ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Enol Ethers Are Effective Monomers for Ring-Opening Metathesis Polymerization: Synthesis of Degradable and Depolymerizable Poly(2,3-dihydrofuran)

Cite this: J. Am. Chem. Soc. 2020, 142, 3, 1186–1189
Publication Date (Web):December 27, 2019
https://doi.org/10.1021/jacs.9b11834

Copyright © 2019 American Chemical Society. This publication is licensed under these Terms of Use.

  • Open Access
  • Editors Choice

Article Views

21068

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (1 MB)
Supporting Info (1)»

Abstract

Enol ethers are widely used as quenching reagents for Grubbs catalysts. However, we report the surprisingly effective ring-opening metathesis polymerization (ROMP) of cyclic enol ethers, because the resulting electron-rich ruthenium alkylidene complex remains active toward metathesis of electron-rich olefins, despite its deactivation toward hydrocarbon olefins. We demonstrate the first example of ROMP of cyclic enol ethers, using 2,3-dihydrofuran as the monomer, producing a new type of degradable and depolymerizable poly(enol ether). The polymers exhibited perfect regioregularity, and their molecular weights can be regulated by the loading of Grubbs initiators or by the use of a linear vinyl ether as the chain transfer agent. We also developed protocols to deactivate the catalyst following metathesis of enol ethers and cleave the catalyst off the resulting polymers using H2O2 oxidation. The resulting poly(dihydrofuran) can be recycled to monomer via depolymerization with Grubbs catalyst or degraded to small molecules by hydrolysis under acidic conditions. This work opens exciting opportunities for a new class of ROMP monomers that lead to degradable polymers.

Ring-opening metathesis polymerization (ROMP) has emerged as a powerful method to synthesize a wide variety of polymers from cyclic olefinic monomers. (1) In a typical ROMP procedure using Grubbs catalysts, excess vinyl ether (a terminal enol ether) is added at the end of the polymerization to quench the catalyst by forming an electron-rich Ru carbene. (2−9) This so-called Fischer carbene is more thermodynamically stable than the propagating Grubbs alkylidene and has significantly reduced activity toward further metathesis reaction with olefins. (10) Therefore, vinyl ethers have been widely conceived as terminating agents for ROMP, and ROMP of cyclic enol ethers would seem impossible and has never been investigated. However, the Ru Fischer carbene has been shown to be not completely deactivated and may still act as a competent, albeit slow, metathesis catalyst for ROMP or ring-opening cross metathesis of cyclic olefins, particularly under elevated temperature or photochemical conditions. (10−14) Grubbs and co-workers further showed that Ru Fischer carbenes formed from terminal vinyl ethers, vinyl sulfides, and enamines can undergo further metathesis with these electron-rich olefins. (10,15) Intrigued by these observations, we became curious if in situ formed Ru Fischer carbene can indeed catalyze ROMP of cyclic enol ethers, despite the common belief that they are quenching reagents for Grubbs catalysts. If successful, this would enable a new family of monomers for ROMP, leading to a novel class of degradable polymers, poly(enol ether).

To test our hypothesis, we selected 2,3-dihydrofuran (DHF), an inexpensive, commercial cyclic enol ether, as a potential monomer, considering that cyclopentene has similarly low strain but undergoes equilibrium ROMP. (16−20) To probe the ROMP reactivity of DHF, neat monomer was subjected to first and second generations of Grubbs catalysts, G1 and G2, at room temperature. Both of these catalysts polymerized DHF to produce a rubbery polymer with Tg = −50.5 °C and thermal stability up to 320 °C (Figures S1 and S2). At [DHF]0/[Ru]0 = 4000, ROMP of DHF using G1 under nitrogen with degassed monomer became too viscous to stir after 24 h at 55% conversion, yielding PDHF with Mn = 80 kDa, and Mn decreased to 56 kDa with Đ = 1.3 after 3 days (Figure S3a). With more robust G2, ROMP of DHF was simply performed under air using nondegassed commercial DHF. The ROMP solution solidified in 15 min at 15% monomer conversion, yielding a polymer with Mn = 309 kDa and Đ = 1.4, and the ROMP reached equilibrium after 4 h to form PDHF with Mn = 47 kDa and Đ = 1.6 and 80% DHF conversion (Figure S3b).

To quantify conversions and better understand the polymerization thermodynamics of DHF, we needed a method to stop the ROMP of enol ether and prevent re-equilibration when the neat samples were diluted for NMR spectroscopy. Tricyclohexyl phosphine (PCy3) is a strongly coordinating ligand, (21) and we found that the dissolution of the polymerization mixture into a solution containing 40 mM PCy3 was sufficient to inhibit metathesis activity (Figure S7). Using this protocol, we measured the conversion using NMR analysis of the crude polymerization after ROMP reached equilibrium at 6, 22, and 40 °C with 0.05 mol % G2. At 22 °C, the reaction reached 76% conversion, corresponding to a residual monomer concentration of 3.2 M. Similarly, we determined the equilibrium DHF conversion at 6 and 40 °C to be 83% and 56%, respectively, corresponding to equilibrium monomer concentrations of 2.2 and 5.9 M. Using these values, we calculated the thermodynamic parameters for ROMP of neat DHF to be ΔH (neat) = −5.0 kcal mol–1 and ΔS (neat) = −19.4 cal mol–1 K–1 (Figures S9–S10, Table S1). These values are similar to those reported by Grubbs for ROMP of cyclopentene (in toluene-d8): ΔH = −5.6 kcal mol–1 and ΔS = −18.5 cal mol–1 K–1. (17)

1H NMR spectroscopy of isolated PDHF revealed that the polymerization proceeded with complete head-to-tail regioselectivity regardless of the catalyst used (Figure 1), which is consistent with the high regioselectivity of vinyl ether addition to Grubbs catalysts. (4,8,10) Throughout the polymerizations, an E/Z ratio around 4:6 to 1:1 was determined for the backbone olefins based on the integrations of olefin signals.

Figure 1

Figure 1. 1H NMR spectrum of PDHF synthesized using G2 at 22 °C.

We regulated the MWs of PDHF by varying the catalyst loading (Table 1, entries 1–8). Mn scaled linearly with [DHF]0/[G2]0, ranging from 6 to 125 kDa as [DHF]0/[G2]0 was varied from 500 to 10000 (Figure S4). Notably, even at 0.01 mol % catalyst loading, PDHF of MW > 100 kDa could be obtained. In ROMP of low-strain hydrocarbon cyclic olefins, a linear internal olefin is often used as a chain transfer agent (CTA) to regulate MW. (22−25) We hypothesized that a linear enol ether, such as simple ethyl vinyl ether, could be used as a CTA in ROMP of cyclic enol ethers. Indeed, the MWs of the resulting polymers were directly proportional to the [DHF]0/[CTA]0 ratio, ranging from 5700 to 290 Da as [DHF]0/[CTA]0 was varied from 5 to 100 (Table 1, entries 11–15 and Figure S5).

Table 1. Romp of 2,3-Dihydrofurana
entry[DHF]0:[I]0:[CTA]0bcat.temp (°C)Mn,MALLS (kDa)cĐd
12000:1:0G12234.92.66
24000:1:0G12256.31.35
3500:1:0G2226.02.14
41000:1:0G2229.91.43
52000:1:0G22230.11.70
64000:1:0G22247.41.60
78000:1:0G22292.91.77
810200:1:0G222127.71.35
92000:1:0G2636.02.05
102000:1:0G24024.51.99
111000:1:5G2225.691.80
121000:1:10G2222.832.10
131000:1:20G2221.631.89
141000:1:50G2220.652.31
151000:1:100G2220.292.61
a

ROMP was performed using neat DHF under an ambient atmosphere for 4 h (using G2) or a N2 atmosphere for 72 h (using G1), and quenched with basified H2O2.

b

Initial equivalents of DHF/Grubbs initiator/ethyl vinyl ether.

c

Determined by GPC MALLS analysis in THF.

d

Mw/Mn.

Despite the extensive studies of cross-metathesis between different hydrocarbon olefins, we are not aware of any previous study on cross metathesis between enol ethers. In order to better probe the secondary metathesis evident in the polymerization of DHF, we monitored the cross-metathesis between 1-(hexyloxy)hex-1-ene (2:1 mixture of Z and E isomers, totaling 90 mM) and ethyl vinyl ether (180 mM) catalyzed by G2 (2.5 mM) at room temperature using GC (Figure S13). The observed equilibration time is similar to that for cross-metathesis of common hydrocarbon olefins with G1 but is roughly an order of magnitude slower than in the case of G2. (26,27) This finding provides useful guidelines to design ROMP of other cyclic enol ethers in the future.

