ACS Publications. Most Trusted. Most Cited. Most Read
Sc3+-Promoted O–O Bond Cleavage of a (μ-1,2-Peroxo)diiron(III) Species Formed from an Iron(II) Precursor and O2 to Generate a Complex with an FeIV2(μ-O)2 Core
My Activity

Figure 1Loading Img
    Article

    Sc3+-Promoted O–O Bond Cleavage of a (μ-1,2-Peroxo)diiron(III) Species Formed from an Iron(II) Precursor and O2 to Generate a Complex with an FeIV2(μ-O)2 Core
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2020, 142, 9, 4285–4297
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.9b12081
    Published February 4, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Soluble methane monooxygenase (sMMO) carries out methane oxidation at 4 °C and under ambient pressure in a catalytic cycle involving the formation of a peroxodiiron(III) intermediate (P) from the oxygenation of the diiron(II) enzyme and its subsequent conversion to Q, the diiron(IV) oxidant that hydroxylates methane. Synthetic diiron(IV) complexes that can serve as models for Q are rare and have not been generated by a reaction sequence analogous to that of sMMO. In this work, we show that [FeII(Me3NTB)(CH3CN)](CF3SO3)2 (Me3NTB = tris((1-methyl-1H-benzo[d]imidazol-2-yl)methyl)amine) (1) reacts with O2 in the presence of base, generating a (μ-1,2-peroxo)diiron(III) adduct with a low O–O stretching frequency of 825 cm–1 and a short Fe···Fe distance of 3.07 Å. Even more interesting is the observation that the peroxodiiron(III) complex undergoes O–O bond cleavage upon treatment with the Lewis acid Sc3+ and transforms into a bis(μ-oxo)diiron(IV) complex, thus providing a synthetic precedent for the analogous conversion of P to Q in the catalytic cycle of sMMO.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.9b12081.

    • Mössbauer spectroscopy; X-ray absorption spectroscopy; resonance Raman spectroscopy; UV–vis studies and related kinetic analyses; DFT calculations and results (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 26 publications.

