Oriented Internal Electrostatic Fields Cooperatively Promote Ground- and Excited-State Reactivity: A Case Study in Photochemical CO2 Capture
- Mitchell T. BlythMitchell T. BlythARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, AustraliaMore by Mitchell T. Blyth
- ,
- Benjamin B. NobleBenjamin B. NobleARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, AustraliaMore by Benjamin B. Noble
- ,
- Isabella C. RussellIsabella C. RussellARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, AustraliaMore by Isabella C. Russell
- , and
- Michelle L. Coote*Michelle L. Coote*[email protected]ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, AustraliaMore by Michelle L. Coote
Abstract

Oriented electrostatic fields can exert catalytic effects upon both the kinetics and the thermodynamics of chemical reactions; however, the vast majority of studies thus far have focused upon ground-state chemistry and rarely consider any more than a single class of reaction. In the present study, we first use density functional theory (DFT) calculations to clarify the mechanism of CO2 storage via photochemical carboxylation of o-alkylphenyl ketones, originally proposed by Murakami et al. (J. Am. Chem. Soc.2015, 137, 14063); we then demonstrate that oriented internal electrostatic fields arising from remote charged functional groups (CFGs) can selectively and cooperatively promote both ground- and excited-state chemical reactivity at all points along the revised mechanism, in a manner otherwise difficult to access via classical substituent effects. What is particularly striking is that electrostatic field effects upon key photochemical transitions are predictably enhanced in increasingly polar solvents, thus overcoming a central limitation of the electrostatic catalysis paradigm. We explain these observations, which should be readily extendable to the ground state.
Cited By
This article is cited by 41 publications.
- Chenghui Zhu, Le Nhan Pham, Xu Yuan, Haoran Ouyang, Michelle L. Coote, Xinxing Zhang. High Electric Fields on Water Microdroplets Catalyze Spontaneous and Fast Reactions in Halogen-Bond Complexes. Journal of the American Chemical Society 2023, Article ASAP.
- Oisin J. Shiels, Samuel J. P. Marlton, Adam J. Trevitt. Protonation Isomer Specific Ion–Molecule Radical Reactions. Journal of the American Chemical Society 2023, 145 (28) , 15024-15029. https://doi.org/10.1021/jacs.3c02552
- Kshatresh Dutta Dubey, Thijs Stuyver, Sason Shaik. Local Electric Fields: From Enzyme Catalysis to Synthetic Catalyst Design. The Journal of Physical Chemistry B 2022, 126 (49) , 10285-10294. https://doi.org/10.1021/acs.jpcb.2c06422
- Guanheng Huang, Chen Zhou, Runhui Liang, Shanshan Sun, Ziqi Deng, Jiayu Li, Li Dang, David Lee Phillips, Ming-De Li. Ultrafast Time-Resolved Spectroscopic Study on the Photophysical and Photochemical Reaction Mechanisms of ortho-Methylbenzophenone in Selected Solutions. The Journal of Physical Chemistry B 2022, 126 (45) , 9388-9398. https://doi.org/10.1021/acs.jpcb.2c06452
- Jiao Yu J. Wang, Mitchell T. Blyth, Michael S. Sherburn, Michelle L. Coote. Tuning Photoenolization-Driven Cycloadditions Using Theory and Spectroscopy. Journal of the American Chemical Society 2022, 144 (2) , 1023-1033. https://doi.org/10.1021/jacs.1c12174
- Xin Xu, Shengheng Yan, Xiaodong Hou, Wei Song, Lei Wang, Tianfu Wu, Mengya Qi, Jing Wu, Yijian Rao, Binju Wang, Liming Liu. Local Electric Field Modulated Reactivity of Pseudomonas aeruginosa Acid Phosphatase for Enhancing Phosphorylation of l-Ascorbic Acid. ACS Catalysis 2021, 11 (21) , 13397-13407. https://doi.org/10.1021/acscatal.1c04200
- Irma Avdic, Emily M. Kempfer-Robertson, Lee M. Thompson. Oriented External Electric Field Tuning of Unsubstituted Azoheteroarene Thermal Isomerization Half-Lives. The Journal of Physical Chemistry A 2021, 125 (37) , 8238-8248. https://doi.org/10.1021/acs.jpca.1c06102
- Li-Juan Yu, Michelle L. Coote. Electrostatic Switching of Stereoselectivity in Aldol Reactions. The Journal of Organic Chemistry 2021, 86 (13) , 9076-9083. https://doi.org/10.1021/acs.joc.1c01032
- Patrick A. Robertson, Hannah M. Bishop, Andrew J. Orr-Ewing. Tuning the Excited-State Dynamics of Acetophenone Using Metal Ions in Solution. The Journal of Physical Chemistry Letters 2021, 12 (23) , 5473-5478. https://doi.org/10.1021/acs.jpclett.1c01466
- Ruibin Liang, Jimmy K. Yu, Jan Meisner, Fang Liu, Todd J. Martinez. Electrostatic Control of Photoisomerization in Channelrhodopsin 2. Journal of the American Chemical Society 2021, 143 (14) , 5425-5437. https://doi.org/10.1021/jacs.1c00058
- Roey Sagi, Michelle Akerman, Sujith Ramakrishnan, Micha Asscher. Solid Ammonia Charging by Low-Energy Electrons. The Journal of Physical Chemistry C 2021, 125 (7) , 3845-3858. https://doi.org/10.1021/acs.jpcc.0c09658
- Samuel J. P. Marlton, Benjamin I. McKinnon, Nicholas S. Hill, Michelle L. Coote, Adam J. Trevitt. Electrostatically Tuning the Photodissociation of the Irgacure 2959 Photoinitiator in the Gas Phase by Cation Binding. Journal of the American Chemical Society 2021, 143 (5) , 2331-2339. https://doi.org/10.1021/jacs.0c11978
- Christopher Panaritis, Yasmine M. Hajar, Laureline Treps, Carine Michel, Elena A. Baranova, Stephan N. Steinmann. Demystifying the Atomistic Origin of the Electric Field Effect on Methane Oxidation. The Journal of Physical Chemistry Letters 2020, 11 (17) , 6976-6981. https://doi.org/10.1021/acs.jpclett.0c01485
- Vincent Doan, Benjamin B. Noble, Michelle L. Coote. Electrostatic Activation of Tetrazoles. The Journal of Organic Chemistry 2020, 85 (15) , 10091-10097. https://doi.org/10.1021/acs.joc.0c01354
- Sason Shaik, David Danovich, Jyothish Joy, Zhanfeng Wang, Thijs Stuyver. Electric-Field Mediated Chemistry: Uncovering and Exploiting the Potential of (Oriented) Electric Fields to Exert Chemical Catalysis and Reaction Control. Journal of the American Chemical Society 2020, 142 (29) , 12551-12562. https://doi.org/10.1021/jacs.0c05128
- Longkun Xu, Ekaterina I. Izgorodina, Michelle L. Coote. Ordered Solvents and Ionic Liquids Can Be Harnessed for Electrostatic Catalysis. Journal of the American Chemical Society 2020, 142 (29) , 12826-12833. https://doi.org/10.1021/jacs.0c05643
- Samuel J. P. Marlton, Benjamin I. McKinnon, Boris Ucur, James P. Bezzina, Stephen J. Blanksby, Adam J. Trevitt. Discrimination between Protonation Isomers of Quinazoline by Ion Mobility and UV-Photodissociation Action Spectroscopy. The Journal of Physical Chemistry Letters 2020, 11 (10) , 4226-4231. https://doi.org/10.1021/acs.jpclett.0c01009
- Karthik Gopakumar, Sason Shaik, Rajeev Ramanan. Two‐Way Catalysis in a Diels–Alder Reaction Limits Inhibition Induced by an External Electric Field. Angewandte Chemie 2023, 135 (38) https://doi.org/10.1002/ange.202307579
- Karthik Gopakumar, Sason Shaik, Rajeev Ramanan. Two‐Way Catalysis in a Diels–Alder Reaction Limits Inhibition Induced by an External Electric Field. Angewandte Chemie International Edition 2023, 62 (38) https://doi.org/10.1002/anie.202307579
- Ankur K. Guha. Oriented electric field stabilized beryllium dimer. International Journal of Quantum Chemistry 2023, 123 (16) https://doi.org/10.1002/qua.27138
- Navya Arepalli, Sukanta Mondal, Debdutta Chakraborty, Pratim Kumar Chattaraj. Impact of Static-Oriented Electric Fields on the Kinetics of Some Representative Suzuki–Miyaura and Metal-Cluster Mediated Reactions. Molecules 2023, 28 (16) , 6169. https://doi.org/10.3390/molecules28166169
- Fu-De Ren, Ying-Zhe Liu, Xiao-Lei Wang, Li-Li Qiu, Zi-Hui Meng, Xiang Cheng, Yong-Xiang Li. Strong External Electric Fields Reduce Explosive Sensitivity: A Theoretical Investigation into the Reaction Selectivity in NH2NO2∙∙∙NH3. Molecules 2023, 28 (6) , 2586. https://doi.org/10.3390/molecules28062586
- Emily M. Kempfer-Robertson, Irma Avdic, Meagan N. Haase, Thomas Dane Pike, Lee M. Thompson. Protonation state control of electric field induced molecular switching mechanisms. Physical Chemistry Chemical Physics 2023, 25 (6) , 5251-5261. https://doi.org/10.1039/D2CP04494C
- Efstratios M. Kritikos, Aditya Lele, Adri C. T. van Duin, Andrea Giusti. Atomistic insight into the effects of electrostatic fields on hydrocarbon reaction kinetics. The Journal of Chemical Physics 2023, 158 (5) https://doi.org/10.1063/5.0134785
- Meng Li, Xinjie Wan, Xin He, Chunying Rong, Shubin Liu. Impacts of external fields on aromaticity and acidity of benzoic acid: a density functional theory, conceptual density functional theory and information-theoretic approach study. Physical Chemistry Chemical Physics 2023, 25 (3) , 2595-2605. https://doi.org/10.1039/D2CP04557E
- Jiami Guo, Zi-An Shen, Xueting Zhou, Lei Dai, Yixin Lu. Light-induced phosphine-catalyzed asymmetric functionalization of benzylic C-H bonds. Science China Chemistry 2023, 66 (1) , 127-132. https://doi.org/10.1007/s11426-022-1406-y
- Mitchell T. Blyth, Michelle L. Coote. Manipulation of N-heterocyclic carbene reactivity with practical oriented electric fields. Physical Chemistry Chemical Physics 2022, 25 (1) , 375-383. https://doi.org/10.1039/D2CP04507A
- Xin‐Long Hu, Yuan‐Xu Jiang, Lei Song, Da‐Gang Yu. CH Carboxylation with CO 2. 2022, 1-20. https://doi.org/10.1002/9783527834242.chf0171
- Alexander B. Weberg, Ryan P. Murphy, Neil C. Tomson. Oriented internal electrostatic fields: an emerging design element in coordination chemistry and catalysis. Chemical Science 2022, 13 (19) , 5432-5446. https://doi.org/10.1039/D2SC01715F
- Margaret L. Kelty, Andrew J. McNeece, Josh W. Kurutz, Alexander S. Filatov, John S. Anderson. Electrostatic vs. inductive effects in phosphine ligand donor properties and reactivity. Chemical Science 2022, 13 (15) , 4377-4387. https://doi.org/10.1039/D1SC04277G
- Dongliang Hu, Xingyu Gu, Lei Lyu, Jianzhong Pei, Bingyan Cui. Investigating the aging mechanism of asphaltene and its dependence on environmental factors through AIMD simulations and DFT calculations. Science of The Total Environment 2021, 795 , 148897. https://doi.org/10.1016/j.scitotenv.2021.148897
- Leizhi Zheng, Guoqiang Yang, Xingbang Hu, Zhibing Zhang. CO2 capturing and in situ conversion at mild condition: Efficient synthesis of methyl phenyl carbonate. Journal of Environmental Chemical Engineering 2021, 9 (5) , 105862. https://doi.org/10.1016/j.jece.2021.105862
- Zheyuan Xu, Deguang Liu, Haizhu Yu, Mårten S.G. Ahlquist, Yao Fu. Mechanistic study on the photo carboxylation of benzylic C-H bonds by xanthone and Ni(0) catalysts. Molecular Catalysis 2021, 514 , 111785. https://doi.org/10.1016/j.mcat.2021.111785
- Alexander B. Weberg, Samuel P. McCollom, Laura M. Thierer, Michael R. Gau, Patrick J. Carroll, Neil C. Tomson. Using internal electrostatic fields to manipulate the valence manifolds of copper complexes. Chemical Science 2021, 12 (12) , 4395-4404. https://doi.org/10.1039/D0SC06364A
- Guodong Zhang, Yihan Cheng, Matthias Beller, Feng Chen. Direct Carboxylation with Carbon Dioxide via Cooperative Photoredox and Transition‐Metal Dual Catalysis. Advanced Synthesis & Catalysis 2021, 363 (6) , 1583-1596. https://doi.org/10.1002/adsc.202001280
- Fu-de Ren, Wen-jing Shi, Duan-lin Cao, Yong-xiang Li, De-hua Zhang, Xian-feng Wang, Zhao-yang Shi. External electric field reduces the explosive sensitivity: a theoretical investigation into the hydrogen transference kinetics of the NH2NO2∙∙∙H2O complex. Journal of Molecular Modeling 2020, 26 (12) https://doi.org/10.1007/s00894-020-04607-x
- Jie Chen, Siyuan Liu, Meng Li, Chunying Rong, Shubin Liu. A density functional theory and information-theoretic approach study of chiral molecules in external electric fields. Chemical Physics Letters 2020, 757 , 137858. https://doi.org/10.1016/j.cplett.2020.137858
- Yanbin Zhang, Ruiwen Jin, Guangxing Pan, Hao Guo. Light-enabled, AlCl 3 -catalyzed regioselective intramolecular nucleophilic addition of non-nucleophilic alkyls to alkynes. Chemical Communications 2020, 56 (78) , 11621-11624. https://doi.org/10.1039/D0CC04636A
- Bangaru Bhaskararao, Dong Yeon Kim, Jenica Marie L. Madridejos, Cheol-Min Park, Kwang S. Kim. Rational design of metal–ligands for the conversion of CH 4 and CO 2 to acetates: role of acids and Lewis acids. Journal of Materials Chemistry A 2020, 8 (29) , 14671-14679. https://doi.org/10.1039/D0TA04002A
- Wei-Wei Wang, Chang-Wei Wang, Jia-Jia Zheng, Fu-Lin Shang, Jing-Shuang Dang, Xiang Zhao. Directional Diels–Alder cycloadditions of isoelectronic graphene and hexagonal boron nitride in oriented external electric fields: reaction axis rule vs. polarization axis rule. Nanoscale 2020, 12 (28) , 15364-15370. https://doi.org/10.1039/D0NR03443F
- Keyi Tian, Ruonan Chen, Jiafang Xu, Ge Yang, Xintong Xu, Yanhua Zhang. Understanding the Photo- and Electro-Carboxylation of o-Methylbenzophenone with Carbon Dioxide. Catalysts 2020, 10 (6) , 664. https://doi.org/10.3390/catal10060664