Since ethyl vinyl ether is an effective CTA, we cannot use excess vinyl ether to remove the chain end Ru via exchange reactions. It was thus necessary to develop a new strategy to quench and remove Ru for ROMP of cyclic enol ethers. Hydrogen peroxide has been shown to rapidly oxidize a Grubbs catalyst to ruthenium(IV) oxide and allow removal of Ru via filtration through silica, (28) so we hypothesized that this oxidation may be used to terminate the polymerization and cleave Ru off the polymer chain end. Since H2O2 solution is slightly acidic, to prevent any acid-catalyzed hydrolysis of poly(enol ether), an alkaline solution of 30% H2O2 in water was added dropwise to rapidly stirring polymer solution in THF with added PCy3 (>10 equiv relative to catalyst). During this addition, the polymer precipitated as a white solid or a clear, colorless viscous material depending on the polymer MW. Low MW (Mn < 5 kDa) polymers that do not precipitate were purified by extraction into chloroform, filtration through silica, and concentration in vacuo.

In order to identify the chain-end functionality of PDHF terminated by H2O2 oxidation, tetraethylene glycol monomethyl vinyl ether was selected as a model compound. The Grubbs catalyst was reacted with tetraethylene glycol methyl vinyl ether in THF, and the catalyst was subsequently reacted with alkaline 30% H2O2 (see Supporting Information for details). We identified the isolated product as tetraethylene glycol monomethyl ether formate by 1H and 13C NMR spectroscopy and mass spectrometry (Figures S20–S21). 1H NMR spectroscopy of an isolated PDHF quenched with H2O2 also showed the characteristic formate signal at 8.1 ppm. Further, the intensity of this formate end group signal matched that of the phenyl chain end from the benzylidene of the Grubbs initiator at equal stoichiometry, suggesting complete oxidative termination of all active chain ends (Figure S12).

The ability of PDHF to depolymerize and degrade is attractive for a circular economy. We examined the metathesis depolymerization of PDHF by adjusting conditions to shift the ROMP equilibrium toward monomer formation. A PDHF sample was prepared with 0.01 mol % G2 and allowed to equilibrate for 3 h at room temperature. Without removal of the catalyst, the resulting solid polymer was warmed to 60 °C under flowing N2 gas to remove the monomer. After only 2.5 h, >90% of pure monomer was recovered by condensation (Figure 2). This demonstration shows the facile and clean depolymerization of PDHF under mild conditions.

Figure 2

Figure 2. Facile depolymerization of PDHF to DHF.

Degradable ROMP polymers are desired but rare. (29−31) The abundant backbone enol ether linkage in PDHF makes it degradable under acidic conditions. PDHF after H2O2 quenching was dissolved in THF in the presence of 135 mM water and 25 mM acid and degraded at different rates depending on the strength of the acid. The acid-dependent degradation rate is expected because olefin protonation is the rate-limiting step of enol ether hydrolysis. (32) When HCl was used, complete degradation to small molecules occurred in <10 min as observed by GPC (Figure 3). When trifluoroacetic acid (TFA) was used, the MW of PDHF decreased over several hours (Figures 4, S14). Because the polymer hydrolysis follows first-order reaction kinetics in both proton concentration and enol ether concentration, the inverse of Mn is expected to increase linearly with time. (33−35) Indeed, this trend was observed (Figure 4), indicating that polymer hydrolysis can be tuned by acid identity, acid concentration, and water concentration.

Figure 3

Figure 3. GPC analysis of PDHF hydrolysis in THF with 135 mM water and 25 mM HCl.

Figure 4

Figure 4. Molecular weight (blue circles) and inverse molecular weight (black diamonds) of PDHF during hydrolysis using TFA.

Following degradation of PDHF, no residual enol ether was observed by 1H NMR spectroscopy. Degradation gave a mixture dominated by 4-hydroxybutanal and its cyclic hemiacetal isomer, 2-hydroxytetrahydrofuran, identical to that from the hydrolysis of DHF under the same conditions (Figure S16). Because hydrolyzed poly(enol ether)s revert to the hydrolyzed monomer, the identity of degradation products can be controlled via design of monomer structures.

Interestingly, despite its rapid degradation in solution, solid PDHF has relative stability in an acidic environment. Following submersion of 54 kDa PDHF in aqueous HCl (0.1 M) for 24 h, the Mn only decreased to 12 kDa (Figure S15). The slow solid-state degradation is favorable for extending the shelf life of PDHF during usage but allows complete degradation eventually. We attribute the slow solid-state degradation to the hydrophobicity of PDHF: while the polymer backbone is highly susceptible to hydrolysis, slow penetration of water into solid samples becomes the rate-limiting step in its degradation. Similar behavior has been recently reported for solid state degradation of polyacetals. (36)

In summary, we report the first example of effective ROMP of a cyclic enol ether under ambient conditions, despite the common belief that enol ethers are deactivating/quenching agents for Grubbs catalysts. We demonstrated that the in situ formed Ru Fischer carbenes are effective to catalyze ring opening and cross-metathesis of enol ethers and produce poly(enol ether)s with various MWs. These results enable a new class of monomers for ROMP and generate a new type of depolymerizable and degradable polymers.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.9b11834.

  • Synthetic procedures and characterizations, 1H and 13C NMR spectra and GPC traces, determination of thermodynamic parameters, Fischer carbene quenching and inhibition study, cross metathesis study of internal enol ethers (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
  • Author
    • John D. Feist - Department of Chemistry, Stanford University, Stanford, California 94305, United States
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS
Jump To

This work was supported by the National Science Foundation (CAREER, CHE-1553780). Y.X. thanks the Alfred Sloan Foundation for the Sloan fellowship. We thank Jessica Su for helpful discussions.

References

ARTICLE SECTIONS
Jump To

This article references 36 other publications.

  1. 1
    Grubbs, R. H.; Khosravi, E. Handbook of Metathesis: Polymer Synthesis, 2nd ed.; Wiley-VCH: 2015; Vol. 3.
  2. 2
    Wu, Z.; Nguyen, S. T.; Grubbs, R. H.; Ziller, J. W. Reactions of Ruthenium Carbenes of the Type (PPh3)2(X)2Ru:CH-CH:CPh2 (X = Cl and CF3COO) with Strained Acyclic Olefins and Functionalized Olefins. J. Am. Chem. Soc. 1995, 117, 5503,  DOI: 10.1021/ja00125a010
  3. 3
    Schwab, P.; Grubbs, R. H.; Ziller, J. W. Synthesis and Applications of RuCl2(CHR′)(PR3)2: The Influence of the Alkylidene Moiety on Metathesis Activity. J. Am. Chem. Soc. 1996, 118, 100,  DOI: 10.1021/ja952676d
  4. 4
    Gordon, E. J.; Gestwicki, J. E.; Strong, L. E.; Kiessling, L. L. Synthesis of end-labeled multivalent ligands for exploring cell-surface-receptor-ligand interactions. Chem. Biol. 2000, 7, 9,  DOI: 10.1016/S1074-5521(00)00060-0
  5. 5
    Bielawski, C. W.; Morita, T.; Grubbs, R. H. Synthesis of ABA Triblock Copolymers via a Tandem Ring-Opening Metathesis Polymerization:  Atom Transfer Radical Polymerization Approach. Macromolecules 2000, 33, 678,  DOI: 10.1021/ma990625l
  6. 6
    Owen, R. M.; Gestwicki, J. E.; Young, T.; Kiessling, L. L. Synthesis and Applications of End-Labeled Neoglycopolymers. Org. Lett. 2002, 4, 2293,  DOI: 10.1021/ol0259239
  7. 7
    Matson, J. B.; Grubbs, R. H. ROMP–ATRP Block Copolymers Prepared from Monotelechelic Poly(oxa)norbornenes Using a Difunctional Terminating Agent. Macromolecules 2008, 41, 5626,  DOI: 10.1021/ma800980p
  8. 8
    Hilf, S.; Kilbinger, A. F. M. Functional end groups for polymers prepared using ring-opening metathesis polymerization. Nat. Chem. 2009, 1, 537,  DOI: 10.1038/nchem.347
  9. 9
    Lunn, D. J.; Discekici, E. H.; Read de Alaniz, J.; Gutekunst, W. R.; Hawker, C. J. Established and emerging strategies for polymer chain-end modification. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 2903,  DOI: 10.1002/pola.28575
  10. 10
    Louie, J.; Grubbs, R. H. Metathesis of Electron-Rich Olefins:  Structure and Reactivity of Electron-Rich Carbene Complexes. Organometallics 2002, 21, 2153,  DOI: 10.1021/om011037a
  11. 11
    Katayama, H.; Urushima, H.; Nishioka, T.; Wada, C.; Nagao, M.; Ozawa, F. Highly Selective Ring-Opening/Cross-Metathesis Reactions of Norbornene Derivatives Using Selenocarbene Complexes as Catalysts. Angew. Chem., Int. Ed. 2000, 39, 4513,  DOI: 10.1002/1521-3773(20001215)39:24<4513::AID-ANIE4513>3.0.CO;2-C
  12. 12
    van der Schaaf, P. A.; Kolly, R.; Kirner, H.-J.; Rime, F.; Mühlebach, A.; Hafner, A. Synthesis and reactivity of novel ruthenium carbene catalysts. X-ray structures of [RuCl2(=CHSC6H5)(PiPr3)2] and [RuCl2(CHCH2CH2-C,N-2-C5H4N)(PiPr3)]. J. Organomet. Chem. 2000, 606, 65,  DOI: 10.1016/S0022-328X(00)00289-8
  13. 13
    Katayama, H.; Yonezawa, F.; Nagao, M.; Ozawa, F. Ring-Opening Metathesis Polymerization of Norbornene Using Vinylic Ethers as Chain-Transfer Agents:  Highly Selective Synthesis of Monofunctional Macroinitiators for Atom Transfer Radical Polymerization. Macromolecules 2002, 35, 1133,  DOI: 10.1021/ma0110249
  14. 14
    Weitekamp, R. A.; Atwater, H. A.; Grubbs, R. H. Photolithographic Olefin Metathesis Polymerization. J. Am. Chem. Soc. 2013, 135, 16817,  DOI: 10.1021/ja4093083
  15. 15
    Ahmed, T. S.; Grandner, J. M.; Taylor, B. L. H.; Herbert, M. B.; Houk, K. N.; Grubbs, R. H. Metathesis and Decomposition of Fischer Carbenes of Cyclometalated Z -Selective Ruthenium Metathesis Catalysts. Organometallics 2018, 37, 2212,  DOI: 10.1021/acs.organomet.8b00150
  16. 16
    Hejl, A.; Scherman, O. A.; Grubbs, R. H. Ring-Opening Metathesis Polymerization of Functionalized Low-Strain Monomers with Ruthenium-Based Catalysts. Macromolecules 2005, 38, 7214,  DOI: 10.1021/ma0501287
  17. 17
    Tuba, R.; Grubbs, R. H. Ruthenium catalyzed equilibrium ring-opening metathesis polymerization of cyclopentene. Polym. Chem. 2013, 4, 3959,  DOI: 10.1039/c3py00584d
  18. 18
    Tuba, R.; Al-Hashimi, M.; Bazzi, H. S.; Grubbs, R. H. One-Pot Synthesis of Poly(vinyl alcohol) (PVA) Copolymers via Ruthenium Catalyzed Equilibrium Ring-Opening Metathesis Polymerization of Hydroxyl Functionalized Cyclopentene. Macromolecules 2014, 47, 8190,  DOI: 10.1021/ma501976v
  19. 19
    Liu, H.; Nelson, A. Z.; Ren, Y.; Yang, K.; Ewoldt, R. H.; Moore, J. S. Dynamic Remodeling of Covalent Networks via Ring-Opening Metathesis Polymerization. ACS Macro Lett. 2018, 7, 933,  DOI: 10.1021/acsmacrolett.8b00422
  20. 20
    Neary, W. J.; Kennemur, J. G. Polypentenamer Renaissance: Challenges and Opportunities. ACS Macro Lett. 2019, 8, 46,  DOI: 10.1021/acsmacrolett.8b00885
  21. 21
    Sanford, M. S.; Love, J.; Grubbs, R. H. Mechanism and Activity of Ruthenium Olefin Metathesis Catalysts. J. Am. Chem. Soc. 2001, 123, 6543,  DOI: 10.1021/ja010624k
  22. 22
    Hillmyer, M. A.; Grubbs, R. H. Preparation of hydroxytelechelic poly(butadiene) via ring-opening metathesis polymerization employing a well-defined metathesis catalyst. Macromolecules 1993, 26, 872,  DOI: 10.1021/ma00056a051
  23. 23
    Maughon, B. R.; Morita, T.; Bielawski, C. W.; Grubbs, R. H. Synthesis of Cross-Linkable Telechelic Poly(butenylene)s Derived from Ring-Opening Metathesis Polymerization. Macromolecules 2000, 33, 1929,  DOI: 10.1021/ma9907340
  24. 24
    Morita, T.; Maughon, B. R.; Bielawski, C. W.; Grubbs, R. H. A Ring-Opening Metathesis Polymerization (ROMP) Approach to Carboxyl- and Amino-Terminated Telechelic Poly(butadiene)s. Macromolecules 2000, 33, 6621,  DOI: 10.1021/ma000013x
  25. 25
    Pitet, L. M.; Hillmyer, M. A. Carboxy-Telechelic Polyolefins by ROMP Using Maleic Acid as a Chain Transfer Agent. Macromolecules 2011, 44, 2378,  DOI: 10.1021/ma102975r
  26. 26
    Blackwell, H. E.; O’Leary, D. J.; Chatterjee, A. K.; Washenfelder, R. A.; Bussmann, D. A. B.; Grubbs, R. H. New Approaches to Olefin Cross-Metathesis. J. Am. Chem. Soc. 2000, 122, 58,  DOI: 10.1021/ja993063u
  27. 27
    Ritter, T.; Hejl, A.; Wenzel, A. G.; Funk, T. W.; Grubbs, R. H. A Standard System of Characterization for Olefin Metathesis Catalysts. Organometallics 2006, 25, 5740,  DOI: 10.1021/om060520o
  28. 28
    Knight, D. W.; Morgan, I. R.; Proctor, A. J. A simple oxidative procedure for the removal of ruthenium residues from metathesis reaction products. Tetrahedron Lett. 2010, 51, 638,  DOI: 10.1016/j.tetlet.2009.11.092
  29. 29
    Fishman, J. M.; Kiessling, L. L. Synthesis of Functionalizable and Degradable Polymers by Ring-Opening Metathesis Polymerization. Angew. Chem., Int. Ed. 2013, 52, 5061,  DOI: 10.1002/anie.201300293
  30. 30
    Shieh, P.; Nguyen, H. V. T.; Johnson, J. A. Tailored silyl ether monomers enable backbone-degradable polynorbornene-based linear, bottlebrush and star copolymers through ROMP. Nat. Chem. 2019, 11, 1124,  DOI: 10.1038/s41557-019-0352-4
  31. 31
    Bhaumik, A.; Peterson, G. I.; Kang, C.; Choi, T.-L. Controlled Living Cascade Polymerization To Make Fully Degradable Sugar-Based Polymers from d-Glucose and d-Galactose. J. Am. Chem. Soc. 2019, 141, 12207,  DOI: 10.1021/jacs.9b05822
  32. 32
    Nowlan, V. J.; Tidwell, T. T. Structural effects on the acid-catalyzed hydration of alkenes. Acc. Chem. Res. 1977, 10, 252,  DOI: 10.1021/ar50115a004
  33. 33
    Pitt, C. G.; Zhong-wei, G. Modification of the rates of chain cleavage of poly(ϵ-caprolactone) and related polyesters in the solid state. J. Controlled Release 1987, 4, 283,  DOI: 10.1016/0168-3659(87)90020-4
  34. 34
    Lyu, S.; Schley, J.; Loy, B.; Lind, D.; Hobot, C.; Sparer, R.; Untereker, D. Kinetics and Time–Temperature Equivalence of Polymer Degradation. Biomacromolecules 2007, 8, 2301,  DOI: 10.1021/bm070313n
  35. 35
    Lyu, S.; Untereker, D. Degradability of polymers for implantable biomedical devices. Int. J. Mol. Sci. 2009, 10, 4033,  DOI: 10.3390/ijms10094033
  36. 36
    Fu, L.; Sui, X.; Crolais, A. E.; Gutekunst, W. R. Modular Approach to Degradable Acetal Polymers Using Cascade Enyne Metathesis Polymerization. Angew. Chem., Int. Ed. 2019, 58, 15726,  DOI: 10.1002/anie.201909172

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 119 publications.

  1. Arpan Pal, Allison R. Wong, Jessica R. Lamb. Chemically Recyclable, High Molar Mass Polyoxazolidinones via Ring-Opening Metathesis Polymerization. ACS Macro Letters 2024, Article ASAP.
  2. David J. Lundberg, Kwangwook Ko, Landon J. Kilgallon, Jeremiah A. Johnson. Defining Reactivity–Deconstructability Relationships for Copolymerizations Involving Cleavable Comonomer Additives. ACS Macro Letters 2024, Article ASAP.
  3. Immanuel Reim, Giovanni Occhipinti, Karl W. Törnroos, Vidar R. Jensen. Pursuing E-Selective Olefin Metathesis: Tuning Steric and Electronic Properties of S,N-Chelated Ruthenium Alkylidenes. Organometallics 2024, 43 (7) , 726-736. https://doi.org/10.1021/acs.organomet.3c00522
  4. Hyemi Yeon, Ameet Kumar, Juhwan Song, Juho Lee, Se Jun Wang, Sang Yup Kim, Jinhan Cho, Daeheum Cho, Tae Ann Kim. On-Demand Degradable and Acid-Generating Polymers Using Phenacyl Ester Derivatives. Macromolecules 2024, 57 (6) , 2928-2936. https://doi.org/10.1021/acs.macromol.3c02136
  5. Francesca A. Starvaggi, Benjamin A. Suslick, Yan Xia. Ring Opening Metathesis Polymerization of Cyclooctadiene and Cyclooctene with Dihydrofuran: Influence of Ru Fischer Carbene. ACS Macro Letters 2024, 13 (3) , 296-301. https://doi.org/10.1021/acsmacrolett.3c00770
  6. Tarek Ibrahim, Hao Sun. Modular Approach to Bio-Based Poly(enol ether)s with Tunable Thermal Properties and Degradability. ACS Applied Polymer Materials 2024, Article ASAP.
  7. Yixin Hu, Yangju Lin, Stephen L. Craig. Mechanically Triggered Polymer Deconstruction through Mechanoacid Generation and Catalytic Enol Ether Hydrolysis. Journal of the American Chemical Society 2024, 146 (5) , 2876-2881. https://doi.org/10.1021/jacs.3c10153
  8. Arunava Maity, Jiayi Chen, Noémie Wilson-Faubert, Audrey Laventure, Ali Nazemi. Harnessing Activated Alkyne-Hydroxyl “Click” Chemistry for Degradable and Self-Healing Poly(urea vinyl ether ester)s. Macromolecules 2024, 57 (1) , 305-316. https://doi.org/10.1021/acs.macromol.3c01574
  9. Hao Sun, Tarek Ibrahim, Angelo Ritacco, Katie Durkee. Biomass-Derived Degradable Polymers via Alternating Ring-Opening Metathesis Polymerization of Exo-Oxanorbornenes and Cyclic Enol Ethers. ACS Macro Letters 2023, 12 (12) , 1642-1647. https://doi.org/10.1021/acsmacrolett.3c00608
  10. Ankita Mandal, Andreas F. M. Kilbinger. Catalytic Living ROMP: Synthesis of Degradable Star Polymers. ACS Macro Letters 2023, 12 (10) , 1372-1378. https://doi.org/10.1021/acsmacrolett.3c00441
  11. Weiwei Wang, Jin Jiang, Qinglong An, Rui Shi, Shuyang Shao, Zhi Wang. Preparation and Performances of Degradable Polybenzoxazine by Ring-Opening Metathesis Polymerization. ACS Sustainable Chemistry & Engineering 2023, 11 (39) , 14622-14632. https://doi.org/10.1021/acssuschemeng.3c05126
  12. Zhengyu Deng, Elizabeth R. Gillies. Emerging Trends in the Chemistry of End-to-End Depolymerization. JACS Au 2023, 3 (9) , 2436-2450. https://doi.org/10.1021/jacsau.3c00345
  13. Samantha K. Cormier, Deryn E. Fogg. Probing Catalyst Degradation in Metathesis of Internal Olefins: Expanding Access to Amine-Tagged ROMP Polymers. ACS Catalysis 2023, 13 (17) , 11834-11840. https://doi.org/10.1021/acscatal.3c02729
  14. Christopher M. Plummer, Le Li, Yongming Chen. Ring-Opening Polymerization for the Goal of Chemically Recyclable Polymers. Macromolecules 2023, 56 (3) , 731-750. https://doi.org/10.1021/acs.macromol.2c01694
  15. Kaoru Tashiro, Midori Akiyama, Kimiaki Kashiwagi, Takashi Okazoe. The Fluorocarbene Exploit: Enforcing Alternation in Ring-Opening Metathesis Polymerization. Journal of the American Chemical Society 2023, 145 (5) , 2941-2950. https://doi.org/10.1021/jacs.2c11373
  16. Evan M. Lloyd, Julian C. Cooper, Peyton Shieh, Douglas G. Ivanoff, Nil A. Parikh, Edgar B. Mejia, Keith E. L. Husted, Letícia C. Costa, Nancy R. Sottos, Jeremiah A. Johnson, Jeffrey S. Moore. Efficient Manufacture, Deconstruction, and Upcycling of High-Performance Thermosets and Composites. ACS Applied Engineering Materials 2023, 1 (1) , 477-485. https://doi.org/10.1021/acsaenm.2c00115
  17. Yanchao Wang, Yinuo Zhu, Wenxiu Lv, Xianhong Wang, Youhua Tao. Tough while Recyclable Plastics Enabled by Monothiodilactone Monomers. Journal of the American Chemical Society 2023, 145 (3) , 1877-1885. https://doi.org/10.1021/jacs.2c11502
  18. Christian O. Blanco, Deryn E. Fogg. Water-Accelerated Decomposition of Olefin Metathesis Catalysts. ACS Catalysis 2023, 13 (2) , 1097-1102. https://doi.org/10.1021/acscatal.2c05573
  19. Samuel C. Leguizamon, Kenneth Lyons, Nicolas T. Monk, Madison T. Hochrein, Brad H. Jones, Jeffrey C. Foster. Additive Manufacturing of Degradable Materials via Ring-Opening Metathesis Polymerization (ROMP). ACS Applied Materials & Interfaces 2022, 14 (45) , 51301-51306. https://doi.org/10.1021/acsami.2c14411
  20. Oleg Davydovich, Justine E. Paul, John David Feist, Jia En Aw, Francisco Javier Balta Bonner, Jacob J. Lessard, Sameh Tawfick, Yan Xia, Nancy R. Sottos, Jeffrey S. Moore. Frontal Polymerization of Dihydrofuran Comonomer Facilitates Thermoset Deconstruction. Chemistry of Materials 2022, 34 (19) , 8790-8797. https://doi.org/10.1021/acs.chemmater.2c02045
  21. Ankita Mandal, Indradip Mandal, Andreas F. M. Kilbinger. Catalytic Syntheses of Degradable Polymers via Ring-Opening Metathesis Copolymerization Using Vinyl Ethers as Chain Transfer Agents. Macromolecules 2022, 55 (17) , 7827-7833. https://doi.org/10.1021/acs.macromol.2c01373
  22. Scott W. Spring, Jesse H. Hsu, Renee J. Sifri, Szu-Ming Yang, Chloe S. Cerione, Tristan H. Lambert, Christopher J. Ellison, Brett P. Fors. Poly(2,3-Dihydrofuran): A Strong, Biorenewable, and Degradable Thermoplastic Synthesized via Room Temperature Cationic Polymerization. Journal of the American Chemical Society 2022, 144 (34) , 15727-15734. https://doi.org/10.1021/jacs.2c06103
  23. Subhajit Pal, Indradip Mandal, Andreas F. M. Kilbinger. Controlled Alternating Metathesis Copolymerization of Terminal Alkynes. ACS Macro Letters 2022, 11 (7) , 847-853. https://doi.org/10.1021/acsmacrolett.2c00258
  24. Sarah E. Blosch, Samantha J. Scannelli, Mohammed Alaboalirat, John B. Matson. Complex Polymer Architectures Using Ring-Opening Metathesis Polymerization: Synthesis, Applications, and Practical Considerations. Macromolecules 2022, 55 (11) , 4200-4227. https://doi.org/10.1021/acs.macromol.2c00338
  25. Xuelin Sui, Will R. Gutekunst. Cascade Alternating Metathesis Cyclopolymerization of Diynes and Dihydrofuran. ACS Macro Letters 2022, 11 (5) , 630-635. https://doi.org/10.1021/acsmacrolett.2c00140
