ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Prophylactic Antiviral Activity of Sulfated Glycomimetic Oligomers and Polymers

  • Laura Soria-Martinez
    Laura Soria-Martinez
    Institute of Cellular Virology, ZMBE, University of Münster, Münster 48149, Germany
    Research Group “ViroCarb: glycans controlling non-enveloped virus infections” (FOR2327), Coordinating University of Tübingen, Tübingen 72074, Germany
  • Sebastian Bauer
    Sebastian Bauer
    Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
  • Markus Giesler
    Markus Giesler
    Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
  • Sonja Schelhaas
    Sonja Schelhaas
    European Institute for Molecular Imaging, University of Münster, Münster 48149, Germany
    Cells in Motion Interfaculty Centre CiMIC, University of Münster, Münster 48149, Germany
  • Jennifer Materlik
    Jennifer Materlik
    Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
  • Kevin Janus
    Kevin Janus
    Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
    More by Kevin Janus
  • Patrick Pierzyna
    Patrick Pierzyna
    Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
  • Miriam Becker
    Miriam Becker
    Institute of Cellular Virology, ZMBE, University of Münster, Münster 48149, Germany
    Research Group “ViroCarb: glycans controlling non-enveloped virus infections” (FOR2327), Coordinating University of Tübingen, Tübingen 72074, Germany
  • Nicole L. Snyder
    Nicole L. Snyder
    Research Group “ViroCarb: glycans controlling non-enveloped virus infections” (FOR2327), Coordinating University of Tübingen, Tübingen 72074, Germany
    Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
  • Laura Hartmann*
    Laura Hartmann
    Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
    Research Group “ViroCarb: glycans controlling non-enveloped virus infections” (FOR2327), Coordinating University of Tübingen, Tübingen 72074, Germany
    *[email protected]
  • , and 
  • Mario Schelhaas*
    Mario Schelhaas
    Institute of Cellular Virology, ZMBE, University of Münster, Münster 48149, Germany
    Research Group “ViroCarb: glycans controlling non-enveloped virus infections” (FOR2327), Coordinating University of Tübingen, Tübingen 72074, Germany
    Cells in Motion Interfaculty Centre CiMIC, University of Münster, Münster 48149, Germany
    *[email protected]
Cite this: J. Am. Chem. Soc. 2020, 142, 11, 5252–5265
Publication Date (Web):February 27, 2020
https://doi.org/10.1021/jacs.9b13484
Copyright © 2020 American Chemical Society

    Article Views

    4030

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (6 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    In this work, we investigate the potential of highly sulfated synthetic glycomimetics to act as inhibitors of viral binding/infection. Our results indicate that both long-chain glycopolymers and short-chain glycooligomers are capable of preventing viral infection. Notably, glycopolymers efficiently inhibit Human Papillomavirus (HPV16) infection in vitro and maintain their antiviral activity in vivo, while the glycooligomers exert their inhibitory function post attachment of viruses to cells. Moreover, when we tested the potential for broader activity against several other human pathogenic viruses, we observed broad-spectrum antiviral activity of these compounds beyond our initial assumptions. While the compounds tested displayed a range of antiviral efficacies, viruses with rather diverse glycan specificities such as Herpes Simplex Virus (HSV), Influenza A Virus (IAV), and Merkel Cell Polyomavirus (MCPyV) could be targeted. This opens new opportunities to develop broadly active glycomimetic inhibitors of viral entry and infection.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.9b13484.

    • Materials and methods for the synthesis of sulfated glycopolymers and glycooligomers; analytical data for sulfated glycopolymers and glycooligomers and according precursors and intermediates; and additional information including materials and methods and supplementary figures for biological assays (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 53 publications.