    1. Lisa Gravogl, Dustin Kass, Oliver Pyschny, Frank W. Heinemann, Michael Haumann, Sagie Katz, Peter Hildebrandt, Holger Dau, Abinash Swain, Ricardo García-Serres, Kallol Ray, Dominik Munz, Karsten Meyer. A bis-Phenolate Carbene-Supported bis-μ-Oxo Iron(IV/IV) Complex with a [FeIV(μ-O)2FeIV] Diamond Core Derived from Dioxygen Activation. Journal of the American Chemical Society 2024, 146 (42) , 28757-28769. https://doi.org/10.1021/jacs.4c07582
    2. Joseph E. Schneider, Shilin Zeng, Sophie W. Anferov, Alexander S. Filatov, John S. Anderson. Isolation and Crystallographic Characterization of an Octavalent Co2O2 Diamond Core. Journal of the American Chemical Society 2024, 146 (34) , 23998-24008. https://doi.org/10.1021/jacs.4c07335
    3. Lorna Doyle, Adriana Magherusan, Shuangning Xu, Kayleigh Murphy, Erik R. Farquhar, Florian Molton, Carole Duboc, Lawrence Que, Jr., Aidan R. McDonald. Class Ib Ribonucleotide Reductases: Activation of a Peroxido-MnIIMnIII to Generate a Reactive Oxo-MnIIIMnIV Oxidant. Inorganic Chemistry 2024, 63 (4) , 2194-2203. https://doi.org/10.1021/acs.inorgchem.3c04163
    4. Madhuri Nilajakar, Yong-Min Lee, Shunichi Fukuzumi, Wonwoo Nam. Nonlinear Acid Promotion of Oxidation Reactions by Mononuclear Nonheme Iron(III)-Aqua Complexes. ACS Catalysis 2024, 14 (1) , 34-44. https://doi.org/10.1021/acscatal.3c04331
    5. Wenjuan Zhu, Namita Sharma, Yong-Min Lee, Mohamed E. El-Khouly, Shunichi Fukuzumi, Wonwoo Nam. Use of Singlet Oxygen in the Generation of a Mononuclear Nonheme Iron(IV)-Oxo Complex. Inorganic Chemistry 2023, 62 (10) , 4116-4123. https://doi.org/10.1021/acs.inorgchem.2c04020
    6. Mayukh Bhadra, Therese Albert, Alicja Franke, Verena Josef, Ivana Ivanović-Burmazović, Marcel Swart, Pierre Moënne-Loccoz, Kenneth D. Karlin. Reductive Coupling of Nitric Oxide by Cu(I): Stepwise Formation of Mono- and Dinitrosyl Species En Route to a Cupric Hyponitrite Intermediate. Journal of the American Chemical Society 2023, 145 (4) , 2230-2242. https://doi.org/10.1021/jacs.2c09874
    7. Matthew J. Lueckheide, Mehmed Z. Ertem, Michael A. Michon, Pawel Chmielniak, Jerome R. Robinson. Peroxide-Selective Reduction of O2 at Redox-Inactive Rare-Earth(III) Triflates Generates an Ambiphilic Peroxide. Journal of the American Chemical Society 2022, 144 (37) , 17295-17306. https://doi.org/10.1021/jacs.2c08140
    8. Yuji Mikata, Yuri Aono, Chihiro Yamamoto, Hiromi Nakayama, Arimasa Matsumoto, Fukue Kotegawa, Masafumi Harada, Hajime Katano, Yoshio Kobayashi, Sachiko Yanagisawa, Minoru Kubo, Atsushi Kajiwara, Masahito Kodera. A Synthetic Model for the Possible FeIV2(μ-O)2 Core of Methane Monooxygenase Intermediate Q Derived from a Structurally Characterized FeIIIFeIV(μ-O)2 Complex. Inorganic Chemistry 2022, 61 (2) , 786-790. https://doi.org/10.1021/acs.inorgchem.1c02699
    9. Alexander Brinkmeier, Kristian E. Dalle, Lorenzo D’Amore, Roland A. Schulz, Sebastian Dechert, Serhiy Demeshko, Marcel Swart, Franc Meyer. Modulation of a μ-1,2-Peroxo Dicopper(II) Intermediate by Strong Interaction with Alkali Metal Ions. Journal of the American Chemical Society 2021, 143 (42) , 17751-17760. https://doi.org/10.1021/jacs.1c08645
    10. Patrick M. Crossland, Yisong Guo, Lawrence Que, Jr.. Spontaneous Formation of an Fe/Mn Diamond Core: Models for the Fe/Mn Sites in Class 1c Ribonucleotide Reductases. Inorganic Chemistry 2021, 60 (12) , 8710-8721. https://doi.org/10.1021/acs.inorgchem.1c00684
    11. Jin Xiong, Christopher Reed, Barbara Lavina, Michael Y. Hu, Jiyong Zhao, Esen E. Alp, Theodor Agapie, Yisong Guo. 57 Fe nuclear resonance vibrational spectroscopic studies of tetranuclear iron clusters bearing terminal iron( iii )–oxido/hydroxido moieties. Chemical Science 2024, 15 (39) , 16222-16233. https://doi.org/10.1039/D4SC03396E
    12. R. Kumar, S. Raj Ali, R. Karmakar, R. Sharma, N. Haider. Adsorption Potential of Iron-Zirconium Oxide Nanoparticles for 3-Chlorophenol and 3-Nitrophenol: Thermodynamic, Kinetic, and Mechanistic Studies. Russian Journal of General Chemistry 2024, 94 (6) , 1419-1435. https://doi.org/10.1134/S1070363224060197
    13. Fridolin L. B. Röhs, Susanne Dammers, Anja Stammler, Jan Oldengott, Hartmut Bögge, Eckhard Bill, Thorsten Glaser. Dinuclear Diferrous Complexes of a Bis(tetradentate) Dinucleating Ligand: Influence of the Exogenous Ligands on the Molecular and Electronic Structures. European Journal of Inorganic Chemistry 2022, 2022 (18) https://doi.org/10.1002/ejic.202200177
    14. Biswanath Das, Afnan Al-Hunaiti, Akina Carey, Sven Lidin, Serhiy Demeshko, Timo Repo, Ebbe Nordlander. A di‑iron(III) μ-oxido complex as catalyst precursor in the oxidation of alkanes and alkenes. Journal of Inorganic Biochemistry 2022, 231 , 111769. https://doi.org/10.1016/j.jinorgbio.2022.111769
    15. Gregory T. Rohde, Genqiang Xue, Lawrence Que. Explorations of the nonheme high-valent iron-oxo landscape: crystal structure of a synthetic complex with an [FeIV2(μ-O) 2 ] diamond core relevant to the chemistry of sMMOH. Faraday Discussions 2022, 234 , 109-128. https://doi.org/10.1039/D1FD00066G
    16. Diddo Diddens, Williams Agyei Appiah, Youssef Mabrouk, Andreas Heuer, Tejs Vegge, Arghya Bhowmik. Modeling the Solid Electrolyte Interphase: Machine Learning as a Game Changer?. Advanced Materials Interfaces 2022, 9 (8) https://doi.org/10.1002/admi.202101734
    17. Natasha P. Vargo, Jill B. Harland, Bradley W. Musselman, Nicolai Lehnert, Mehmed Z. Ertem, Jerome R. Robinson. Calcium‐Ion Binding Mediates the Reversible Interconversion of Cis and Trans Peroxido Dicopper Cores. Angewandte Chemie 2021, 133 (36) , 19989-19995. https://doi.org/10.1002/ange.202105421
    18. Natasha P. Vargo, Jill B. Harland, Bradley W. Musselman, Nicolai Lehnert, Mehmed Z. Ertem, Jerome R. Robinson. Calcium‐Ion Binding Mediates the Reversible Interconversion of Cis and Trans Peroxido Dicopper Cores. Angewandte Chemie International Edition 2021, 60 (36) , 19836-19842. https://doi.org/10.1002/anie.202105421
    19. Tim P. Schlachta, Markus R. Anneser, Jonas F. Schlagintweit, Christian H. G. Jakob, Carolin Hintermeier, Alexander D. Böth, Stefan Haslinger, Robert M. Reich, Fritz E. Kühn. Mimicking reactive high-valent diiron- μ 2 -oxo intermediates of nonheme enzymes by an iron tetracarbene complex. Chemical Communications 2021, 57 (54) , 6644-6647. https://doi.org/10.1039/D1CC02027G
    20. Florian Dyckhoff, Jonas F. Schlagintweit, Marco A. Bernd, Christian H. G. Jakob, Tim P. Schlachta, Benjamin J. Hofmann, Robert M. Reich, Fritz E. Kühn. Degradation pathways of a highly active iron( iii ) tetra-NHC epoxidation catalyst. Catalysis Science & Technology 2021, 11 (3) , 795-799. https://doi.org/10.1039/D0CY02433C
    21. Chase S. Abelson, Ahmed M. Aboelenen, Waqas Rasheed, Lawrence Que. Synthetic Nonheme High-Valent Iron-Oxo Complexes Structures and Oxidative Function. 2021, 412-454. https://doi.org/10.1016/B978-0-08-102688-5.00108-2
    22. Apparao Draksharapu, Shuangning Xu, Lawrence Que. Ce IV ‐ and HClO 4 ‐Promoted Assembly of an Fe 2 IV (μ‐O) 2 Diamond Core from its Monomeric Fe IV =O Precursor at Room Temperature. Angewandte Chemie 2020, 132 (50) , 22670-22674. https://doi.org/10.1002/ange.202010027
    23. Apparao Draksharapu, Shuangning Xu, Lawrence Que. Ce IV ‐ and HClO 4 ‐Promoted Assembly of an Fe 2 IV (μ‐O) 2 Diamond Core from its Monomeric Fe IV =O Precursor at Room Temperature. Angewandte Chemie International Edition 2020, 59 (50) , 22484-22488. https://doi.org/10.1002/anie.202010027
    24. Mursaleem Ansari, Dhurairajan Senthilnathan, Gopalan Rajaraman. Deciphering the origin of million-fold reactivity observed for the open core diiron [HO–Fe III –O–Fe IV O] 2+ species towards C–H bond activation: role of spin-states, spin-coupling, and spin-cooperation. Chemical Science 2020, 11 (39) , 10669-10687. https://doi.org/10.1039/D0SC02624G
    25. Lorenzo D'Amore, Leonardo Belpassi, Johannes E. M. N. Klein, Marcel Swart. Spin-resolved charge displacement analysis as an intuitive tool for the evaluation of cPCET and HAT scenarios. Chemical Communications 2020, 56 (81) , 12146-12149. https://doi.org/10.1039/D0CC04995F
    26. Marcel Swart. Bond orders in metalloporphyrins. Theoretical Chemistry Accounts 2020, 139 (10) https://doi.org/10.1007/s00214-020-02667-z

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2020, 142, 9, 4285–4297
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.9b12081
    Published February 4, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    3858

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.