  26. Caitlin S. Sample, Elizabeth A. Kellstedt, Marc A. Hillmyer. Tandem ROMP/Hydrogenation Approach to Hydroxy-Telechelic Linear Polyethylene. ACS Macro Letters 2022, 11 (5) , 608-614. https://doi.org/10.1021/acsmacrolett.2c00144
  27. Changxia Shi, Ryan W. Clarke, Michael L. McGraw, Eugene Y.-X. Chen. Closing the “One Monomer–Two Polymers–One Monomer” Loop via Orthogonal (De)polymerization of a Lactone/Olefin Hybrid. Journal of the American Chemical Society 2022, 144 (5) , 2264-2275. https://doi.org/10.1021/jacs.1c12278
  28. Junfeng Zhou, Devavrat Sathe, Junpeng Wang. Understanding the Structure–Polymerization Thermodynamics Relationships of Fused-Ring Cyclooctenes for Developing Chemically Recyclable Polymers. Journal of the American Chemical Society 2022, 144 (2) , 928-934. https://doi.org/10.1021/jacs.1c11197
  29. Taichi Kimura, Keita Kuroda, Hiroyuki Kubota, Makoto Ouchi. Metal-Catalyzed Switching Degradation of Vinyl Polymers via Introduction of an “In-Chain” Carbon–Halogen Bond as the Trigger. ACS Macro Letters 2021, 10 (12) , 1535-1539. https://doi.org/10.1021/acsmacrolett.1c00601
  30. Xia-Lin Wang, Nicholas Yiching Chiang, Jian-Jhih Peng, Lei Yu, Li-Jun Xu, Hau-Ren Yang, Bih-Yaw Jin, Pinglu Zhang, Yu-Ying Lai, Ze Li, Guo-Qiao Lai, Tien-Yau Luh. A Fischer-Type Ruthenium Carbene Complex as a Metathesis Catalyst for the Synthesis of Enol Ethers. The Journal of Organic Chemistry 2021, 86 (24) , 17629-17639. https://doi.org/10.1021/acs.joc.1c01741
  31. Yi-Min Tu, Xue-Mei Wang, Xing Yang, Hua-Zhong Fan, Fu-Long Gong, Zhongzheng Cai, Jian-Bo Zhu. Biobased High-Performance Aromatic–Aliphatic Polyesters with Complete Recyclability. Journal of the American Chemical Society 2021, 143 (49) , 20591-20597. https://doi.org/10.1021/jacs.1c10162
  32. Hyunseok Kim, Jiayu Zhao, Jinhye Bae, Liana M. Klivansky, Eric A. Dailing, Yi Liu, John R. Cappiello, K. Barry Sharpless, Peng Wu. Chain-Growth Sulfur(VI) Fluoride Exchange Polycondensation: Molecular Weight Control and Synthesis of Degradable Polysulfates. ACS Central Science 2021, 7 (11) , 1919-1928. https://doi.org/10.1021/acscentsci.1c01015
  33. Banruo Huang, Mufeng Wei, Emma Vargo, Yiwen Qian, Ting Xu, F. Dean Toste. Backbone-Photodegradable Polymers by Incorporating Acylsilane Monomers via Ring-Opening Metathesis Polymerization. Journal of the American Chemical Society 2021, 143 (43) , 17920-17925. https://doi.org/10.1021/jacs.1c06836
  34. Haiwang Lai, Makoto Ouchi. Backbone-Degradable Polymers via Radical Copolymerizations of Pentafluorophenyl Methacrylate with Cyclic Ketene Acetal: Pendant Modification and Efficient Degradation by Alternating-Rich Sequence. ACS Macro Letters 2021, 10 (10) , 1223-1228. https://doi.org/10.1021/acsmacrolett.1c00513
  35. Daniel L. Nascimento, Marco Foscato, Giovanni Occhipinti, Vidar R. Jensen, Deryn E. Fogg. Bimolecular Coupling in Olefin Metathesis: Correlating Structure and Decomposition for Leading and Emerging Ruthenium−Carbene Catalysts. Journal of the American Chemical Society 2021, 143 (29) , 11072-11079. https://doi.org/10.1021/jacs.1c04424
  36. Christian O. Blanco, Daniel L. Nascimento, Deryn E. Fogg. Routes to High-Performing Ruthenium–Iodide Catalysts for Olefin Metathesis: Ligand Lability Is Key to Efficient Halide Exchange. Organometallics 2021, 40 (12) , 1811-1816. https://doi.org/10.1021/acs.organomet.1c00253
  37. Peyton Shieh, Megan R. Hill, Wenxu Zhang, Samantha L. Kristufek, Jeremiah A. Johnson. Clip Chemistry: Diverse (Bio)(macro)molecular and Material Function through Breaking Covalent Bonds. Chemical Reviews 2021, 121 (12) , 7059-7121. https://doi.org/10.1021/acs.chemrev.0c01282
  38. Christian O. Blanco, Joshua Sims, Daniel L. Nascimento, Alexandre Y. Goudreault, Stephan N. Steinmann, Carine Michel, Deryn E. Fogg. The Impact of Water on Ru-Catalyzed Olefin Metathesis: Potent Deactivating Effects Even at Low Water Concentrations. ACS Catalysis 2021, 11 (2) , 893-899. https://doi.org/10.1021/acscatal.0c04279
  39. Yifei Liang, Hao Sun, Wei Cao, Matthew P. Thompson, Nathan C. Gianneschi. Degradable Polyphosphoramidate via Ring-Opening Metathesis Polymerization. ACS Macro Letters 2020, 9 (10) , 1417-1422. https://doi.org/10.1021/acsmacrolett.0c00401
  40. Xuelin Sui, Tianqi Zhang, Alec B. Pabarue, Liangbing Fu, Will R. Gutekunst. Alternating Cascade Metathesis Polymerization of Enynes and Cyclic Enol Ethers with Active Ruthenium Fischer Carbenes. Journal of the American Chemical Society 2020, 142 (30) , 12942-12947. https://doi.org/10.1021/jacs.0c06045
  41. Francis O. Boadi, Jingling Zhang, Xiaoxi Yu, Surita R. Bhatia, Nicole S. Sampson. Alternating Ring-Opening Metathesis Polymerization Provides Easy Access to Functional and Fully Degradable Polymers. Macromolecules 2020, 53 (14) , 5857-5868. https://doi.org/10.1021/acs.macromol.0c01051
  42. Sarah M. Mitchell, K. A. Niradha Sachinthani, Randinu Pulukkody, Emily B. Pentzer. 100th Anniversary of Macromolecular Science Viewpoint: Polymerization of Cumulated Bonds: Isocyanates, Allenes, and Ketenes as Monomers. ACS Macro Letters 2020, 9 (7) , 1046-1059. https://doi.org/10.1021/acsmacrolett.0c00396
  43. Yongkang Yang, Yunhyeong Cho, Tae‐Lim Choi. Designing Degradable Polymers from Tricycloalkenes via Complete Cascade Metathesis Polymerization. Angewandte Chemie International Edition 2024, 63 (18) https://doi.org/10.1002/anie.202400235
  44. Xiao‐Tong Wu, Chun Yang, Jian‐Shu Xi, Changxia Shi, Fu‐Sheng Du, Zi‐Chen Li. Enabling Closed‐Loop Circularity of “Non‐Polymerizable” α, β‐Conjugated Lactone Towards High‐Performance Polyester with the Assistance of Cyclopentadiene. Angewandte Chemie International Edition 2024, 347 https://doi.org/10.1002/anie.202404179
  45. Xiao‐Tong Wu, Chun Yang, Jian‐Shu Xi, Changxia Shi, Fu‐Sheng Du, Zi‐Chen Li. Enabling Closed‐Loop Circularity of “Non‐Polymerizable” α, β‐Conjugated Lactone Towards High‐Performance Polyester with the Assistance of Cyclopentadiene. Angewandte Chemie 2024, 3 https://doi.org/10.1002/ange.202404179
  46. Jia-Hao Chen, Yi-Min Tu, Jia-Rong Yao, Xiang-Ting Tang, Yun-Yun Xia, Zhongzheng Cai, Qi Zhang, Jian-Bo Zhu. Accessing chemically recyclable polyamides via geminal dimethyl substitution. Polymer 2024, 298 , 126898. https://doi.org/10.1016/j.polymer.2024.126898
  47. Yongkang Yang, Yunhyeong Cho, Tae‐Lim Choi. Designing Degradable Polymers from Tricycloalkenes via Complete Cascade Metathesis Polymerization. Angewandte Chemie 2024, 110 https://doi.org/10.1002/ange.202400235
  48. Qing Cao, Yi‐Min Tu, Hua‐Zhong Fan, Si‐Yi Shan, Zhongzheng Cai, Jian‐Bo Zhu. Torsional Strain Enabled Ring‐Opening Polymerization towards Axially Chiral Semiaromatic Polyesters with Chemical Recyclability. Angewandte Chemie 2024, 136 (13) https://doi.org/10.1002/ange.202400196
  49. Qing Cao, Yi‐Min Tu, Hua‐Zhong Fan, Si‐Yi Shan, Zhongzheng Cai, Jian‐Bo Zhu. Torsional Strain Enabled Ring‐Opening Polymerization towards Axially Chiral Semiaromatic Polyesters with Chemical Recyclability. Angewandte Chemie International Edition 2024, 63 (13) https://doi.org/10.1002/anie.202400196
  50. Shudi Zhang, Ruoyu Li, Zesheng An. Degradable Block Copolymer Nanoparticles Synthesized by Polymerization‐Induced Self‐Assembly. Angewandte Chemie 2024, 136 (12) https://doi.org/10.1002/ange.202315849
  51. Xun Zhang, Yanni Xia, Yue Sun, Chengjian Zhang, Xinghong Zhang. Water‐Degradable Oxygen‐Rich Polymers with AB/ABB Units from Fast and Selective Copolymerization. Angewandte Chemie 2024, 136 (12) https://doi.org/10.1002/ange.202315524
  52. Julian F. Highmoore, Lasith S. Kariyawasam, Scott R. Trenor, Ying Yang. Design of depolymerizable polymers toward a circular economy. Green Chemistry 2024, 26 (5) , 2384-2420. https://doi.org/10.1039/D3GC04215D
  53. Vishal B. Purohit, Marlena Pięta, Joanna Pietrasik, Christopher M. Plummer. Towards sustainability and a circular Economy: ROMP for the goal of fully degradable and chemically recyclable polymers. European Polymer Journal 2024, 208 , 112847. https://doi.org/10.1016/j.eurpolymj.2024.112847
  54. Tarek Ibrahim, Angelo Ritacco, Daniel Nalley, Omar Faruk Emon, Yifei Liang, Hao Sun. Chemical recycling of polyolefins via ring-closing metathesis depolymerization. Chemical Communications 2024, 60 (11) , 1361-1371. https://doi.org/10.1039/D3CC05612K
  55. Xun Zhang, Yanni Xia, Yue Sun, Chengjian Zhang, Xinghong Zhang. Water‐Degradable Oxygen‐Rich Polymers with AB/ABB Units from Fast and Selective Copolymerization. Angewandte Chemie International Edition 2024, https://doi.org/10.1002/anie.202315524
  56. Wu Li, Daohong Liao, Yougui Li, Guifu Si, Changle Chen. Cyclic-acyclic monomers metathesis polymerization to access photodegradable polydicyclopentadiene and polyethylene-like materials. Science China Chemistry 2024, 369 https://doi.org/10.1007/s11426-023-1883-4
  57. Arianna Quintavalla, Davide Carboni, Marco Lombardo. Green Metrics and Sustainability in Photocatalysis. ChemCatChem 2024, 322 https://doi.org/10.1002/cctc.202301225
  58. Yeonsu Kim, Cheoljae Kim. Tailoring molecular weight distribution via polymer degradability. Polymer Chemistry 2024, 15 (3) , 166-171. https://doi.org/10.1039/D3PY01153D
  59. Shudi Zhang, Ruoyu Li, Zesheng An. Degradable Block Copolymer Nanoparticles Synthesized by Polymerization‐Induced Self‐Assembly. Angewandte Chemie International Edition 2024, 53 https://doi.org/10.1002/anie.202315849
  60. Guifu Si, Chao Li, Min Chen, Changle Chen. Polymer Multi‐Block and Multi‐Block + Strategies for the Upcycling of Mixed Polyolefins and Other Plastics. Angewandte Chemie International Edition 2023, 62 (49) https://doi.org/10.1002/anie.202311733
  61. Guifu Si, Chao Li, Min Chen, Changle Chen. Polymer Multi‐Block and Multi‐Block + Strategies for the Upcycling of Mixed Polyolefins and Other Plastics. Angewandte Chemie 2023, 135 (49) https://doi.org/10.1002/ange.202311733
  62. Tze-Gang Hsu, Shiqi Liu, Xin Guan, Seiyoung Yoon, Junfeng Zhou, Wei-Yuan Chen, Sanjay Gaire, Joshua Seylar, Hanlin Chen, Zeyu Wang, Jared Rivera, Leyao Wu, Christopher J. Ziegler, Ruel McKenzie, Junpeng Wang. Mechanochemically accessing a challenging-to-synthesize depolymerizable polymer. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-35925-2
  63. Yi-Min Tu, Fu-Long Gong, Yan-Chen Wu, Zhongzheng Cai, Jian-Bo Zhu. Insights into substitution strategy towards thermodynamic and property regulation of chemically recyclable polymers. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-38916-5
  64. Qingfu Zhang, Yuzhu Wang, Guangqiang Xu, Rulin Yang, Rui Li, Qinggang Wang. Organocatalytic depolymerization of poly(3-hydroxybutyrate) to crotonic acid. Polymer Degradation and Stability 2023, 218 , 110591. https://doi.org/10.1016/j.polymdegradstab.2023.110591
  65. Catherine Lefay, Yohann Guillaneuf. Recyclable/degradable materials via the insertion of labile/cleavable bonds using a comonomer approach. Progress in Polymer Science 2023, 147 , 101764. https://doi.org/10.1016/j.progpolymsci.2023.101764
  66. Taeyang An, Hanseul Ryu, Tae‐Lim Choi. Living Alternating Ring‐Opening Metathesis Copolymerization of 2,3‐Dihydrofuran to Provide Completely Degradable Polymers. Angewandte Chemie International Edition 2023, 62 (47) https://doi.org/10.1002/anie.202309632
  67. Taeyang An, Hanseul Ryu, Tae‐Lim Choi. Living Alternating Ring‐Opening Metathesis Copolymerization of 2,3‐Dihydrofuran to Provide Completely Degradable Polymers. Angewandte Chemie 2023, 135 (47) https://doi.org/10.1002/ange.202309632
  68. Bonwoo Koo, Cheoljae Kim. Synthesis of Stereocontrolled Degradable Polymer by Living Cascade Enyne Metathesis Polymerization. Angewandte Chemie 2023, 135 (46) https://doi.org/10.1002/ange.202312399
  69. Bonwoo Koo, Cheoljae Kim. Synthesis of Stereocontrolled Degradable Polymer by Living Cascade Enyne Metathesis Polymerization. Angewandte Chemie International Edition 2023, 62 (46) https://doi.org/10.1002/anie.202312399
  70. Zeyu Wang, Junpeng Wang. Bulk depolymerization of graft polymers based on trans -cyclobutane-fused cyclooctene. Polymer Chemistry 2023, 14 (43) , 4927-4932. https://doi.org/10.1039/D3PY00812F
  71. Rikito Takashima, Daisuke Aoki, Shigeki Kuwata, Hideyuki Otsuka. Ring-chain equilibria of dynamic macrocycles with a bis(hindered amino)disulfide linker. Polymer Chemistry 2023, 14 (37) , 4344-4351. https://doi.org/10.1039/D3PY00808H
  72. Evgeny V. Pospelov, Alexander V. Zhirov, Baglan Kamidolla, Alexey Yu. Sukhorukov. Reductive Denitrogenation of Six‐membered Cyclic Nitronates to Densely Substituted Dihydrofurans with Raney® Nickel/AcOH System. Advanced Synthesis & Catalysis 2023, 365 (17) , 2850-2857. https://doi.org/10.1002/adsc.202300573
  73. Ankita Mandal, Subhajit Pal, Andreas F. M. Kilbinger. Controlled Ring Opening Metathesis Polymerization of a New Monomer: On Switching the Solvent—Water‐Soluble Homopolymers to Degradable Copolymers. Macromolecular Rapid Communications 2023, 44 (18) https://doi.org/10.1002/marc.202300218
  74. Kyungmin Choi, Soon Hyeok Hong. Chemically recyclable oxygen-protective polymers developed by ring-opening metathesis homopolymerization of cyclohexene derivatives. Chem 2023, 9 (9) , 2637-2654. https://doi.org/10.1016/j.chempr.2023.05.038
  75. Xiao-Yan Wang, Yanshan Gao, Yong Tang. Sustainable developments in polyolefin chemistry: Progress, challenges, and outlook. Progress in Polymer Science 2023, 143 , 101713. https://doi.org/10.1016/j.progpolymsci.2023.101713
  76. Yu Xia, Fulin Zhou, Wenyan Hao, Shan Tang. Synthesis of Degradable Polyolefins Bearing Disulfide Units via Metathesis Copolymerization. Polymers 2023, 15 (14) , 3101. https://doi.org/10.3390/polym15143101
  77. Lasith S. Kariyawasam, Julian F. Highmoore, Ying Yang. Chemically Recyclable Dithioacetal Polymers via Reversible Entropy‐Driven Ring‐Opening Polymerization**. Angewandte Chemie 2023, 135 (26) https://doi.org/10.1002/ange.202303039
  78. Lasith S. Kariyawasam, Julian F. Highmoore, Ying Yang. Chemically Recyclable Dithioacetal Polymers via Reversible Entropy‐Driven Ring‐Opening Polymerization**. Angewandte Chemie International Edition 2023, 62 (26) https://doi.org/10.1002/anie.202303039
  79. Xue-Mei Wang, Hao-Yi Huang, Yi-Min Tu, Zhongzheng Cai, Jian-Bo Zhu. Naphthalene engineering of chemically recyclable polyesters with enhanced thermal and mechanical properties. Polymer Chemistry 2023, 14 (17) , 2027-2033. https://doi.org/10.1039/D3PY00275F
  80. Jiaxi Xu, Nikos Hadjichristidis. Heteroatom-containing degradable polymers by ring-opening metathesis polymerization. Progress in Polymer Science 2023, 139 , 101656. https://doi.org/10.1016/j.progpolymsci.2023.101656
  81. Haohui Zhang, Yuhang Hu. A statistical-chain-based theory for dynamic living polymeric gels with concurrent diffusion, chain remodeling reactions and deformation. Journal of the Mechanics and Physics of Solids 2023, 172 , 105155. https://doi.org/10.1016/j.jmps.2022.105155
  82. Hua-Zhong Fan, Xing Yang, Yan-Chen Wu, Qing Cao, Zhongzheng Cai, Jian-Bo Zhu. Leveraging the monomer structure for high-performance chemically recyclable semiaromatic polyesters. Polymer Chemistry 2023, 14 (6) , 747-753. https://doi.org/10.1039/D2PY01491B
  83. Hsin‐Wei Su, Junfeng Zhou, Seiyoung Yoon, Junpeng Wang. Evaluating Trans ‐Benzocyclobutene‐Fused Cyclooctene as a Monomer for Chemically Recyclable Polymer. Chemistry – An Asian Journal 2023, 18 (3) https://doi.org/10.1002/asia.202201133
  84. Xin‐Lei Li, Kai Ma, Fei Xu, Tie‐Qi Xu. Advances in the Synthesis of Chemically Recyclable Polymers. Chemistry – An Asian Journal 2023, 18 (3) https://doi.org/10.1002/asia.202201167
  85. Ankita Mandal, Indradip Mandal, Andreas F. M. Kilbinger. Catalytic Living Ring‐Opening Metathesis Polymerization Using Vinyl Ethers as Effective Chain‐Transfer Agents. Angewandte Chemie 2023, 135 (4) https://doi.org/10.1002/ange.202211842
  86. Ankita Mandal, Indradip Mandal, Andreas F. M. Kilbinger. Catalytic Living Ring‐Opening Metathesis Polymerization Using Vinyl Ethers as Effective Chain‐Transfer Agents. Angewandte Chemie International Edition 2023, 62 (4) https://doi.org/10.1002/anie.202211842
  87. Wei Xiong, Hua Lu. Recyclable polythioesters and polydisulfides with near-equilibrium thermodynamics and dynamic covalent bonds. Science China Chemistry 2023, 347 https://doi.org/10.1007/s11426-022-1418-9
  88. Devavrat Sathe, Hanlin Chen, Junpeng Wang. Regulating the Thermodynamics and Thermal Properties of Depolymerizable Polycyclooctenes through Substituent Effects. Macromolecular Rapid Communications 2023, 44 (1) https://doi.org/10.1002/marc.202200304
  89. Brianna M. Coia, Sarah E. Werner, Justin G. Kennemur. Conformational bias in density functional theory ring strain energy calculations of cyclopentene derivatives: Towards predictive design of chemically recyclable elastomers. Journal of Polymer Science 2022, 60 (24) , 3391-3403. https://doi.org/10.1002/pol.20220202
  90. Guifu Si, Changle Chen. Cyclic–acyclic monomers metathesis polymerization for the synthesis of degradable thermosets, thermoplastics and elastomers. Nature Synthesis 2022, 1 (12) , 956-966. https://doi.org/10.1038/s44160-022-00163-9
  91. Bonwoo Koo, Dopil Kim, Da Yong Song, Woo Joo Han, Dongwook Kim, Jae Woo Park, Min Kim, Cheoljae Kim. The formation of photodegradable nitrophenylene polymers via ring-opening metathesis polymerization. Polymer Chemistry 2022, 13 (45) , 6268-6273. https://doi.org/10.1039/D2PY00684G
  92. Guan‐Wen Yang, Yuhui Wang, Huan Qi, Yao‐Yao Zhang, Xiao‐Feng Zhu, Chenjie Lu, Li Yang, Guang‐Peng Wu. Highly Selective Preparation and Depolymerization of Chemically Recyclable Poly(cyclopentene carbonate) Enabled by Organoboron Catalysts. Angewandte Chemie 2022, 134 (46) https://doi.org/10.1002/ange.202210243
  93. Guan‐Wen Yang, Yuhui Wang, Huan Qi, Yao‐Yao Zhang, Xiao‐Feng Zhu, Chenjie Lu, Li Yang, Guang‐Peng Wu. Highly Selective Preparation and Depolymerization of Chemically Recyclable Poly(cyclopentene carbonate) Enabled by Organoboron Catalysts. Angewandte Chemie International Edition 2022, 61 (46) https://doi.org/10.1002/anie.202210243
  94. Minghang Ji, Shengquan Zheng, Chen Zou, Min Chen. Ruthenium-catalyzed diazoacetate/cyclooctene metathesis copolymerization. Polymer Chemistry 2022, 13 (33) , 4782-4788. https://doi.org/10.1039/D2PY00886F
  95. Lingli Zhang, Ying Quan, Hao Wang, Huijing Han, Xiaojuan Liao, Ruyi Sun, Meiran Xie. Tandem metathesis depolymerization and cyclopolymerization toward flexible–rigid block copolymers with unique damping properties. Polymer Chemistry 2022, 13 (24) , 3670-3680. https://doi.org/10.1039/D2PY00521B
  96. Giovanni Occhipinti, Daniel L. Nascimento, Marco Foscato, Deryn E. Fogg, Vidar R. Jensen. The Janus face of high trans-effect carbenes in olefin metathesis: gateway to both productivity and decomposition. Chemical Science 2022, 13 (18) , 5107-5117. https://doi.org/10.1039/D2SC00855F
  97. Devavrat Sathe, Junfeng Zhou, Hanlin Chen, Briana R. Schrage, Seiyoung Yoon, Zeyu Wang, Christopher J. Ziegler, Junpeng Wang. Depolymerizable semi-fluorinated polymers for sustainable functional materials. Polymer Chemistry 2022, 13 (18) , 2608-2614. https://doi.org/10.1039/D2PY00240J
  98. Matthew P. Confer, Taoguang Qu, Paul A. Rupar, David A. Dixon. Composite Correlated Molecular Orbital Theory Calculations of Ring Strain for Use in Predicting Polymerization Reactions. ChemPhysChem 2022, 23 (9) https://doi.org/10.1002/cphc.202200133
  99. Junfeng Zhou, Tze-Gang Hsu, Junpeng Wang. Turnaround in use of enol ether opens the door to degradable plastics. Trends in Chemistry 2022, 4 (4) , 258-259. https://doi.org/10.1016/j.trechm.2022.02.005
  100. Immanuel Reim, Giovanni Occhipinti, Karl W. Törnroos, Deryn E. Fogg, Vidar R. Jensen. Toward E-selective Olefin Metathesis: Computational Design and Experimental Realization of Ruthenium Thio-Indolate Catalysts. Topics in Catalysis 2022, 65 (1-4) , 448-461. https://doi.org/10.1007/s11244-021-01468-3
Load all citations
  • Abstract

    Figure 1

    Figure 1. 1H NMR spectrum of PDHF synthesized using G2 at 22 °C.

    Figure 2

    Figure 2. Facile depolymerization of PDHF to DHF.

    Figure 3

    Figure 3. GPC analysis of PDHF hydrolysis in THF with 135 mM water and 25 mM HCl.

    Figure 4

    Figure 4. Molecular weight (blue circles) and inverse molecular weight (black diamonds) of PDHF during hydrolysis using TFA.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 36 other publications.

    1. 1
      Grubbs, R. H.; Khosravi, E. Handbook of Metathesis: Polymer Synthesis, 2nd ed.; Wiley-VCH: 2015; Vol. 3.
    2. 2
      Wu, Z.; Nguyen, S. T.; Grubbs, R. H.; Ziller, J. W. Reactions of Ruthenium Carbenes of the Type (PPh3)2(X)2Ru:CH-CH:CPh2 (X = Cl and CF3COO) with Strained Acyclic Olefins and Functionalized Olefins. J. Am. Chem. Soc. 1995, 117, 5503,  DOI: 10.1021/ja00125a010
    3. 3
      Schwab, P.; Grubbs, R. H.; Ziller, J. W. Synthesis and Applications of RuCl2(CHR′)(PR3)2: The Influence of the Alkylidene Moiety on Metathesis Activity. J. Am. Chem. Soc. 1996, 118, 100,  DOI: 10.1021/ja952676d
    4. 4
      Gordon, E. J.; Gestwicki, J. E.; Strong, L. E.; Kiessling, L. L. Synthesis of end-labeled multivalent ligands for exploring cell-surface-receptor-ligand interactions. Chem. Biol. 2000, 7, 9,  DOI: 10.1016/S1074-5521(00)00060-0
    5. 5
      Bielawski, C. W.; Morita, T.; Grubbs, R. H. Synthesis of ABA Triblock Copolymers via a Tandem Ring-Opening Metathesis Polymerization:  Atom Transfer Radical Polymerization Approach. Macromolecules 2000, 33, 678,  DOI: 10.1021/ma990625l
    6. 6
      Owen, R. M.; Gestwicki, J. E.; Young, T.; Kiessling, L. L. Synthesis and Applications of End-Labeled Neoglycopolymers. Org. Lett. 2002, 4, 2293,  DOI: 10.1021/ol0259239
    7. 7
      Matson, J. B.; Grubbs, R. H. ROMP–ATRP Block Copolymers Prepared from Monotelechelic Poly(oxa)norbornenes Using a Difunctional Terminating Agent. Macromolecules 2008, 41, 5626,  DOI: 10.1021/ma800980p
    8. 8
      Hilf, S.; Kilbinger, A. F. M. Functional end groups for polymers prepared using ring-opening metathesis polymerization. Nat. Chem. 2009, 1, 537,  DOI: 10.1038/nchem.347
    9. 9
      Lunn, D. J.; Discekici, E. H.; Read de Alaniz, J.; Gutekunst, W. R.; Hawker, C. J. Established and emerging strategies for polymer chain-end modification. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 2903,  DOI: 10.1002/pola.28575
    10. 10
      Louie, J.; Grubbs, R. H. Metathesis of Electron-Rich Olefins:  Structure and Reactivity of Electron-Rich Carbene Complexes. Organometallics 2002, 21, 2153,  DOI: 10.1021/om011037a
    11. 11
      Katayama, H.; Urushima, H.; Nishioka, T.; Wada, C.; Nagao, M.; Ozawa, F. Highly Selective Ring-Opening/Cross-Metathesis Reactions of Norbornene Derivatives Using Selenocarbene Complexes as Catalysts. Angew. Chem., Int. Ed. 2000, 39, 4513,  DOI: 10.1002/1521-3773(20001215)39:24<4513::AID-ANIE4513>3.0.CO;2-C
    12. 12
      van der Schaaf, P. A.; Kolly, R.; Kirner, H.-J.; Rime, F.; Mühlebach, A.; Hafner, A. Synthesis and reactivity of novel ruthenium carbene catalysts. X-ray structures of [RuCl2(=CHSC6H5)(PiPr3)2] and [RuCl2(CHCH2CH2-C,N-2-C5H4N)(PiPr3)]. J. Organomet. Chem. 2000, 606, 65,  DOI: 10.1016/S0022-328X(00)00289-8
    13. 13
      Katayama, H.; Yonezawa, F.; Nagao, M.; Ozawa, F. Ring-Opening Metathesis Polymerization of Norbornene Using Vinylic Ethers as Chain-Transfer Agents:  Highly Selective Synthesis of Monofunctional Macroinitiators for Atom Transfer Radical Polymerization. Macromolecules 2002, 35, 1133,  DOI: 10.1021/ma0110249
    14. 14
      Weitekamp, R. A.; Atwater, H. A.; Grubbs, R. H. Photolithographic Olefin Metathesis Polymerization. J. Am. Chem. Soc. 2013, 135, 16817,  DOI: 10.1021/ja4093083
    15. 15
      Ahmed, T. S.; Grandner, J. M.; Taylor, B. L. H.; Herbert, M. B.; Houk, K. N.; Grubbs, R. H. Metathesis and Decomposition of Fischer Carbenes of Cyclometalated Z -Selective Ruthenium Metathesis Catalysts. Organometallics 2018, 37, 2212,  DOI: 10.1021/acs.organomet.8b00150
    16. 16
      Hejl, A.; Scherman, O. A.; Grubbs, R. H. Ring-Opening Metathesis Polymerization of Functionalized Low-Strain Monomers with Ruthenium-Based Catalysts. Macromolecules 2005, 38, 7214,  DOI: 10.1021/ma0501287
    17. 17
      Tuba, R.; Grubbs, R. H. Ruthenium catalyzed equilibrium ring-opening metathesis polymerization of cyclopentene. Polym. Chem. 2013, 4, 3959,  DOI: 10.1039/c3py00584d
    18. 18
      Tuba, R.; Al-Hashimi, M.; Bazzi, H. S.; Grubbs, R. H. One-Pot Synthesis of Poly(vinyl alcohol) (PVA) Copolymers via Ruthenium Catalyzed Equilibrium Ring-Opening Metathesis Polymerization of Hydroxyl Functionalized Cyclopentene. Macromolecules 2014, 47, 8190,  DOI: 10.1021/ma501976v
    19. 19
      Liu, H.; Nelson, A. Z.; Ren, Y.; Yang, K.; Ewoldt, R. H.; Moore, J. S. Dynamic Remodeling of Covalent Networks via Ring-Opening Metathesis Polymerization. ACS Macro Lett. 2018, 7, 933,  DOI: 10.1021/acsmacrolett.8b00422
    20. 20
      Neary, W. J.; Kennemur, J. G. Polypentenamer Renaissance: Challenges and Opportunities. ACS Macro Lett. 2019, 8, 46,  DOI: 10.1021/acsmacrolett.8b00885
    21. 21
      Sanford, M. S.; Love, J.; Grubbs, R. H. Mechanism and Activity of Ruthenium Olefin Metathesis Catalysts. J. Am. Chem. Soc. 2001, 123, 6543,  DOI: 10.1021/ja010624k
    22. 22
      Hillmyer, M. A.; Grubbs, R. H. Preparation of hydroxytelechelic poly(butadiene) via ring-opening metathesis polymerization employing a well-defined metathesis catalyst. Macromolecules 1993, 26, 872,  DOI: 10.1021/ma00056a051
    23. 23
      Maughon, B. R.; Morita, T.; Bielawski, C. W.; Grubbs, R. H. Synthesis of Cross-Linkable Telechelic Poly(butenylene)s Derived from Ring-Opening Metathesis Polymerization. Macromolecules 2000, 33, 1929,  DOI: 10.1021/ma9907340
    24. 24
      Morita, T.; Maughon, B. R.; Bielawski, C. W.; Grubbs, R. H. A Ring-Opening Metathesis Polymerization (ROMP) Approach to Carboxyl- and Amino-Terminated Telechelic Poly(butadiene)s. Macromolecules 2000, 33, 6621,  DOI: 10.1021/ma000013x
    25. 25
      Pitet, L. M.; Hillmyer, M. A. Carboxy-Telechelic Polyolefins by ROMP Using Maleic Acid as a Chain Transfer Agent. Macromolecules 2011, 44, 2378,  DOI: 10.1021/ma102975r
    26. 26
      Blackwell, H. E.; O’Leary, D. J.; Chatterjee, A. K.; Washenfelder, R. A.; Bussmann, D. A. B.; Grubbs, R. H. New Approaches to Olefin Cross-Metathesis. J. Am. Chem. Soc. 2000, 122, 58,  DOI: 10.1021/ja993063u
    27. 27
      Ritter, T.; Hejl, A.; Wenzel, A. G.; Funk, T. W.; Grubbs, R. H. A Standard System of Characterization for Olefin Metathesis Catalysts. Organometallics 2006, 25, 5740,  DOI: 10.1021/om060520o
    28. 28
      Knight, D. W.; Morgan, I. R.; Proctor, A. J. A simple oxidative procedure for the removal of ruthenium residues from metathesis reaction products. Tetrahedron Lett. 2010, 51, 638,  DOI: 10.1016/j.tetlet.2009.11.092
    29. 29
      Fishman, J. M.; Kiessling, L. L. Synthesis of Functionalizable and Degradable Polymers by Ring-Opening Metathesis Polymerization. Angew. Chem., Int. Ed. 2013, 52, 5061,  DOI: 10.1002/anie.201300293
    30. 30
      Shieh, P.; Nguyen, H. V. T.; Johnson, J. A. Tailored silyl ether monomers enable backbone-degradable polynorbornene-based linear, bottlebrush and star copolymers through ROMP. Nat. Chem. 2019, 11, 1124,  DOI: 10.1038/s41557-019-0352-4
    31. 31
      Bhaumik, A.; Peterson, G. I.; Kang, C.; Choi, T.-L. Controlled Living Cascade Polymerization To Make Fully Degradable Sugar-Based Polymers from d-Glucose and d-Galactose. J. Am. Chem. Soc. 2019, 141, 12207,  DOI: 10.1021/jacs.9b05822
    32. 32
      Nowlan, V. J.; Tidwell, T. T. Structural effects on the acid-catalyzed hydration of alkenes. Acc. Chem. Res. 1977, 10, 252,  DOI: 10.1021/ar50115a004
    33. 33
      Pitt, C. G.; Zhong-wei, G. Modification of the rates of chain cleavage of poly(ϵ-caprolactone) and related polyesters in the solid state. J. Controlled Release 1987, 4, 283,  DOI: 10.1016/0168-3659(87)90020-4
    34. 34
      Lyu, S.; Schley, J.; Loy, B.; Lind, D.; Hobot, C.; Sparer, R.; Untereker, D. Kinetics and Time–Temperature Equivalence of Polymer Degradation. Biomacromolecules 2007, 8, 2301,  DOI: 10.1021/bm070313n
    35. 35
      Lyu, S.; Untereker, D. Degradability of polymers for implantable biomedical devices. Int. J. Mol. Sci. 2009, 10, 4033,  DOI: 10.3390/ijms10094033
    36. 36
      Fu, L.; Sui, X.; Crolais, A. E.; Gutekunst, W. R. Modular Approach to Degradable Acetal Polymers Using Cascade Enyne Metathesis Polymerization. Angew. Chem., Int. Ed. 2019, 58, 15726,  DOI: 10.1002/anie.201909172
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.9b11834.

    • Synthetic procedures and characterizations, 1H and 13C NMR spectra and GPC traces, determination of thermodynamic parameters, Fischer carbene quenching and inhibition study, cross metathesis study of internal enol ethers (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect