Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Distinct Pathways in “Thermally Bisignate Supramolecular Polymerization”: Spectroscopic and Computational Studies

Cite this: J. Am. Chem. Soc. 2020, 142, 1, 598–605
Publication Date (Web):December 9, 2019
https://doi.org/10.1021/jacs.9b12044
Copyright © 2019 American Chemical Society

    Article Views

    5277

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    In general, supramolecular polymers are thermally labile in solution and easily depolymerized upon heating. This dynamic nature is beneficial in many aspects but limits certain applications. Recently, we developed “thermally bisignate supramolecular polymerization”, through which a polymer is formed upon heating as well as cooling in a hydrocarbon solvent containing a small amount of alcohol. Here, we present a detailed mechanistic picture for this polymerization based on both spectroscopic and computational studies. For this particular type of polymerization, we mainly employed a copper porphyrin derivative ((S)PORCu) as a monomer with eight hydrogen-bonding (H-bonding) amide units in its chiral side chains. Because of a strong multivalent interaction, the resulting supramolecular polymer displayed an extraordinarily high thermal stability in a hydrocarbon medium such as methylcyclohexane (MCH)/chloroform (CHCl3) (98/2 v/v; denoted as MCH*). However, when a small volume (<2.0 vol %) of ethanol (EtOH) was added to this solution at ambient temperatures as a H-bond scavenger, the supramolecular polymer dissociated into its monomers. Here, it should be noted that, both upon cooling (clustering of EtOH) and heating (lower-critical-solution-temperature behavior, LCST), the monomer was liberated from the H-bond scavenger and underwent supramolecular polymerization. In this Article, we conducted detailed spectroscopic studies, analyzed the results using theoretical models, and eventually succeeded in supporting the pathways explaining why the monomer deactivated by the H-bond scavenger turns active upon both heating and cooling. We also investigated the thermally bisignate nature of the supramolecular polymerization of other monomers such as triphenylamine ((S)TPA) and pyrene ((S)Py) derivatives together with free-base ((R)POR2H) and zinc porphyrin ((S)PORZn) derivatives and rationalized the large potential for this multicomponent supramolecular polymerization.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.9b12044.

    • Synthesis and analytical data of (S)TPA and (S)Py, details of thermodynamic mass balance models, and additional figures and tables, including Figures S9–S17 and Table S1 (PDF)

    • MATLAB scripts (ZIP)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 40 publications.

    1. Hui Liu, Ziqing Hu, Qingyun Li, Xiaofan Ji. Fluorescence Lifetime-Based Characterization for Supramolecular Polymer Molecular Weight. Macromolecules 2023, 56 (19) , 8003-8010. https://doi.org/10.1021/acs.macromol.3c00823
    2. Stef A. H. Jansen, Elisabeth Weyandt, Tsubasa Aoki, Takayoshi Akiyama, Yoshimitsu Itoh, Ghislaine Vantomme, Takuzo Aida, E. W. Meijer. Simulating Assembly Landscapes for Comprehensive Understanding of Supramolecular Polymer–Solvent Systems. Journal of the American Chemical Society 2023, 145 (7) , 4231-4237. https://doi.org/10.1021/jacs.2c12941
    3. Liyang Fu, Yanxue Che, Yanjun Gong, Hongwei Ji, Yifan Zhang, Ling Zang, Jincai Zhao, Yanke Che. Control over the Geometric Shapes and Mechanical Properties of Uniform Platelets via Tunable Two-Dimensional Living Self-Assembly. Chemistry of Materials 2023, 35 (3) , 1310-1317. https://doi.org/10.1021/acs.chemmater.2c03339
    4. Rui Liao, Fan Wang, Yuchen Guo, Yifei Han, Feng Wang. Chirality-Controlled Supramolecular Donor–Acceptor Copolymerization with Distinct Energy Transfer Efficiency. Journal of the American Chemical Society 2022, 144 (22) , 9775-9784. https://doi.org/10.1021/jacs.2c02270
    5. Mathijs F. J. Mabesoone, Anja R. A. Palmans, E. W. Meijer. Solute–Solvent Interactions in Modern Physical Organic Chemistry: Supramolecular Polymers as a Muse. Journal of the American Chemical Society 2020, 142 (47) , 19781-19798. https://doi.org/10.1021/jacs.0c09293
    6. Srinu Kotha, Rahul Sahu, Aditya Chandrakant Yadav, Karteek K. Bejagam, Sandeep K. Reddy, Kotagiri Venkata Rao. Pathway Selection in Temporal Evolution of Supramolecular Polymers of Ionic π‐Systems: Amphiphilic Organic Solvent Dictates the Fate of Water. Chemistry – A European Journal 2024, 11 https://doi.org/10.1002/chem.202303813
    7. Dinesh Kumar Duraisamy, Samala Murali Mohan Reddy, Puchalapalli Saveri, Abhijit P. Deshpande, Ganesh Shanmugam. A Unique Temperature‐Induced Reverse Supramolecular Chirality‐Assisted Gel‐to‐Gel Transition. Macromolecular Rapid Communications 2024, 45 (10) https://doi.org/10.1002/marc.202400018
    8. Zhuoran Xu, Xiujun Liu, Tao Jiang, Xiang Ma. Host-guest assembly triggered lower critical solution temperature behavior with reversible photo-regulation. Dyes and Pigments 2024, 223 , 111951. https://doi.org/10.1016/j.dyepig.2024.111951
    9. Wang Li, Yang Zhou, Sheng He, Tianyi Tong, Congsen Wang, Peichen Shi, Suixu Li, Xinchang Wang, Liulin Yang, Xiaoyu Cao, Zhong‐Qun Tian. An artificial chaperone serves a dual role in regulating the assembly of peptides through phase separation. Aggregate 2024, 5 (2) https://doi.org/10.1002/agt2.496
    10. Takuma Shimada, Yuichiro Watanabe, Tsutomu Furuya, Koji Nishida, Sadaki Samitsu, Yutaka Wakayama, Kazunori Sugiyasu. Spherulites of supramolecular polymers formed from undercooled melts, and their adhesive properties. Chemistry Letters 2024, 53 (2) https://doi.org/10.1093/chemle/upad030
    11. Hosoowi Lee, Minhyeong Lee, Jun Ho Hwang, Inhye Kim, Eunji Lee, Woo-Dong Jang. Recognition of atomic-level difference in porphyrin dyads for self-sorted supramolecular polymer growth. Nanoscale 2023, 15 (45) , 18224-18232. https://doi.org/10.1039/D3NR04851A
    12. Patrick Roth, Raphael Meyer, Iain Harley, Katharina Landfester, Ingo Lieberwirth, Manfred Wagner, David Y. W. Ng, Tanja Weil. Supramolecular assembly guided by photolytic redox cycling. Nature Synthesis 2023, 2 (10) , 980-988. https://doi.org/10.1038/s44160-023-00343-1
    13. Cristina Naranjo, Azahara Doncel-Giménez, Rafael Gómez, Juan Aragó, Enrique Ortí, Luis Sánchez. Solvent-dependent self-assembly of N -annulated perylene diimides. From dimers to supramolecular polymers. Chemical Science 2023, 14 (36) , 9900-9909. https://doi.org/10.1039/D3SC03372D
    14. Qingyun Li, Ziqing Hu, Xiaofan Ji. Muscle‐Like Supramolecular Polymers with Dual Motion Patterns. Chemistry – A European Journal 2023, 29 (40) https://doi.org/10.1002/chem.202301313
    15. Hosoowi Lee, Hyunjun Park, Du Yeol Ryu, Woo-Dong Jang. Porphyrin-based supramolecular polymers. Chemical Society Reviews 2023, 52 (5) , 1947-1974. https://doi.org/10.1039/D2CS01066F
    16. Hui-Qing Peng, Wenping Zhu, Wu-Jie Guo, Qingyun Li, Shixiang Ma, Christophe Bucher, Bin Liu, Xiaofan Ji, Feihe Huang, Jonathan L. Sessler. Supramolecular polymers: Recent advances based on the types of underlying interactions. Progress in Polymer Science 2023, 137 , 101635. https://doi.org/10.1016/j.progpolymsci.2022.101635
    17. Elisabeth Weyandt, Luigi Leanza, Riccardo Capelli, Giovanni M. Pavan, Ghislaine Vantomme, E. W. Meijer. Controlling the length of porphyrin supramolecular polymers via coupled equilibria and dilution-induced supramolecular polymerization. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-021-27831-2
    18. Guotao Wang, Yunna Yang, Hui Liu, Mingzhao Chen, Zhiyuan Jiang, Qixia Bai, Jie Yuan, Zhilong Jiang, Yiming Li, Pingshan Wang. Modular Construction of a Tessellated Octahedron, its Hierarchical Spherical Aggregate Behavior, and Electrocatalytic CO 2 Reduction Activity. Angewandte Chemie 2022, 134 (43) https://doi.org/10.1002/ange.202205851
    19. Guotao Wang, Yunna Yang, Hui Liu, Mingzhao Chen, Zhiyuan Jiang, Qixia Bai, Jie Yuan, Zhilong Jiang, Yiming Li, Pingshan Wang. Modular Construction of a Tessellated Octahedron, its Hierarchical Spherical Aggregate Behavior, and Electrocatalytic CO 2 Reduction Activity. Angewandte Chemie International Edition 2022, 61 (43) https://doi.org/10.1002/anie.202205851
    20. Mingyue Chen, Houchen Wang, Enhui Li, Xueru Li, Tiesheng Shi. Hierarchically supramolecular polymerization of anthraquinone dye to chiral aggregates via 2D-monolayered nanosheets: the unanticipated role of pathway complexity. Nanoscale 2022, 14 (38) , 14052-14056. https://doi.org/10.1039/D2NR04404H
    21. Srinu Kotha, Rahul Sahu, Dasari Srideep, Sharma S. R. K. C. Yamijala, Sandeep Kumar Reddy, Kotagiri Venkata Rao. Cooperative Supramolecular Polymerization Guided by Dispersive Interactions. Chemistry – An Asian Journal 2022, 17 (16) https://doi.org/10.1002/asia.202200494
    22. Eric P Bruckner, Samuel I Stupp. Designing supramolecular polymers with nucleation and growth processes. Polymer International 2022, 71 (5) , 590-595. https://doi.org/10.1002/pi.6384
    23. Dasari Srideep, Kasilingam Sriram, Srinu Kotha, Deepu J. Babu, Saurabh Kumar Singh, Kotagiri Venkata Rao. Synthesis and Self‐assembly of Benzoperylene Benzimidazoles: Tunable Morphology with Aggregation‐Induced Enhanced Emission. Chemistry – An Asian Journal 2022, 17 (8) https://doi.org/10.1002/asia.202200099
    24. Qingyun Li, Hanwei Zhang, Kai Lou, Yabi Yang, Xiaofan Ji, Jintao Zhu, Jonathan L. Sessler. Visualizing molecular weights differences in supramolecular polymers. Proceedings of the National Academy of Sciences 2022, 119 (9) https://doi.org/10.1073/pnas.2121746119
    25. Tomokazu Iseki, Mathijs F. J. Mabesoone, Mark A. J. Koenis, Brigitte A. G. Lamers, Elisabeth Weyandt, Lafayette N. J. de Windt, Wybren Jan Buma, Anja R. A. Palmans, E. W. Meijer. Temperature-dependent modulation by biaryl-based monomers of the chain length and morphology of biphenyl-based supramolecular polymers. Chemical Science 2021, 12 (39) , 13001-13012. https://doi.org/10.1039/D1SC03974A
    26. Yasunobu Kotani, Haruka Yasuda, Kenji Higashiguchi, Kenji Matsuda. Re‐entrant Photoinduced Morphological Transformation and Temperature‐Dependent Kinetic Products of a Rectangular Amphiphilic Diarylethene Assembly. Chemistry – A European Journal 2021, 27 (43) , 11158-11166. https://doi.org/10.1002/chem.202101127
    27. Virgile Ayzac, Mohammed Dirany, Matthieu Raynal, Benjamin Isare, Laurent Bouteiller. Energetics of Competing Chiral Supramolecular Polymers. Chemistry – A European Journal 2021, 27 (37) , 9627-9633. https://doi.org/10.1002/chem.202100645
    28. Sandip Jadhav, Vincent Martin, Peter H. G. Egelund, Henrik Johansson Castro, Tobias Krüger, Franziska Richner, Sebastian Thordal Le Quement, Fernando Albericio, Frank Dettner, Carolin Lechner, Ralph Schönleber, Daniel Sejer Pedersen. Replacing DMF in solid-phase peptide synthesis: varying the composition of green binary solvent mixtures as a tool to mitigate common side-reactions. Green Chemistry 2021, 23 (9) , 3312-3321. https://doi.org/10.1039/D1GC00604E
    29. Madoori Mrinalini, Madarapu Naresh, Seelam Prasanthkumar, Lingamallu Giribabu. Porphyrin-based supramolecular assemblies and their applications in NLO and PDT. Journal of Porphyrins and Phthalocyanines 2021, 25 (05n06) , 382-395. https://doi.org/10.1142/S1088424621500243
    30. Santanu Panja, Dave J. Adams. Stimuli responsive dynamic transformations in supramolecular gels. Chemical Society Reviews 2021, 50 (8) , 5165-5200. https://doi.org/10.1039/D0CS01166E
    31. Shuhei Akahori, Takahiro Sasamori, Hiroshi Shinokubo, Yoshihiro Miyake. Enthalpically and Entropically Favorable Self‐Assembly: Synthesis of C 4 h ‐Symmetric Tetraazatetrathia[8]circulenes by Regioselective Introduction of Pyridine Rings. Chemistry – A European Journal 2021, 27 (18) , 5675-5682. https://doi.org/10.1002/chem.202005077
    32. Srinu Kotha, Mathijs F. J. Mabesoone, Dasari Srideep, Rahul Sahu, Sandeep K. Reddy, Kotagiri Venkata Rao. Supramolecular Depolymerization in the Mixture of Two Poor Solvents: Mechanistic Insights and Modulation of Supramolecular Polymerization of Ionic π‐Systems. Angewandte Chemie 2021, 133 (10) , 5519-5526. https://doi.org/10.1002/ange.202011977
    33. Srinu Kotha, Mathijs F. J. Mabesoone, Dasari Srideep, Rahul Sahu, Sandeep K. Reddy, Kotagiri Venkata Rao. Supramolecular Depolymerization in the Mixture of Two Poor Solvents: Mechanistic Insights and Modulation of Supramolecular Polymerization of Ionic π‐Systems. Angewandte Chemie International Edition 2021, 60 (10) , 5459-5466. https://doi.org/10.1002/anie.202011977
    34. Paula B. Chamorro, Fatima Aparicio, Raquel Chamorro, Nerea Bilbao, Santiago Casado, David González-Rodríguez. Exploring the tubular self-assembly landscape of dinucleobase amphiphiles in water. Organic Chemistry Frontiers 2021, 8 (4) , 686-696. https://doi.org/10.1039/D0QO01110J
    35. Ingo Helmers, Goutam Ghosh, Rodrigo Q. Albuquerque, Gustavo Fernández. Pfad‐ und Längenkontrolle von supramolekularen Polymeren im wässrigen Medium mittels eines Wasserstoffbrückenschlosses. Angewandte Chemie 2021, 133 (8) , 4414-4423. https://doi.org/10.1002/ange.202012710
    36. Ingo Helmers, Goutam Ghosh, Rodrigo Q. Albuquerque, Gustavo Fernández. Pathway and Length Control of Supramolecular Polymers in Aqueous Media via a Hydrogen Bonding Lock. Angewandte Chemie International Edition 2021, 60 (8) , 4368-4376. https://doi.org/10.1002/anie.202012710
    37. Akiharu Satake. The Solvent Effect on Weak Interactions in Supramolecular Polymers: Differences between Small Molecular Probes and Supramolecular Polymers. ChemPlusChem 2020, 85 (7) , 1542-1548. https://doi.org/10.1002/cplu.202000400
    38. P.K. Hashim, Julian Bergueiro, E.W. Meijer, Takuzo Aida. Supramolecular Polymerization: A Conceptual Expansion for Innovative Materials. Progress in Polymer Science 2020, 105 , 101250. https://doi.org/10.1016/j.progpolymsci.2020.101250
    39. Mathijs F. J. Mabesoone, Sinan Kardas, Héctor Soria-Carrera, Joaquín Barberá, Jesús M. de la Fuente, Anja R. A. Palmans, Mathieu Fossépré, Mathieu Surin, Rafael Martín-Rapún. Competitive hydrogen bonding in supramolecular polymerizations of tribenzylbenzene-1,3,5-tricarboxamides. Molecular Systems Design & Engineering 2020, 5 (4) , 820-828. https://doi.org/10.1039/D0ME00030B
    40. Takuzo Aida, E.W. Meijer. Supramolecular Polymers – we've Come Full Circle. Israel Journal of Chemistry 2020, 60 (1-2) , 33-47. https://doi.org/10.1002/ijch.201900165