdolghaffar Ebadi. Sila-, bora-, thio-, and phosphono-carboxylation of unsaturated compounds with carbon dioxide: An overview. Journal of CO2 Utilization 2021, 48 , 101522. https://doi.org/10.1016/j.jcou.2021.101522
    48. Jordi Sans, Guillem Revilla-López, Vanesa Sanz, Jordi Puiggalí, Pau Turon, Carlos Alemán. Permanently polarized hydroxyapatite for selective electrothermal catalytic conversion of carbon dioxide into ethanol. Chemical Communications 2021, 57 (42) , 5163-5166. https://doi.org/10.1039/D0CC07989H
    49. Yi He, Shi-Guang Li, Ifenna I. Mbaezue, Angula C.S. Reddy, Youla S. Tsantrizos. Copper-boryl mediated transfer hydrogenation of N-sulfonyl imines using methanol as the hydrogen donor. Tetrahedron 2021, 85 , 132063. https://doi.org/10.1016/j.tet.2021.132063
    50. Kun Guo, Arjan W. Kleij. Copper‐Mediated Dichotomic Borylation of Alkyne Carbonates: Stereoselective Access to ( E )‐1,2‐Diborylated 1,3‐Dienes versus Traceless Monoborylation Affording α‐Hydroxyallenes. Angewandte Chemie 2021, 133 (9) , 4951-4956. https://doi.org/10.1002/ange.202014310
    51. Kun Guo, Arjan W. Kleij. Copper‐Mediated Dichotomic Borylation of Alkyne Carbonates: Stereoselective Access to ( E )‐1,2‐Diborylated 1,3‐Dienes versus Traceless Monoborylation Affording α‐Hydroxyallenes. Angewandte Chemie International Edition 2021, 60 (9) , 4901-4906. https://doi.org/10.1002/anie.202014310
    52. Fu‐Peng Wu, Xiao‐Feng Wu. Ligand‐Controlled Copper‐Catalyzed Regiodivergent Carbonylative Synthesis of α‐Amino Ketones and α‐Boryl Amides from Imines and Alkyl Iodides. Angewandte Chemie 2021, 133 (2) , 705-710. https://doi.org/10.1002/ange.202012251
    53. Fu‐Peng Wu, Xiao‐Feng Wu. Ligand‐Controlled Copper‐Catalyzed Regiodivergent Carbonylative Synthesis of α‐Amino Ketones and α‐Boryl Amides from Imines and Alkyl Iodides. Angewandte Chemie International Edition 2021, 60 (2) , 695-700. https://doi.org/10.1002/anie.202012251
    54. Ao Yu, Guoming Ma, Jiawen Ren, Ping Peng, Fang‐Fang Li. Sustainable Carbons and Fuels: Recent Advances of CO 2 Conversion in Molten Salts. ChemSusChem 2020, 13 (23) , 6229-6245. https://doi.org/10.1002/cssc.202002060
    55. Fabien J. T. Talbot, Quentin Dherbassy, Srimanta Manna, Chunling Shi, Shibo Zhang, Gareth P. Howell, Gregory J. P. Perry, David J. Procter. Copper‐Catalyzed Borylative Couplings with C−N Electrophiles. Angewandte Chemie 2020, 132 (46) , 20454-20465. https://doi.org/10.1002/ange.202007251
    56. Fabien J. T. Talbot, Quentin Dherbassy, Srimanta Manna, Chunling Shi, Shibo Zhang, Gareth P. Howell, Gregory J. P. Perry, David J. Procter. Copper‐Catalyzed Borylative Couplings with C−N Electrophiles. Angewandte Chemie International Edition 2020, 59 (46) , 20278-20289. https://doi.org/10.1002/anie.202007251
    57. Nan Li, Wen‐Xiong Zhang. Frustrated Lewis Pairs: Discovery and Overviews in Catalysis. Chinese Journal of Chemistry 2020, 38 (11) , 1360-1370. https://doi.org/10.1002/cjoc.202000027

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2020, 142, 4, 1966–1974
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.9b11423
    Published January 8, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    10k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.