    1. Jun Feng, Chuanxiong Nie, Enyu Xie, Boonya Thongrom, Valentin Reiter-Scherer, Stephan Block, Andreas Herrmann, Elisa Quaas, Christian Sieben, Rainer Haag. Sulfated Polyglycerol-Modified Hydrogels for Binding HSV-1 and RSV. ACS Applied Materials & Interfaces 2023, 15 (44) , 51894-51904. https://doi.org/10.1021/acsami.3c09553
    2. Theresa Seiler, Annika Lennartz, Kai Klein, Katrin Hommel, Antonio Figueroa Bietti, Inesa Hadrovic, Sebastian Kollenda, Jonas Sager, Christine Beuck, Emilia Chlosta, Peter Bayer, Kristian Juul-Madsen, Thomas Vorup-Jensen, Thomas Schrader, Matthias Epple, Shirley K. Knauer, Laura Hartmann. Potentiating Tweezer Affinity to a Protein Interface with Sequence-Defined Macromolecules on Nanoparticles. Biomacromolecules 2023, 24 (8) , 3666-3679. https://doi.org/10.1021/acs.biomac.3c00393
    3. Xiangya Wang, Mohammed Kamal Hadi, Jianzhou Niu, Qi Zhou, Fen Ran. Anticoagulant Macromolecules. Macromolecules 2023, 56 (12) , 4387-4430. https://doi.org/10.1021/acs.macromol.2c02501
    4. Michele Denise Illmann, Lea Schäfl, Felicitas Drees, Laura Hartmann, Stephan Schmidt. Glycan-Presenting Coacervates Derived from Charged Poly(active esters): Preparation, Phase Behavior, and Lectin Capture. Biomacromolecules 2023, 24 (6) , 2532-2540. https://doi.org/10.1021/acs.biomac.3c00046
    5. Paweł Botwina, Magdalena Obłoza, Piotr Bonarek, Krzysztof Szczubiałka, Krzysztof Pyrć, Maria Nowakowska. Poly(ethylene glycol)-block-poly(sodium 4-styrenesulfonate) Copolymers as Efficient Zika Virus Inhibitors: In Vitro Studies. ACS Omega 2023, 8 (7) , 6875-6883. https://doi.org/10.1021/acsomega.2c07610
    6. Atish Nag, Kumarjeet Banerjee, Ranajit Barman, Joy Kar, Debi P Sarkar, Siddhartha Sankar Jana, Suhrit Ghosh. Direct Correlation between the Secondary Structure of an Amphiphilic Polymer and Its Prominent Antiviral Activity. Journal of the American Chemical Society 2023, 145 (1) , 579-584. https://doi.org/10.1021/jacs.2c11216
    7. Francesca Mastrotto, Marco Pirazzini, Samuele Negro, Alan Salama, Luisa Martinez-Pomares, Giuseppe Mantovani. Sulfation at Glycopolymer Side Chains Switches Activity at the Macrophage Mannose Receptor (CD206) In Vitro and In Vivo. Journal of the American Chemical Society 2022, 144 (50) , 23134-23147. https://doi.org/10.1021/jacs.2c10757
    8. Patrick B. Konietzny, Jasmin Freytag, Melina I. Feldhof, Joshua C. Müller, Daniel Ohl, Thilo Stehle, Laura Hartmann. Synthesis of Homo- and Heteromultivalent Fucosylated and Sialylated Oligosaccharide Conjugates via Preactivated N-Methyloxyamine Precision Macromolecules and Their Binding to Polyomavirus Capsid Proteins. Biomacromolecules 2022, 23 (12) , 5273-5284. https://doi.org/10.1021/acs.biomac.2c01092
    9. Miriam Hoffmann, Nicole L. Snyder, Laura Hartmann. Polymers Inspired by Heparin and Heparan Sulfate for Viral Targeting. Macromolecules 2022, 55 (18) , 7957-7973. https://doi.org/10.1021/acs.macromol.2c00675
    10. Miriam Hoffmann, Nicole L. Snyder, Laura Hartmann. Glycosaminoglycan Mimetic Precision Glycomacromolecules with Sequence-Defined Sulfation and Rigidity Patterns. Biomacromolecules 2022, 23 (9) , 4004-4014. https://doi.org/10.1021/acs.biomac.2c00829
    11. Ehsan Mohammadifar, Matteo Gasbarri, Valeria Cagno, Katharina Achazi, Caroline Tapparel, Rainer Haag, Francesco Stellacci. Polyanionic Amphiphilic Dendritic Polyglycerols as Broad-Spectrum Viral Inhibitors with a Virucidal Mechanism. Biomacromolecules 2022, 23 (3) , 983-991. https://doi.org/10.1021/acs.biomac.1c01376
    12. Lu Su, Yingle Feng, Kongchang Wei, Xuyang Xu, Rongying Liu, Guosong Chen. Carbohydrate-Based Macromolecular Biomaterials. Chemical Reviews 2021, 121 (18) , 10950-11029. https://doi.org/10.1021/acs.chemrev.0c01338
    13. Zhengyu Deng, Qiangqiang Shi, Jiajia Tan, Jinming Hu, Shiyong Liu. Sequence-Defined Synthetic Polymers for New-Generation Functional Biomaterials. ACS Materials Letters 2021, 3 (9) , 1339-1356. https://doi.org/10.1021/acsmaterialslett.1c00358
    14. Paria Pouyan, Chuanxiong Nie, Sumati Bhatia, Stefanie Wedepohl, Katharina Achazi, Nikolaus Osterrieder, Rainer Haag. Inhibition of Herpes Simplex Virus Type 1 Attachment and Infection by Sulfated Polyglycerols with Different Architectures. Biomacromolecules 2021, 22 (4) , 1545-1554. https://doi.org/10.1021/acs.biomac.0c01789
    15. Dimitri Wilms, Fabian Schröer, Tanja J. Paul, Stephan Schmidt. Switchable Adhesion of E. coli to Thermosensitive Carbohydrate-Presenting Microgel Layers: A Single-Cell Force Spectroscopy Study. Langmuir 2020, 36 (42) , 12555-12562. https://doi.org/10.1021/acs.langmuir.0c02040
    16. Federico Mazur, Andy-Hoai Pham, Rona Chandrawati. Polymer materials as catalysts for medical, environmental, and energy applications. Applied Materials Today 2023, 35 , 101937. https://doi.org/10.1016/j.apmt.2023.101937
    17. Ranajit Barman, Anurag Mukherjee, Atish Nag, Priya Rajdev, Suhrit Ghosh. Hierarchical assembly of foldable polymers and applications in organic optoelectronics and antibacterial or antiviral materials. Chemical Communications 2023, 59 (94) , 13951-13961. https://doi.org/10.1039/D3CC04855A
    18. Wei Sun, Xinyi Liang, Jiao Lei, Chi Jiang, Denghai Sheng, Sulei Zhang, Xiaoli Liu, Hong Chen. Regulating cell behavior via regional patterned distribution of heparin-like polymers. Biomaterials Advances 2023, 154 , 213664. https://doi.org/10.1016/j.bioadv.2023.213664
    19. Ching-Hsuan Liu, Yu-Ting Kuo, Chien-Ju Lin, Liang-Tzung Lin. Involvement of cell surface glycosaminoglycans in chebulagic acid's and punicalagin's antiviral activities against Coxsackievirus A16 infection. Phytomedicine 2023, 120 , 155047. https://doi.org/10.1016/j.phymed.2023.155047
    20. Masanori Nagao, Hikaru Matsumoto, Yoshiko Miura. Design of Glycopolymers for Controlling the Interactions with Lectins. Chemistry – An Asian Journal 2023, 18 (19) https://doi.org/10.1002/asia.202300643
    21. Qiangqiang Shi, Zhengyu Deng, Mingxuan Hou, Xianglong Hu, Shiyong Liu. Engineering precise sequence-defined polymers for advanced functions. Progress in Polymer Science 2023, 141 , 101677. https://doi.org/10.1016/j.progpolymsci.2023.101677
    22. Antim K. Maurya, Poonam Sharma, Priyanka Samanta, Anter A. Shami, Sandeep K. Misra, Fuming Zhang, Reena Thara, Deepak Kumar, Deling Shi, Robert J. Linhardt, Joshua S. Sharp, Robert J. Doerksen, Ritesh Tandon, Vitor H. Pomin. Structure, anti-SARS-CoV-2, and anticoagulant effects of two sulfated galactans from the red alga Botryocladia occidentalis. International Journal of Biological Macromolecules 2023, 238 , 124168. https://doi.org/10.1016/j.ijbiomac.2023.124168
    23. Ulla I. M. Gerling-Driessen, Miriam Hoffmann, Stephan Schmidt, Nicole L. Snyder, Laura Hartmann. Glycopolymers against pathogen infection. Chemical Society Reviews 2023, 52 (8) , 2617-2642. https://doi.org/10.1039/D2CS00912A
    24. Marjan Motiei, Lucian A. Lucia, Tomas Sáha, Petr Sáha. Current state-of-the-art review of nanotechnology-based therapeutics for viral pandemics: Special attention to COVID-19. Nanotechnology Reviews 2023, 12 (1) https://doi.org/10.1515/ntrev-2022-0515
    25. Ruoyao Mei, Xingyu Heng, Xiaoli Liu, Gaojian Chen. Glycopolymers for Antibacterial and Antiviral Applications. Molecules 2023, 28 (3) , 985. https://doi.org/10.3390/molecules28030985
    26. Paria Pouyan, Mariam Cherri, Rainer Haag. Polyglycerols as Multi-Functional Platforms: Synthesis and Biomedical Applications. Polymers 2022, 14 (13) , 2684. https://doi.org/10.3390/polym14132684
    27. Wei-Hai Chen, Qi-Wen Chen, Qian Chen, Chunyan Cui, Shun Duan, Yongyuan Kang, Yang Liu, Yun Liu, Wali Muhammad, Shiqun Shao, Chengqiang Tang, Jinqiang Wang, Lei Wang, Meng-Hua Xiong, Lichen Yin, Kuo Zhang, Zhanzhan Zhang, Xu Zhen, Jun Feng, Changyou Gao, Zhen Gu, Chaoliang He, Jian Ji, Xiqun Jiang, Wenguang Liu, Zhuang Liu, Huisheng Peng, Youqing Shen, Linqi Shi, Xuemei Sun, Hao Wang, Jun Wang, Haihua Xiao, Fu-Jian Xu, Zhiyuan Zhong, Xian-Zheng Zhang, Xuesi Chen. Biomedical polymers: synthesis, properties, and applications. Science China Chemistry 2022, 65 (6) , 1010-1075. https://doi.org/10.1007/s11426-022-1243-5
    28. Ali Akbari, Ashkan Bigham, Vahid Rahimkhoei, Sina Sharifi, Esmaiel Jabbari. Antiviral Polymers: A Review. Polymers 2022, 14 (9) , 1634. https://doi.org/10.3390/polym14091634
    29. Kai‐Feng Chen, Yiqing Zhang, Jiawei Lin, Jun‐You Chen, Caihong Lin, Meng Gao, Yunhua Chen, Sa Liu, Lin Wang, Zhong‐Kai Cui, Yong‐Guang Jia. Upper Critical Solution Temperature Polyvalent Scaffolds Aggregate and Exterminate Bacteria. Small 2022, 18 (11) https://doi.org/10.1002/smll.202107374
    30. Hamilton Kakwere, Rian Harriman, Mauricio Pirir, Crystal Avila, Kristen Chan, Jamal S. Lewis. Engineering immunomodulatory nanoplatforms from commensal bacteria-derived polysaccharide A. Journal of Materials Chemistry B 2022, 10 (8) , 1210-1225. https://doi.org/10.1039/D1TB02590B
    31. Javier Rojo, Pedro M. Nieto, José L. de Paz. GAG Multivalent Systems to Interact with Langerin. Current Medicinal Chemistry 2022, 29 (7) , 1173-1192. https://doi.org/10.2174/0929867328666210705143102
    32. Kenward Jung, Nathaniel Corrigan, Edgar H. H. Wong, Cyrille Boyer. Bioactive Synthetic Polymers. Advanced Materials 2022, 34 (2) https://doi.org/10.1002/adma.202105063
    33. Agnès Kuroki, Joyce Tay, Guan Huei Lee, Yi Yan Yang. Broad‐Spectrum Antiviral Peptides and Polymers. Advanced Healthcare Materials 2021, 10 (23) https://doi.org/10.1002/adhm.202101113
    34. Sanying Wang, Xiaogang Xu, Chuan Sun, Jing Zhang, Xinyue He, Zhongshan Zhang, Hong Huang, Jing Yan, Weihua Jin, Genxiang Mao. Sulphated glucuronomannan tetramer and hexamer from Sargassum thunbergii exhibit anti-human cytomegalovirus activity by blocking viral entry. Carbohydrate Polymers 2021, 273 , 118510. https://doi.org/10.1016/j.carbpol.2021.118510
    35. Krzysztof Pyrć, Aleksandra Milewska, Emilia Barreto Duran, Paweł Botwina, Agnieszka Dabrowska, Malwina Jedrysik, Malgorzata Benedyk, Rui Lopes, Alejandro Arenas-Pinto, Moutaz Badr, Ryan Mellor, Tammy L. Kalber, Delmiro Fernandez-Reyes, Andreas G. Schätzlein, Ijeoma F. Uchegbu. SARS-CoV-2 inhibition using a mucoadhesive, amphiphilic chitosan that may serve as an anti-viral nasal spray. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-99404-8
    36. Andre Gröschel, Anja Träger, Johannes C. Brendel. Trendbericht: Makromolekulare Chemie. Nachrichten aus der Chemie 2021, 69 (10) , 56-67. https://doi.org/10.1002/nadc.20214116529
    37. Faheem Kareem, Rabia Khatoon, Muhammad Ali Minhas. WITHDRAWN: Biodegradable Self-assembled polymeric Micelles based on Poly (ethylene oxide)-block-Polylactide block copolymer for sustained delivery of dapsone. Journal of Drug Delivery Science and Technology 2021, 110 , 102858. https://doi.org/10.1016/j.jddst.2021.102858
    38. Yujun Kim, Ji Young Hyun, Injae Shin. Multivalent glycans for biological and biomedical applications. Chemical Society Reviews 2021, 50 (18) , 10567-10593. https://doi.org/10.1039/D0CS01606C
    39. Stephen Andrew Hill, Robert Steinfort, Sandra Mücke, Josefine Reifenberger, Tobias Sengpiel, Laura Hartmann. Exploring Cyclic Sulfamidate Building Blocks for the Synthesis of Sequence‐Defined Macromolecules. Macromolecular Rapid Communications 2021, 42 (15) https://doi.org/10.1002/marc.202100193
    40. Isabella C. P. Rodrigues, Kaio N. Campo, Clarice W. Arns, Laís P. Gabriel, Thomas J. Webster, Éder S. N. Lopes. From Bulk to Nanoparticles: An Overview of Antiviral Materials, Its Mechanisms, and Applications. Particle & Particle Systems Characterization 2021, 38 (8) https://doi.org/10.1002/ppsc.202100044
    41. Milena Álvarez-Viñas, Sandra Souto, Noelia Flórez-Fernández, Maria Dolores Torres, Isabel Bandín, Herminia Domínguez. Antiviral Activity of Carrageenans and Processing Implications. Marine Drugs 2021, 19 (8) , 437. https://doi.org/10.3390/md19080437
    42. Noelia Losada-Garcia, Carla Garcia-Sanz, Alicia Andreu, Trinidad Velasco-Torrijos, Jose M. Palomo. Glyconanomaterials for Human Virus Detection and Inhibition. Nanomaterials 2021, 11 (7) , 1684. https://doi.org/10.3390/nano11071684
    43. Mohd. Abubakar Sadique, Shalu Yadav, Pushpesh Ranjan, Sarika Verma, Shabi Thankaraj Salammal, Mohd. Akram Khan, Ajeet Kaushik, Raju Khan. High-performance antiviral nano-systems as a shield to inhibit viral infections: SARS-CoV-2 as a model case study. Journal of Materials Chemistry B 2021, 9 (23) , 4620-4642. https://doi.org/10.1039/D1TB00472G
    44. Lin Pan, Chao Cai, Chanjuan Liu, Di Liu, Guoyun Li, Robert J Linhardt, Guangli Yu. Recent progress and advanced technology in carbohydrate-based drug development. Current Opinion in Biotechnology 2021, 69 , 191-198. https://doi.org/10.1016/j.copbio.2020.12.023
    45. Daniel M. Gill, Ana Paula R. Povinelli, Gabriel Zazeri, Sabrina A. Shamir, Ayman M. Mahmoud, Fiona L. Wilkinson, M. Yvonne Alexander, Marinonio L. Cornelio, Alan M. Jones. The modulatory role of sulfated and non-sulfated small molecule heparan sulfate-glycomimetics in endothelial dysfunction: absolute structural clarification, molecular docking and simulated dynamics, SAR analyses and ADMET studies. RSC Medicinal Chemistry 2021, 12 (5) , 779-790. https://doi.org/10.1039/D0MD00366B
    46. Tanja J. Paul, Alexander K. Strzelczyk, Stephan Schmidt. Temperature‐Controlled Adhesion to Carbohydrate Functionalized Microgel Films: An E. coli and Lectin Binding Study. Macromolecular Bioscience 2021, 21 (4) https://doi.org/10.1002/mabi.202000386
    47. Peter Pasch, Alexander Höing, Serap Ueclue, Matthias Killa, Jens Voskuhl, Shirley K. Knauer, Laura Hartmann. PEGylated sequence-controlled macromolecules using supramolecular binding to target the Taspase1/Importin α interaction. Chemical Communications 2021, 57 (25) , 3091-3094. https://doi.org/10.1039/D0CC07139K
    48. Sinead Carse, Martina Bergant, Georgia Schäfer. Advances in Targeting HPV Infection as Potential Alternative Prophylactic Means. International Journal of Molecular Sciences 2021, 22 (4) , 2201. https://doi.org/10.3390/ijms22042201
    49. Fabian Schröer, Tanja J. Paul, Dimitri Wilms, Torben H. Saatkamp, Nicholas Jäck, Janita Müller, Alexander K. Strzelczyk, Stephan Schmidt. Lectin and E. coli Binding to Carbohydrate-Functionalized Oligo(ethylene glycol)-Based Microgels: Effect of Elastic Modulus, Crosslinker and Carbohydrate Density. Molecules 2021, 26 (2) , 263. https://doi.org/10.3390/molecules26020263
    50. Pilar Aranda, Bernd Wicklein, Cristina Ruiz-Garcia, Raquel Martín-Sampedro, Margarita Darder, Gustavo del Real, Eduardo Ruiz-Hitzky. Research and Patents on Coronavirus and COVID-19: A Review. Recent Patents on Nanotechnology 2020, 14 (4) , 328-350. https://doi.org/10.2174/1872210514666201021145735
    51. Eduardo Ruiz‐Hitzky, Margarita Darder, Bernd Wicklein, Cristina Ruiz‐Garcia, Raquel Martín‐Sampedro, Gustavo del Real, Pilar Aranda. Nanotechnology Responses to COVID‐19. Advanced Healthcare Materials 2020, 9 (19) https://doi.org/10.1002/adhm.202000979
    52. Shreya Sharma, Shashank Shekhar, Bhasha Sharma, Purnima Jain. Decoding glycans: deciphering the sugary secrets to be coherent on the implication. RSC Advances 2020, 10 (56) , 34099-34113. https://doi.org/10.1039/D0RA04471G
    53. Natanel Jarach, Hanna Dodiuk, Samuel Kenig. Polymers in the Medical Antiviral Front-Line. Polymers 2020, 12 (8) , 1727. https://doi.org/10.3390/polym12081727

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect