Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
On-Surface Molecular Recognition Driven by Chalcogen Bonding
My Activity
  • Open Access
Letter

On-Surface Molecular Recognition Driven by Chalcogen Bonding
Click to copy article linkArticle link copied!

Open PDFSupporting Information (1)

JACS Au

Cite this: JACS Au 2024, 4, 6, 2115–2121
Click to copy citationCitation copied!
https://doi.org/10.1021/jacsau.4c00325
Published June 5, 2024

Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Abstract

Click to copy section linkSection link copied!

Chalcogen bonding interactions (ChBIs) have been widely employed to create ordered noncovalent assemblies in solids and liquids. Yet, their ability to engineer molecular self-assembly on surfaces has not been demonstrated. Here, we report the first demonstration of on-surface molecular recognition solely governed by ChBIs. Scanning tunneling microscopy and ab initio calculations reveal that a pyrenyl derivative can undergo noncovalent chiral dimerization on the Au(111) surface through double Ch···N interactions involving Te- or Se-containing chalcogenazolo pyridine motifs. In contrast, reference chalcogenazole counterparts lacking the pyridyl moiety fail to form regular self-assemblies on Au, resulting in disordered assemblies.

This publication is licensed under

CC-BY 4.0 .
  • cc licence
  • by licence
Copyright © 2024 The Authors. Published by American Chemical Society

Introduction

Click to copy section linkSection link copied!

The manipulation of organic nanostructures on surfaces through the supramolecular approach has garnered substantial attention in recent decades. (1−7) Among the various supramolecular interactions, H-bonding interactions have been extensively harnessed to foster the formation of highly organized two-dimensional (2D) networks. (8−12) This has been followed by examples reporting coordination bonding (13−17) and dipole–dipole (18,19) interactions (Figure 1a–c). More recently, there has been a notable surge of interest in employing secondary bonding interactions (SBIs), (20) which have a dual nature. Notably, from an electrostatic point of view, (21,22) highly polarizable atoms are involved in effective SBIs through regions of depletion of electrons called σ-holes. (23) The second aspect that drives flourishing interest for SBIs relies on the orbital mixing, (24) described as n2(Y) → σ*(E–X) donation involving nonbonding electrons of the electron-rich Y atom, and the antibonding σE–X* on the E atom (with X being its covalent substituent). Within the category of SBIs, halogen bonding interactions (25−29) have demonstrated their efficacy in creating regular supramolecular networks on surfaces, (30,31) as revealed by scanning tunneling microscopy (STM) studies highlighting intermolecular Br···O, (32,33) Br···Br, (34,35) and Br···S (36) halogen bonds (Figure 1d) governing the self-assembly. However, chalcogen bonding interactions (ChBIs) (37) have not yet demonstrated comparable effectiveness on surfaces as they have in crystal engineering (38−42) for developing functional materials, (43) such as supramolecular semiconductors. (44,45) Intermolecular Ch···N ChBs acting as the driving force for self-assembling chalcogenazole derivatives on surfaces, have only been theoretically explored in two recent studies. (46,47) To the best of our knowledge, the role of ChB interactions in driving self-assembly on surfaces remained largely underinvestigated experimentally when compared to hydrogen bonds, (48) metal coordination bonds, (49) and dipole–dipole interactions, (50) with only two reports suggesting the presence of ChB interactions and other noncovalent contacts. (18,51)

Figure 1

Figure 1. Schematic representations of the first examples of noncovalent molecular self-assembly at surfaces, respectively driven by (A) hydrogen bonds, (48) (B) metal coordination bonds, (49) (C) dipole–dipole interactions, (50) (D) halogen bonds, (35) and (E) ChBIs investigated in this work.

In this Letter, we combined bond-resolved STM (BRSTM) measurements with quantum chemistry calculations to elucidate the first example of ChB-driven molecular self-assembly on Au(111) using tailored recognition motifs that undergo self-assembly solely through ChB interactions. If one excludes the use of cationic heterocycles, one can note that outside a crystalline environment, the formation of such dimers is unprecedented. Indeed, even in solution, conclusive data demonstrating such self-assembly of neutral heterocycles have yet to be reported thus far. (52,53) Building on earlier studies at the solid state, in which we have shown that chalcogenazolo pyridine (CGP) moieties persistently undergo self-assembly into dimers through double Ch···N interactions, (54−59) we conjectured that the Se- and Te-bearing CGP motifs could also be exploited to govern molecular assemblies on surfaces (Figure 1e). (58) With this aim, we designed and prepared pyrene-based CGP modules that could undergo dimerization through ChB-driven molecular recognition. Reference benzochalcogenazole congeners have also been investigated in which a C–H moiety has substituted the N-pyridyl atom and is, thus, not expected to establish any ChBIs (Section S1).

Results

Click to copy section linkSection link copied!

A constant-current STM image of a Au(111) crystal after room temperature deposition of CGP-Te in vacuum is shown in Figure 2a. Isolated, straight structures with a length of 2.5 ± 0.1 nm, displaying 6-fold rotational symmetry as exemplified by the three white rectangles, are usually found on the face-centered cubic (fcc) regions of the reconstructed Au(111) surface. Given the inherent asymmetry of the molecules on surfaces, two enantiomers for each dimer were found (R and L, inset in Figure 2a) with a relative distribution of around 50% (see Section S4). A close-up view of one of these structures highlights the presence of two bright-contrast spots in the middle region 4.9 ± 0.2 Å from each other (Figure 2b). The simulated STM image (Figure 2c), obtained by density functional theory (DFT) calculations of the adsorbed dimer in its most stable geometry (see below), is in perfect agreement with the experimental images. Thus, it is reasonable to conclude that the observed structure is a dimer (CGP-Te)2, in which the two middle bright-contrast spots correspond to the Te atoms belonging to the CGP-Te moieties. Notably, the two monomers are oriented head-to-head with the Te atoms facing the N-pyridyl atom of the neighboring molecule, supporting the presence of the ChB-driven association. As observed in the STM images of CGP-Se (Figures 2d,e and S5), dimeric (CGP-Se)2 structures are also formed. Dimers are also observed when CGP-Te molecules are deposited on a Ag(110) held at room temperature, which generalizes our findings (Figure S4). On the other hand, when reference benzo-Te molecules are deposited on Au, only irregular aggregate-type species are observed (Figure 2f,g). This confirms our hypothesis that the absence of the N-pyridyl atoms prevents dimer formation since the double ChBIs can no longer be established. Similarly, reference benzo-Se modules do not undergo dimerization; only individual molecules are observed (Figure S2).

Figure 2

Figure 2. (A) STM image of (CGP-Te)2 dimers on Au(111). The herringbone reconstruction of the Au substrate is also visible. In the rectangles, the 3-fold equivalent dimer orientations are highlighted. Tunneling current (It) = 300 pA; tunneling bias (Vt) = 1.000 V; T = 11 K. The top-right-corner inset shows two enantiomers; It = 250 pA; Vt = 0.500 V. (B) Experimental (It = 300 pA; Vt= 0.630 V; T = 11 K) and (C) simulated (Vt = 0.630 V) STM image of an individual dimer. In the simulated image, the chemical structure of the monomer is also overlaid to display the strong Te-centered signal. (D) STM image of self-assembled (CGP-Se)2 dimers on Au(111). It = 300 pA; Vt = 0.800 V; T = 8.5 K. (E) STM image of an individual dimer. It = 150 pA; Vt = 0.100 V; T = 8.5 K. (F) STM image of the reference tellurazole molecules deposited on Au(111). Kinetic aggregates of various shapes and sizes can be observed. It = 400 pA; Vt = 1.000 V; T = 11 K. (G) Detail of a molecular assembly. It = 400 pA; Vt = 1.000 V; T = 11 K. Scale bars: 5 nm in (A), (D), and (F); 0.5 nm in (B), (C), (E), and (G); and 2 nm in the inset of (A).

To unequivocally disclose the chemical structure of the self-assembled (CGP-Te)2 and (CGP-Se)2 dimers, constant-height STM experiments with a CO-functionalized tip were performed. Figure 3 reports so-called bond-resolved (BR)STM images of the individual dimers and the respective relaxed geometrical model computed by DFT. The pyrene and pyridyl moieties are distinguishable in the experimental images, while a robust electronic signal arises around the Ch atoms. The total length of the dimers can be measured as 2.49 and 2.41 nm for (CGP-Te)2 and (CGP-Se)2, respectively, while their width is 9.0 Å in both cases. DFT geometry optimizations reveal that the two Ch atoms in the dimer lie at on-top positions with respect to the underlying Au lattice and bind to second-nearest-neighbor (second NN) atoms (Figure 3). Indeed, the optimized Te···Te (Se···Se) distance of 4.94 Å (4.82 Å) in the gas-phase dimer matches well with the Au second nn distance of 5.05 Å (Table S1). The calculated Te···Te (Se···Se) distance of 5.01 Å (4.94 Å) in the adsorbed dimer is in notable agreement with the distance measured between the two bright-contrast spots observed in the STM image (Figure 2b,e).

Figure 3

Figure 3. From top to bottom: BRSTM image (constant height, Vt = 5 mV, T = 8.7 K) and DFT relaxed geometrical model of the individual (CGP-Te)2 and (CGP-Se)2 dimers.

The formation of dimers (or lack thereof) is determined by the interaction energy, ΔEint, between the monomers. In the gas phase, ΔEint is defined as the energy gain in forming the dimer from its constituent fixed-geometry fragments (see Section S10). The computed values (Table S1) indicate exothermic processes of −9.2 and −6.2 kcal mol–1 for CGP-Te and CGP-Se, respectively. The corresponding geometry for (CGP-Te)2 is plotted in Figure 4a, showing alignment of the chalcogenazole rings Te···N distances of 3.0 Å (Table S1). For comparison, the ΔEint value for chalcogenadiazole dimers is about −17 and −7 kcal mol–1 for Te- and Se-containing congeners (Ch···N distances are 2.6 and 2.9 Å), respectively. (59,60) When adsorbed on Au(111), surface strain and relaxation effects must also be considered when computing the ΔEint. A derivation of the on-surface interaction energy is given in Sections S10 and S17. We calculated ΔEint values at −5.7 and −3.9 kcal mol–1 for (CGP-Te)2 and (CGP-Se)2, respectively, suggesting that the dimer formation remains favorable, albeit weaker, also on Au(111). It is worth pointing out that the interaction between CGP-Te or CGP-Se monomers in the dimer is, in fact, still strong enough to allow us to manipulate a dimer with the STM tip without breaking it apart (Figure S3). In contrast, the ΔEint value for dimers of reference benzo-Te is revealed to be +1.1 kcal mol–1 on the surface, consistent with the experimental observation that no dimers are formed. A deeper analysis of ΔEint is given in Section S17.

Figure 4

Figure 4. DFT analysis of ChBIs in a (CGP-Te)2 dimer. (A, B) Gas phase and adsorption geometries (side view). The tilt angle of the chalcogenazole moiety with respect to the pyrene unit is shown. (C, D) Electrostatic potential (in au) superimposed on a charge density isosurface (ρ = 0.025 au). Atomic charges Q are reported for Te and N. (E, F) Molecular graph showing bond paths (dotted lines), bond critical points in red, and ring critical points in green. For clarity, bond paths between the dimer and substrate are not shown, except for Te···Au and N···Au. (G, H) Reduced density gradient (on the 0.5 au isosurface) showing the noncovalent ChBIs; blue and red regions indicate attractive and repulsive interactions, respectively; the dashed circles highlight the attractive interaction at the bond critical point between Te and N atoms.

DFT was then used to analyze the chemical nature of the ChBIs. Previous theoretical studies elucidating the character of ChBIs in homodimers (24,47,59−62) included molecular electrostatic potential maps, reduced density gradient (RDG) plots, (63) and quantum theory of atoms-in-molecules (AIM) (64) and natural bond order calculations. Moreover, energy decomposition analyses (59,61) reveal that electrostatic effects can contribute significantly (up to 58%) to ΔEint in chalcogenadiazole dimers, while the orbital mixing component can be as large as 41% in telluradiazoles. (62) A favorable ΔEint combined with the electrostatic potential map, RDG, and AIM analyses is sufficient to confirm the presence and the noncovalent nature of ChBIs in these systems. (37,47)
Figure 4c shows the molecular electrostatic potential for CGP-Te superimposed on a charge density isosurface. The blue maxima appearing at the extensions of the Te back-bonds indicate σ-holes. Their alignment with the red minima, corresponding to the N-lone-pairs, is a typical feature in ChBIs. (65) After Au adsorption (Figure 4d), the σ-hole character remains present, although it appears tilted toward the surface (see also Figures 4b and S7) due to the strong Te···Au (and N···Au) interaction. The subsequent misalignment of the σ-hole and N-lone-pair binding the two monomers is consistent with the reduction of the calculated ΔEint after adsorption. The AIM analysis (Figure 4e) reveals bond paths along both Te···N contacts containing bond critical points, constituting evidence of a ChBI. Notably, both features persist in the Au-adsorbed (CGP-Te)2 (Figure 4f) and (CGP-Se)2 (Figure S8) dimers. Finally, RDG plots (Figure 4g) explicitly identify the Te···N interaction as noncovalent. (63) The blue color of the RDG isosurface, centered at the Te···N bond, indicates that the Te···N interaction is attractive, as expected from the sign of ΔEint. The Te···N interaction persists in the adsorbed system (Figure 4h), although the less intense color indicates a weaker contact. The interaction appears weaker again in (CGP-Se)2 dimers (Figure S8), consistent with an expected smaller orbital contribution. (62) These conclusions are further supported by calculations of the charge density difference (Figure S9) and molecular projected density of states (Figure S13). In contrast, similar analyses for Benzo-Te reveal a fundamentally different, weaker interaction (Figure S10 and Table S2).
The total energy and charge density analyses support our hypothesis that the ChBIs govern the surface-confined dimerization of the pyrenyl derivatives and confirm the STM results. This occurs despite a considerable dimer···Au interaction which determines the adsorption site, flattened molecular geometry, and azimuthal orientation (Figure S6). Although a large van der Waals component anchors the molecule to the surface, a Te···Au bond is identifiable (Figures S7 and S9). The total charge transfer from (CGP-Te)2 to the Au(111) surface is 0.36e, mainly coming from the Te atom (ΔQTe = +0.08e, see Figure 4b). Such an increase might naively imply a larger electrostatic interaction after adsorption. However, the computed reduction in interaction energy suggests that the charge depletion is associated with the Te lone pair aligned toward the Au surface. It thus has little influence on the in-plane intermolecular ChBI.

Conclusions

Click to copy section linkSection link copied!

In conclusion, our study comprehensively explores nanostructure self-assembly on surfaces guided by ChBI molecular recognition. Specifically, we utilized chalcogenazolo pyridine (with Ch = Se and Te) moieties to create supramolecular chiral dimers through double ChBIs on Au(111). The combination of BRSTM measurements and quantum chemistry calculations clarified the formation of these dimers, characterized by distinct 6-fold rotational symmetry and upheld by nonbonding interactions between Ch atoms and adjacent pyridine moieties. On-surface ChBI was also demonstrated on other substrates (Figure S4) and for other moieties (Figure S10). (46,47) In contrast, reference chalcogenazole compounds lacking the N-pyridyl atom and thus incapable of establishing ChBIs do not form dimers but assemble into irregularly shaped kinetic aggregates. Charge density analysis of the (CGP-Te)2 dimer confirmed the attractive noncovalent nature of Te···N interactions, which persist when assembled on Au(111). The distinctive feature of ChBIs, characterized by their strong orbital contribution, leads us to anticipate that our findings will pave the way for designing and fabricating precise supramolecular nanostructures on surfaces with tailored semiconducting properties. (41) Ultimately, this study not only expands our comprehension of supramolecular interactions but also sheds light on a promising avenue for future research in the bottom-up engineering of two-dimensional (2D) monolayered supramolecular chalcogenide-type materials as we delve into the novel role of ChBIs in surface-based molecular recognition.

Methods

Click to copy section linkSection link copied!

Synthesis

The syntheses of CGP-Te, CGP-Se, and Benzo-Te were performed following previous literature reports. (54,56) For details on the protocols and structural characterization, please see the Supporting Information.

Surface Studies

All molecules studied here were sublimated in ultrahigh vacuum from a commercial evaporator (Kentax) onto an Au(111) single crystal that was previously cleaned following standard Ar+ sputter/anneal cleaning cycles. During sublimation, the Au(111) substrate was held at room temperature, with the pressure in the chamber being below 2 × 10–10 mbar. All STM measurements were performed using a commercial Infinity system from Scienta Omicron held at temperatures between 11 and 8 K (the exact temperature is specified in the text for each reported STM image). The STM images were calibrated so that the measured Au lattice constant would coincide with the one from the simulation after geometry optimization (lattice constant: 4.122 Å). A CO-functionalized W tip was used for BRSTM. BRSTM images were collected in constant height mode with a low tunneling bias (5 mV). All experimental images were analyzed using the Gwyddion software. (66)
Surface studies Calculations were performed using DFT in a planewave/pseudopotential framework implemented in the quantum-ESPRESSO (QE) code. (67) The Perdew–Burke–Ernzerhof (PBE) exchange–correlation functional was used, (68) and van der Waals interactions were accounted for semiempirically via the Grimme-D3 method with Becke-Johnson damping. (69) Ultrasoft Rappe-Rabe-Joannopoulos-Kaxiras (RRJK) pseudopotentials were used (cutoff 45/360 Ry). Gas phase geometries were computed in a 45 × 35 × 25 Å3 cell. The optimal monomer geometry was determined by rotating the pyrene group about the bond to the azole unit until an energy minimum was reached and then free relaxation was performed. The substrate was modeled using a four-layer Au(111) slab (a0 = 4.12 Å), whose backmost two layers were fied. Monomer and dimer adsorption were modeled within supercells of size 46.6 Å × 20.2 Å, ensuring an intermolecular separation of at least 12 Å and a vacuum spacing between periodically repeating images of 20 Å. Gamma-point sampling with a Marzari-Vanderbilt smearing of 0.1 eV was used throughout. (70) Geometry optimizations were performed using a tight 5 meV Å–1 threshold. Several initial geometries for monomer adsorption were tested. The most stable geometry features the chalcogen atom at the on-top site. By testing the azimuthal energy dependence, we identified the optimal orientation of having the pyrene groups aligned along the Au atom rows. This configuration was then used to construct possible geometries for the dimer, including chalcogen atoms at the nearest and second nearest neighbor sites and for different lateral offsets and azimuthal orientations. The most stable geometries are the ones reported in the main text. The RDG (71) and electrostatic maps were also computed using QE. Analysis of atomic charges and quantum theory of AIM paths were performed with the critic2 code (72) using all-electron charge densities computed with the QE package. RDG and molecular electrostatic potential (MEP) maps were visualized using VESTA. (9) The MEP maps are plotted on a relatively high value of charge density isosurface (ρ = 0.025 au; Figure S5 for a comparison with the standard plot at ρ = 0.001 au) to reveal the σ-holes also in the dimer and the adsorbed systems. RDG isosurfaces are colorized using the product of the charge density and sign of the second eigenvalue of the electron density Hessian matrix in the range [−0.02:0.02] au. (73) STM images were computed using the Tersoff-Hamann approximation. (74) Atomic charges were computed using the Voronoi deformation density (VDD) method. (75)

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacsau.4c00325.

  • Experimental details and additional data (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Authors
  • Authors
    • Deborah Romito - Department of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, AustriaOrcidhttps://orcid.org/0000-0003-2820-9896
    • Luca Persichetti - Department of Physics, University of Rome “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Roma, ItalyOrcidhttps://orcid.org/0000-0001-6578-254X
    • Antonio Caporale - Department of Physics, University of Rome “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Roma, Italy
    • Maurizia Palummo - INFN, Department of Physics, University of Rome “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Roma, ItalyOrcidhttps://orcid.org/0000-0002-3097-8523
    • Marco Di Giovannantonio - CNR-Istituto di Struttura della Materia (CNR-ISM), 00133 Roma, ItalyOrcidhttps://orcid.org/0000-0001-8658-9183
  • Author Contributions

    L.C., C.H., and D.R. contributed equally.

  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

D.B. gratefully acknowledges the EU through the funding scheme projects MSCA-RISE INFUSION (N° 734834), H2020-NMBP-2017 DECOCHROM (N° 760973), MSCA-RISE VIT (N° 101008237), and the University of Vienna. C.H. and M.P. acknowledge CINECA for supercomputing resources and support under the ISCRA initiative. L.C., M.D.G., L.P., and C.H. acknowledge financial support from the Italian Ministry of University and Research (MUR) under the PRIN 2022 program (project No. 2022JW8LHZ, ATYPICAL).

References

Click to copy section linkSection link copied!

This article references 75 other publications.

  1. 1
    Lee, I. Molecular self-assembly: smart design of surface and interface via secondary molecular interactions. Langmuir 2013, 29 (8), 24762489,  DOI: 10.1021/la304123b
  2. 2
    Anantha-Iyengar, G.; Shanmugasundaram, K.; Nallal, M.; Lee, K.-P.; Whitcombe, M. J.; Lakshmi, D.; Sai-Anand, G. Functionalized conjugated polymers for sensing and molecular imprinting applications. Prog. Polym. Sci. 2019, 88, 1129,  DOI: 10.1016/j.progpolymsci.2018.08.001
  3. 3
    Ariga, K.; Nishikawa, M.; Mori, T.; Takeya, J.; Shrestha, L. K.; Hill, J. P. Self-assembly as a key player for materials nanoarchitectonics. Sci. Technol. Adv. Mater. 2019, 20 (1), 5195,  DOI: 10.1080/14686996.2018.1553108
  4. 4
    Cui, D.; Perepichka, D. F.; MacLeod, J. M.; Rosei, F. Surface-confined single-layer covalent organic frameworks: design, synthesis and application. Chem. Soc. Rev. 2020, 49 (7), 2020,  DOI: 10.1039/C9CS00456D
  5. 5
    Ariga, K.; Yamauchi, Y. Nanoarchitectonics from atom to life. Chem. Asian J. 2020, 15 (6), 718728,  DOI: 10.1002/asia.202000106
  6. 6
    Ariga, K.; Jia, X.; Song, J.; Hill, J. P.; Leong, D. T.; Jia, Y.; Li, J. Nanoarchitectonics beyond self-assembly: challenges to create bio-like hierarchic organization. Angew. Chem., Int. Ed. 2020, 59 (36), 1542415446,  DOI: 10.1002/anie.202000802
  7. 7
    Bai, L.; Wang, N.; Li, Y. Controlled Growth and Self-Assembly of Multiscale Organic Semiconductor. Adv. Mater. 2022, 34 (22), 2102811,  DOI: 10.1002/adma.202270168
  8. 8
    Zhang, S.; Chen, C.; Li, J.; Ma, C.; Li, X.; Ma, W.; Zhang, M.; Cheng, F.; Deng, K.; Zeng, Q. The self-assembly and pyridine regulation of a hydrogen-bonded dimeric building block formed by a low-symmetric aromatic carboxylic acid. Nanoscale 2022, 14 (6), 24192426,  DOI: 10.1039/D1NR07840B
  9. 9
    Barragán, A.; Lois, S.; Sarasola, A.; Vitali, L. Empowering non-covalent hydrogen, halogen, and [S-N] 2 bonds in synergistic molecular assemblies on Au (111). Nanoscale 2022, 14 (48), 1789517899,  DOI: 10.1039/D2NR05984C
  10. 10
    Lei, P.; Luo, W.; Tu, B.; Xiao, X.; Fang, Q.; Wang, C.; Zeng, Q. Minor adjustments in the chemical structures of pyridine derivatives induced different co-assemblies by O-H··· N hydrogen bonds. Chem. Commun. 2022, 58 (71), 99149917,  DOI: 10.1039/D2CC03859E
  11. 11
    Tao, J.; Xiao, Y.; Sun, L.; Liu, J.; Zeng, Q.; Xu, H. Synthesis, optical properties and self-assemblies of three novel asymmetrical perylene diimides modified with functional hydrogen bonding groups at bay positions. New J. Chem. 2022, 46 (36), 1723517243,  DOI: 10.1039/D2NJ03624J
  12. 12
    Xie, R.; Zeng, X.; Jiang, Z.-H.; Hu, Y.; Lee, S.-L. STM Study of the Self-Assembly of Biphenyl-3, 3′, 5, 5′-Tetracarboxylic Acid and Its Mixing Behavior with Coronene at the Liquid-Solid Interface. Langmuir 2023, 39 (10), 36373644,  DOI: 10.1021/acs.langmuir.2c03199
  13. 13
    Vijayaraghavan, S.; Ecija, D.; Auwärter, W.; Joshi, S.; Seufert, K.; Drach, M.; Nieckarz, D.; Szabelski, P.; Aurisicchio, C.; Bonifazi, D. Supramolecular Assembly of Interfacial Nanoporous Networks with Simultaneous Expression of Metal-Organic and Organic-Bonding Motifs. Chem. Eur. J. 2013, 19 (42), 1414314150,  DOI: 10.1002/chem.201301852
  14. 14
    Sun, Q.; Cai, L.; Ma, H.; Yuan, C.; Xu, W. On-surface construction of a metal-organic Sierpiński triangle. Chem. Commun. 2015, 51 (75), 1416414166,  DOI: 10.1039/C5CC05554G
  15. 15
    Geng, Y.-f.; Li, P.; Li, J.-z.; Zhang, X.-m.; Zeng, Q.-d.; Wang, C. STM probing the supramolecular coordination chemistry on solid surface: Structure, dynamic, and reactivity. Coord. Chem. Rev. 2017, 337, 145177,  DOI: 10.1016/j.ccr.2017.01.014
  16. 16
    Sun, X.; Yao, X.; Lafolet, F. d. r.; Lemercier, G.; Lacroix, J.-C. One-Dimensional Double Wires and Two-Dimensional Mobile Grids: Cobalt/Bipyridine Coordination Networks at the Solid/Liquid Interface. J. Phys. Chem. Lett. 2019, 10 (15), 41644169,  DOI: 10.1021/acs.jpclett.9b01292
  17. 17
    Moreno, D.; Santos, J.; Parreiras, S. O.; Martín-Fuentes, C.; Lauwaet, K.; Urgel, J. I.; Miranda, R.; Martín, N.; Gallego, J. M.; Écija, D. Stoichiometry-Directed Two-Level Hierarchical Growth of Lanthanide-Based Supramolecular Nanoarchitectures. Chem. Eur. J. 2023, 29, e202300461  DOI: 10.1002/chem.202300461
  18. 18
    Wintjes, N.; Hornung, J.; Lobo-Checa, J.; Voigt, T.; Samuely, T.; Thilgen, C.; Stöhr, M.; Diederich, F.; Jung, T. A. Supramolecular synthons on surfaces: Controlling dimensionality and periodicity of tetraarylporphyrin assemblies by the interplay of cyano and alkoxy substituents. Chem. Eur. J. 2008, 14 (19), 57945802,  DOI: 10.1002/chem.200800746
  19. 19
    Stöhr, M.; Boz, S.; Schär, M.; Nguyen, M. T.; Pignedoli, C. A.; Passerone, D.; Schweizer, W. B.; Thilgen, C.; Jung, T. A.; Diederich, F. Self-Assembly and Two-Dimensional Spontaneous Resolution of Cyano-Functionalized [7] Helicenes on Cu (111). Angew. Chem., Int. Ed. 2011, 50 (42), 99829986,  DOI: 10.1002/anie.201102627
  20. 20
    Alcock, N. W. Secondary bonding to nonmetallic elements. In Adv. Inorg. Chem. Radiochem.; Elsevier, 1972; Vol. 15, pp 158.
  21. 21
    Politzer, P.; Murray, J. S.; Clark, T. Halogen bonding and other σ-hole interactions: A perspective. Phys. Chem. Chem. Phys. 2013, 15 (27), 1117811189,  DOI: 10.1039/c3cp00054k
  22. 22
    Lim, J. Y.; Beer, P. D. Sigma-hole interactions in anion recognition. Chem. 2018, 4 (4), 731783,  DOI: 10.1016/j.chempr.2018.02.022
  23. 23
    Mallada, B.; Gallardo, A.; Lamanec, M.; De La Torre, B.; Špirko, V.; Hobza, P.; Jelinek, P. Real-space imaging of anisotropic charge of σ-hole by means of Kelvin probe force microscopy. Science 2021, 374 (6569), 863867,  DOI: 10.1126/science.abk1479
  24. 24
    Pascoe, D. J.; Ling, K. B.; Cockroft, S. L. The origin of chalcogen-bonding interactions. J. Am. Chem. Soc. 2017, 139 (42), 1516015167,  DOI: 10.1021/jacs.7b08511
  25. 25
    Teyssandier, J.; Mali, K. S.; De Feyter, S. Halogen bonding in two-dimensional crystal engineering. ChemistryOpen 2020, 9 (2), 225241,  DOI: 10.1002/open.201900337
  26. 26
    Kampes, R.; Zechel, S.; Hager, M. D.; Schubert, U. S. Halogen bonding in polymer science: towards new smart materials. Chem. Sci. 2021, 12 (27), 92759286,  DOI: 10.1039/D1SC02608A
  27. 27
    Metrangolo, P.; Canil, L.; Abate, A.; Terraneo, G.; Cavallo, G. Halogen bonding in perovskite solar cells: a new tool for improving solar energy conversion. Angew. Chem., Int. Ed. 2022, 61 (11), e202114793  DOI: 10.1002/anie.202114793
  28. 28
    Xu, Y.; Hao, A.; Xing, P. X··· X Halogen Bond-Induced Supramolecular Helices. Angew. Chem., Int. Ed. 2022, 61 (2), e202113786  DOI: 10.1002/anie.202113786
  29. 29
    Semenov, A. V.; Baykov, S. V.; Soldatova, N. S.; Geyl, K. K.; Ivanov, D. M.; Frontera, A.; Boyarskiy, V. P.; Postnikov, P. S.; Kukushkin, V. Y. Noncovalent Chelation by Halogen Bonding in the Design of Metal-Containing Arrays: Assembly of Double σ-Hole Donating Halolium with CuI-Containing O, O-Donors. Inorg. Chem. 2023, 62 (15), 61286137,  DOI: 10.1021/acs.inorgchem.3c00229
  30. 30
    Wang, D.; Wang, Z.; Liu, W.; Arramel; Zhong, S.; Feng, Y. P.; Loh, K. P.; Wee, A. T. S. Real-Space Investigation of the Multiple Halogen Bonds by Ultrahigh-Resolution Scanning Probe Microscopy. Small 2022, 18 (28), 2202368,  DOI: 10.1002/smll.202202368
  31. 31
    Peyrot, D.; Silly, F. Toward Two-Dimensional Tessellation through Halogen Bonding between Molecules and On-Surface-Synthesized Covalent Multimers. Int. J. Mol. Sci. 2023, 24 (14), 11291,  DOI: 10.3390/ijms241411291
  32. 32
    Piquero-Zulaica, I.; Lobo-Checa, J.; Sadeghi, A.; El-Fattah, Z. M. A.; Mitsui, C.; Okamoto, T.; Pawlak, R.; Meier, T.; Arnau, A.; Ortega, J. E. Precise engineering of quantum dot array coupling through their barrier widths. Nat. Commun. 2017, 8 (1), 787,  DOI: 10.1038/s41467-017-00872-2
  33. 33
    Lawrence, J.; Sosso, G. C.; Đorđević, L.; Pinfold, H.; Bonifazi, D.; Costantini, G. Combining high-resolution scanning tunnelling microscopy and first-principles simulations to identify halogen bonding. Nat. Commun. 2020, 11 (1), 2103,  DOI: 10.1038/s41467-020-15898-2
  34. 34
    Pham, T. A.; Song, F.; Nguyen, M.-T.; Stöhr, M. Self-assembly of pyrene derivatives on Au (111): substituent effects on intermolecular interactions. Chem. Commun. 2014, 50 (91), 1408914092,  DOI: 10.1039/C4CC02753A
  35. 35
    Gutzler, R.; Ivasenko, O.; Fu, C.; Brusso, J. L.; Rosei, F.; Perepichka, D. F. Halogen bonds as stabilizing interactions in a chiral self-assembled molecular monolayer. Chem. Commun. 2011, 47 (33), 94539455,  DOI: 10.1039/c1cc13114a
  36. 36
    Xing, L.; Jiang, W.; Huang, Z.; Liu, J.; Song, H.; Zhao, W.; Dai, J.; Zhu, H.; Wang, Z.; Weiss, P. S. Steering two-dimensional porous networks with σ-hole interactions of Br··· S and Br··· Br. Chem. Mater. 2019, 31 (8), 30413048,  DOI: 10.1021/acs.chemmater.9b01126
  37. 37
    Aakeroy, C. B.; Bryce, D. L.; Desiraju, G. R.; Frontera, A.; Legon, A. C.; Nicotra, F.; Rissanen, K.; Scheiner, S.; Terraneo, G.; Metrangolo, P. Definition of the chalcogen bond (IUPAC Recommendations 2019). Pure Appl. Chem. 2019, 91 (11), 18891892,  DOI: 10.1515/pac-2018-0713
  38. 38
    Biot, N.; Bonifazi, D. Chalcogen-bond driven molecular recognition at work. Coord. Chem. Rev. 2020, 413, 213243,  DOI: 10.1016/j.ccr.2020.213243
  39. 39
    De Silva, V.; Magueres, P. L.; Averkiev, B. B.; Aakeröy, C. B. Competition between chalcogen and halogen bonding assessed through isostructural species. Acta Crystallogr., Sect. C: Struct. Chem. 2022, 78 (12), 716721,  DOI: 10.1107/S205322962201052X
  40. 40
    Torubaev, Y. V.; Rozhkov, A. V.; Skabitsky, I. V.; Gomila, R. M.; Frontera, A.; Kukushkin, V. Y. Heterovalent chalcogen bonding: supramolecular assembly driven by the occurrence of a tellurium (ii)··· Ch (i)(Ch= S, Se, Te) linkage. Inorg. Chem. Front. 2022, 9 (21), 56355644,  DOI: 10.1039/D2QI01420C
  41. 41
    Ishigaki, Y.; Asai, K.; Jacquot de Rouville, H. P.; Shimajiri, T.; Hu, J.; Heitz, V.; Suzuki, T. Solid-State Assembly by Chelating Chalcogen Bonding in Quinodimethane Tetraesters Fused with a Chalcogenadiazole. ChemPlusChem. 2022, 87 (4), e202200075  DOI: 10.1002/cplu.202200075
  42. 42
    Romito, D.; Ho, P. C.; Vargas-Baca, I.; Bonifazi, D. Supramolecular Chemistry via Chalcogen Bonding Interactions. In Chalcogen Chemistry: Fundamentals and Applications; The Royal Society of Chemistry, 2023; pp 494528.
  43. 43
    Ho, P. C.; Wang, J. Z.; Meloni, F.; Vargas-Baca, I. Chalcogen bonding in materials chemistry. Coord. Chem. Rev. 2020, 422, 213464,  DOI: 10.1016/j.ccr.2020.213464
  44. 44
    Romito, D.; Fresta, E.; Cavinato, L. M.; Kählig, H.; Amenitsch, H.; Caputo, L.; Chen, Y.; Samorì, P.; Charlier, J. C.; Costa, R. D.; Bonifazi, D. Supramolecular Chalcogen-Bonded Semiconducting Nanoribbons at Work in Lighting Devices. Angew. Chem., Int. Ed. 2022, 61 (38), e202202137  DOI: 10.1002/anie.202202137
  45. 45
    Cameron, J.; Kanibolotsky, A. L.; Skabara, P. J. Lest we Forget-the Importance of Heteroatom Interactions in Heterocyclic Conjugated Systems, from Synthetic Metals to Organic Semiconductors. Adv. Mater. 2024, 36, 2302259,  DOI: 10.1002/adma.202302259
  46. 46
    Ren, B.; Lu, Y.; Wang, R.; Liu, H. First-principles study of chalcogen-bonded self-assembly structures on silicene: Some insight into the fabrication of molecular architectures on surfaces through chalcogen bonding. Chem. Phys. 2023, 565, 111763,  DOI: 10.1016/j.chemphys.2022.111763
  47. 47
    Wang, H.; Li, B.; Wang, X.; Yin, F.; Wei, Q.; Wang, X.; Ni, Y.; Wang, H. First-principles study of square chalcogen bond interactions and its adsorption behavior on silver surface. Phys. Chem. Chem. Phys. 2023, 25 (15), 1083610844,  DOI: 10.1039/D2CP05825A
  48. 48
    Yang, W.; Chai, X.; Chi, L.; Liu, X.; Cao, Y.; Lu, R.; Jiang, Y.; Tang, X.; Fuchs, H.; Li, T. From achiral molecular components to chiral supermolecules and supercoil self-assembly. Chem. Eur. J. 1999, 5 (4), 11441149,  DOI: 10.1002/(SICI)1521-3765(19990401)5:4<1144::AID-CHEM1144>3.0.CO;2-K
  49. 49
    Semenov, A.; Spatz, J. P.; Möller, M.; Lehn, J. M.; Sell, B.; Schubert, D.; Weidl, C. H.; Schubert, U. S. Controlled arrangement of supramolecular metal coordination arrays on surfaces. Angew. Chem., Int. Ed. 1999, 38 (17), 25472550,  DOI: 10.1002/(SICI)1521-3773(19990903)38:17<2547::AID-ANIE2547>3.0.CO;2-M
  50. 50
    Yokoyama, T.; Yokoyama, S.; Kamikado, T.; Okuno, Y.; Mashiko, S. Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature 2001, 413 (6856), 619621,  DOI: 10.1038/35098059
  51. 51
    Wu, T.; Xue, N.; Wang, Z.; Li, J.; Li, Y.; Huang, W.; Shen, Q.; Hou, S.; Wang, Y. Surface self-assembly involving the interaction between S and N atoms. Chem. Commun. 2021, 57, 13281331,  DOI: 10.1039/D0CC07931F
  52. 52
    Cozzolino, A. F.; Dimopoulos-Italiano, G.; Lee, L. M.; Vargas-Baca, I. Chalcogen-Nitrogen Secondary Bonding Interactions in the Gas Phase - Spectrometric Detection of Ionized Benzo-2,1,3-telluradiazole Dimers. Eur. J. Inorg. Chem. 2013, 2013, 27512756,  DOI: 10.1002/ejic.201201439
  53. 53
    Risto, M.; Reed, R. W.; Robertson, C. M.; Oilunkaniemi, R.; Laitinen, R. S.; Oakley, R. T. Self-association of the N-methyl benzotellurodiazolylium cation: implications for the generation of super-heavy atom radicals. Chem. Commun. 2008, 32783280,  DOI: 10.1039/b803159b
  54. 54
    Biot, N.; Bonifazi, D. Programming Recognition Arrays through Double Chalcogen-Bonding Interactions. Chem. Eur. J. 2018, 24 (21), 54395443,  DOI: 10.1002/chem.201705428
  55. 55
    Romito, D.; Biot, N.; Babudri, F.; Bonifazi, D. Non-covalent bridging of bithiophenes through chalcogen bonding grips. New J. Chem. 2020, 44 (17), 67326738,  DOI: 10.1039/C9NJ06202E
  56. 56
    Biot, N.; Bonifazi, D. Concurring Chalcogen-and Halogen-Bonding Interactions in Supramolecular Polymers for Crystal Engineering Applications. Chem. Eur. J. 2020, 26 (13), 29042913,  DOI: 10.1002/chem.201904762
  57. 57
    Romito, D.; Bonifazi, D. Engineering Te-Containing Recognition Modules for Chalcogen Bonding: Towards Supramolecular Polymeric Materials. Helv. Chim. Acta 2023, 106 (2), e202200159  DOI: 10.1002/hlca.202200159
  58. 58
    Chivers, T.; Laitinen, R. S. Tellurium: a maverick among the chalcogens. Chem. Soc. Rev. 2015, 44 (7), 17251739,  DOI: 10.1039/C4CS00434E
  59. 59
    Michalczyk, M.; Malik, M.; Zierkiewicz, W.; Scheiner, S. Experimental and theoretical studies of dimers stabilized by two chalcogen bonds in the presence of a N··· N pnicogen bond. J. Phys. Chem. A 2021, 125 (2), 657668,  DOI: 10.1021/acs.jpca.0c10814
  60. 60
    Scheiner, S. Principles guiding the square bonding motif containing a pair of chalcogen bonds between chalcogenadiazoles. J. Phys. Chem. A 2022, 126 (7), 11941203,  DOI: 10.1021/acs.jpca.1c10818
  61. 61
    Tsuzuki, S.; Sato, N. Origin of Attraction in Chalgogen-Nitrogen Interaction of 1, 2, 5-Chalcogenadiazole Dimers. J. Phys. Chem. B 2013, 117 (22), 68496855,  DOI: 10.1021/jp403200j
  62. 62
    Haberhauer, G.; Gleiter, R. The Nature of Strong Chalcogen Bonds Involving Chalcogen-Containing Heterocycles. Angew. Chem., Int. Ed. 2020, 59 (47), 2123621243,  DOI: 10.1002/anie.202010309
  63. 63
    Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132 (18), 64986506,  DOI: 10.1021/ja100936w
  64. 64
    Cioslowski, J. A Theory of Molecules: Atoms In Molecules. A Quantum Theory. Science 1991, 252 (5012), 15661567,  DOI: 10.1126/science.252.5012.1566-b
  65. 65
    Garrett, G. E.; Gibson, G. L.; Straus, R. N.; Seferos, D. S.; Taylor, M. S. Chalcogen bonding in solution: interactions of benzotelluradiazoles with anionic and uncharged Lewis bases. J. Am. Chem. Soc. 2015, 137 (12), 41264133,  DOI: 10.1021/ja512183e
  66. 66
    Nečas, D.; Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Open Physics 2012, 10 (1), 181188,  DOI: 10.2478/s11534-011-0096-2
  67. 67
    Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21 (39), 395502,  DOI: 10.1088/0953-8984/21/39/395502
  68. 68
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77 (18), 38653868,  DOI: 10.1103/PhysRevLett.77.3865
  69. 69
    Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32 (7), 14561465,  DOI: 10.1002/jcc.21759
  70. 70
    Marzari, N.; Vanderbilt, D.; De Vita, A.; Payne, M. Thermal contraction and disordering of the Al (110) surface. Phys. Rev. Lett. 1999, 82 (16), 32963299,  DOI: 10.1103/PhysRevLett.82.3296
  71. 71
    Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132 (18), 64986506,  DOI: 10.1021/ja100936w
  72. 72
    Otero-de-la-Roza, A.; Johnson, E. R.; Luaña, V. Critic2: A program for real-space analysis of quantum chemical interactions in solids. Comput. Phys. Commun. 2014, 185 (3), 10071018,  DOI: 10.1016/j.cpc.2013.10.026
  73. 73
    Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44 (6), 12721276,  DOI: 10.1107/S0021889811038970
  74. 74
    Tersoff, J.; Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 1985, 31 (2), 805813,  DOI: 10.1103/PhysRevB.31.805
  75. 75
    Fonseca Guerra, C.; Handgraaf, J. W.; Baerends, E. J.; Bickelhaupt, F. M. Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis. J. Comput. Chem. 2004, 25 (2), 189210,  DOI: 10.1002/jcc.10351

Cited By

Click to copy section linkSection link copied!

This article has not yet been cited by other publications.

Open PDF

JACS Au

Cite this: JACS Au 2024, 4, 6, 2115–2121
Click to copy citationCitation copied!
https://doi.org/10.1021/jacsau.4c00325
Published June 5, 2024

Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Article Views

1145

Altmetric

-

Citations

-
Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Schematic representations of the first examples of noncovalent molecular self-assembly at surfaces, respectively driven by (A) hydrogen bonds, (48) (B) metal coordination bonds, (49) (C) dipole–dipole interactions, (50) (D) halogen bonds, (35) and (E) ChBIs investigated in this work.

    Figure 2

    Figure 2. (A) STM image of (CGP-Te)2 dimers on Au(111). The herringbone reconstruction of the Au substrate is also visible. In the rectangles, the 3-fold equivalent dimer orientations are highlighted. Tunneling current (It) = 300 pA; tunneling bias (Vt) = 1.000 V; T = 11 K. The top-right-corner inset shows two enantiomers; It = 250 pA; Vt = 0.500 V. (B) Experimental (It = 300 pA; Vt= 0.630 V; T = 11 K) and (C) simulated (Vt = 0.630 V) STM image of an individual dimer. In the simulated image, the chemical structure of the monomer is also overlaid to display the strong Te-centered signal. (D) STM image of self-assembled (CGP-Se)2 dimers on Au(111). It = 300 pA; Vt = 0.800 V; T = 8.5 K. (E) STM image of an individual dimer. It = 150 pA; Vt = 0.100 V; T = 8.5 K. (F) STM image of the reference tellurazole molecules deposited on Au(111). Kinetic aggregates of various shapes and sizes can be observed. It = 400 pA; Vt = 1.000 V; T = 11 K. (G) Detail of a molecular assembly. It = 400 pA; Vt = 1.000 V; T = 11 K. Scale bars: 5 nm in (A), (D), and (F); 0.5 nm in (B), (C), (E), and (G); and 2 nm in the inset of (A).

    Figure 3

    Figure 3. From top to bottom: BRSTM image (constant height, Vt = 5 mV, T = 8.7 K) and DFT relaxed geometrical model of the individual (CGP-Te)2 and (CGP-Se)2 dimers.

    Figure 4

    Figure 4. DFT analysis of ChBIs in a (CGP-Te)2 dimer. (A, B) Gas phase and adsorption geometries (side view). The tilt angle of the chalcogenazole moiety with respect to the pyrene unit is shown. (C, D) Electrostatic potential (in au) superimposed on a charge density isosurface (ρ = 0.025 au). Atomic charges Q are reported for Te and N. (E, F) Molecular graph showing bond paths (dotted lines), bond critical points in red, and ring critical points in green. For clarity, bond paths between the dimer and substrate are not shown, except for Te···Au and N···Au. (G, H) Reduced density gradient (on the 0.5 au isosurface) showing the noncovalent ChBIs; blue and red regions indicate attractive and repulsive interactions, respectively; the dashed circles highlight the attractive interaction at the bond critical point between Te and N atoms.

  • References


    This article references 75 other publications.

    1. 1
      Lee, I. Molecular self-assembly: smart design of surface and interface via secondary molecular interactions. Langmuir 2013, 29 (8), 24762489,  DOI: 10.1021/la304123b
    2. 2
      Anantha-Iyengar, G.; Shanmugasundaram, K.; Nallal, M.; Lee, K.-P.; Whitcombe, M. J.; Lakshmi, D.; Sai-Anand, G. Functionalized conjugated polymers for sensing and molecular imprinting applications. Prog. Polym. Sci. 2019, 88, 1129,  DOI: 10.1016/j.progpolymsci.2018.08.001
    3. 3
      Ariga, K.; Nishikawa, M.; Mori, T.; Takeya, J.; Shrestha, L. K.; Hill, J. P. Self-assembly as a key player for materials nanoarchitectonics. Sci. Technol. Adv. Mater. 2019, 20 (1), 5195,  DOI: 10.1080/14686996.2018.1553108
    4. 4
      Cui, D.; Perepichka, D. F.; MacLeod, J. M.; Rosei, F. Surface-confined single-layer covalent organic frameworks: design, synthesis and application. Chem. Soc. Rev. 2020, 49 (7), 2020,  DOI: 10.1039/C9CS00456D
    5. 5
      Ariga, K.; Yamauchi, Y. Nanoarchitectonics from atom to life. Chem. Asian J. 2020, 15 (6), 718728,  DOI: 10.1002/asia.202000106
    6. 6
      Ariga, K.; Jia, X.; Song, J.; Hill, J. P.; Leong, D. T.; Jia, Y.; Li, J. Nanoarchitectonics beyond self-assembly: challenges to create bio-like hierarchic organization. Angew. Chem., Int. Ed. 2020, 59 (36), 1542415446,  DOI: 10.1002/anie.202000802
    7. 7
      Bai, L.; Wang, N.; Li, Y. Controlled Growth and Self-Assembly of Multiscale Organic Semiconductor. Adv. Mater. 2022, 34 (22), 2102811,  DOI: 10.1002/adma.202270168
    8. 8
      Zhang, S.; Chen, C.; Li, J.; Ma, C.; Li, X.; Ma, W.; Zhang, M.; Cheng, F.; Deng, K.; Zeng, Q. The self-assembly and pyridine regulation of a hydrogen-bonded dimeric building block formed by a low-symmetric aromatic carboxylic acid. Nanoscale 2022, 14 (6), 24192426,  DOI: 10.1039/D1NR07840B
    9. 9
      Barragán, A.; Lois, S.; Sarasola, A.; Vitali, L. Empowering non-covalent hydrogen, halogen, and [S-N] 2 bonds in synergistic molecular assemblies on Au (111). Nanoscale 2022, 14 (48), 1789517899,  DOI: 10.1039/D2NR05984C
    10. 10
      Lei, P.; Luo, W.; Tu, B.; Xiao, X.; Fang, Q.; Wang, C.; Zeng, Q. Minor adjustments in the chemical structures of pyridine derivatives induced different co-assemblies by O-H··· N hydrogen bonds. Chem. Commun. 2022, 58 (71), 99149917,  DOI: 10.1039/D2CC03859E
    11. 11
      Tao, J.; Xiao, Y.; Sun, L.; Liu, J.; Zeng, Q.; Xu, H. Synthesis, optical properties and self-assemblies of three novel asymmetrical perylene diimides modified with functional hydrogen bonding groups at bay positions. New J. Chem. 2022, 46 (36), 1723517243,  DOI: 10.1039/D2NJ03624J
    12. 12
      Xie, R.; Zeng, X.; Jiang, Z.-H.; Hu, Y.; Lee, S.-L. STM Study of the Self-Assembly of Biphenyl-3, 3′, 5, 5′-Tetracarboxylic Acid and Its Mixing Behavior with Coronene at the Liquid-Solid Interface. Langmuir 2023, 39 (10), 36373644,  DOI: 10.1021/acs.langmuir.2c03199
    13. 13
      Vijayaraghavan, S.; Ecija, D.; Auwärter, W.; Joshi, S.; Seufert, K.; Drach, M.; Nieckarz, D.; Szabelski, P.; Aurisicchio, C.; Bonifazi, D. Supramolecular Assembly of Interfacial Nanoporous Networks with Simultaneous Expression of Metal-Organic and Organic-Bonding Motifs. Chem. Eur. J. 2013, 19 (42), 1414314150,  DOI: 10.1002/chem.201301852
    14. 14
      Sun, Q.; Cai, L.; Ma, H.; Yuan, C.; Xu, W. On-surface construction of a metal-organic Sierpiński triangle. Chem. Commun. 2015, 51 (75), 1416414166,  DOI: 10.1039/C5CC05554G
    15. 15
      Geng, Y.-f.; Li, P.; Li, J.-z.; Zhang, X.-m.; Zeng, Q.-d.; Wang, C. STM probing the supramolecular coordination chemistry on solid surface: Structure, dynamic, and reactivity. Coord. Chem. Rev. 2017, 337, 145177,  DOI: 10.1016/j.ccr.2017.01.014
    16. 16
      Sun, X.; Yao, X.; Lafolet, F. d. r.; Lemercier, G.; Lacroix, J.-C. One-Dimensional Double Wires and Two-Dimensional Mobile Grids: Cobalt/Bipyridine Coordination Networks at the Solid/Liquid Interface. J. Phys. Chem. Lett. 2019, 10 (15), 41644169,  DOI: 10.1021/acs.jpclett.9b01292
    17. 17
      Moreno, D.; Santos, J.; Parreiras, S. O.; Martín-Fuentes, C.; Lauwaet, K.; Urgel, J. I.; Miranda, R.; Martín, N.; Gallego, J. M.; Écija, D. Stoichiometry-Directed Two-Level Hierarchical Growth of Lanthanide-Based Supramolecular Nanoarchitectures. Chem. Eur. J. 2023, 29, e202300461  DOI: 10.1002/chem.202300461
    18. 18
      Wintjes, N.; Hornung, J.; Lobo-Checa, J.; Voigt, T.; Samuely, T.; Thilgen, C.; Stöhr, M.; Diederich, F.; Jung, T. A. Supramolecular synthons on surfaces: Controlling dimensionality and periodicity of tetraarylporphyrin assemblies by the interplay of cyano and alkoxy substituents. Chem. Eur. J. 2008, 14 (19), 57945802,  DOI: 10.1002/chem.200800746
    19. 19
      Stöhr, M.; Boz, S.; Schär, M.; Nguyen, M. T.; Pignedoli, C. A.; Passerone, D.; Schweizer, W. B.; Thilgen, C.; Jung, T. A.; Diederich, F. Self-Assembly and Two-Dimensional Spontaneous Resolution of Cyano-Functionalized [7] Helicenes on Cu (111). Angew. Chem., Int. Ed. 2011, 50 (42), 99829986,  DOI: 10.1002/anie.201102627
    20. 20
      Alcock, N. W. Secondary bonding to nonmetallic elements. In Adv. Inorg. Chem. Radiochem.; Elsevier, 1972; Vol. 15, pp 158.
    21. 21
      Politzer, P.; Murray, J. S.; Clark, T. Halogen bonding and other σ-hole interactions: A perspective. Phys. Chem. Chem. Phys. 2013, 15 (27), 1117811189,  DOI: 10.1039/c3cp00054k
    22. 22
      Lim, J. Y.; Beer, P. D. Sigma-hole interactions in anion recognition. Chem. 2018, 4 (4), 731783,  DOI: 10.1016/j.chempr.2018.02.022
    23. 23
      Mallada, B.; Gallardo, A.; Lamanec, M.; De La Torre, B.; Špirko, V.; Hobza, P.; Jelinek, P. Real-space imaging of anisotropic charge of σ-hole by means of Kelvin probe force microscopy. Science 2021, 374 (6569), 863867,  DOI: 10.1126/science.abk1479
    24. 24
      Pascoe, D. J.; Ling, K. B.; Cockroft, S. L. The origin of chalcogen-bonding interactions. J. Am. Chem. Soc. 2017, 139 (42), 1516015167,  DOI: 10.1021/jacs.7b08511
    25. 25
      Teyssandier, J.; Mali, K. S.; De Feyter, S. Halogen bonding in two-dimensional crystal engineering. ChemistryOpen 2020, 9 (2), 225241,  DOI: 10.1002/open.201900337
    26. 26
      Kampes, R.; Zechel, S.; Hager, M. D.; Schubert, U. S. Halogen bonding in polymer science: towards new smart materials. Chem. Sci. 2021, 12 (27), 92759286,  DOI: 10.1039/D1SC02608A
    27. 27
      Metrangolo, P.; Canil, L.; Abate, A.; Terraneo, G.; Cavallo, G. Halogen bonding in perovskite solar cells: a new tool for improving solar energy conversion. Angew. Chem., Int. Ed. 2022, 61 (11), e202114793  DOI: 10.1002/anie.202114793
    28. 28
      Xu, Y.; Hao, A.; Xing, P. X··· X Halogen Bond-Induced Supramolecular Helices. Angew. Chem., Int. Ed. 2022, 61 (2), e202113786  DOI: 10.1002/anie.202113786
    29. 29
      Semenov, A. V.; Baykov, S. V.; Soldatova, N. S.; Geyl, K. K.; Ivanov, D. M.; Frontera, A.; Boyarskiy, V. P.; Postnikov, P. S.; Kukushkin, V. Y. Noncovalent Chelation by Halogen Bonding in the Design of Metal-Containing Arrays: Assembly of Double σ-Hole Donating Halolium with CuI-Containing O, O-Donors. Inorg. Chem. 2023, 62 (15), 61286137,  DOI: 10.1021/acs.inorgchem.3c00229
    30. 30
      Wang, D.; Wang, Z.; Liu, W.; Arramel; Zhong, S.; Feng, Y. P.; Loh, K. P.; Wee, A. T. S. Real-Space Investigation of the Multiple Halogen Bonds by Ultrahigh-Resolution Scanning Probe Microscopy. Small 2022, 18 (28), 2202368,  DOI: 10.1002/smll.202202368
    31. 31
      Peyrot, D.; Silly, F. Toward Two-Dimensional Tessellation through Halogen Bonding between Molecules and On-Surface-Synthesized Covalent Multimers. Int. J. Mol. Sci. 2023, 24 (14), 11291,  DOI: 10.3390/ijms241411291
    32. 32
      Piquero-Zulaica, I.; Lobo-Checa, J.; Sadeghi, A.; El-Fattah, Z. M. A.; Mitsui, C.; Okamoto, T.; Pawlak, R.; Meier, T.; Arnau, A.; Ortega, J. E. Precise engineering of quantum dot array coupling through their barrier widths. Nat. Commun. 2017, 8 (1), 787,  DOI: 10.1038/s41467-017-00872-2
    33. 33
      Lawrence, J.; Sosso, G. C.; Đorđević, L.; Pinfold, H.; Bonifazi, D.; Costantini, G. Combining high-resolution scanning tunnelling microscopy and first-principles simulations to identify halogen bonding. Nat. Commun. 2020, 11 (1), 2103,  DOI: 10.1038/s41467-020-15898-2
    34. 34
      Pham, T. A.; Song, F.; Nguyen, M.-T.; Stöhr, M. Self-assembly of pyrene derivatives on Au (111): substituent effects on intermolecular interactions. Chem. Commun. 2014, 50 (91), 1408914092,  DOI: 10.1039/C4CC02753A
    35. 35
      Gutzler, R.; Ivasenko, O.; Fu, C.; Brusso, J. L.; Rosei, F.; Perepichka, D. F. Halogen bonds as stabilizing interactions in a chiral self-assembled molecular monolayer. Chem. Commun. 2011, 47 (33), 94539455,  DOI: 10.1039/c1cc13114a
    36. 36
      Xing, L.; Jiang, W.; Huang, Z.; Liu, J.; Song, H.; Zhao, W.; Dai, J.; Zhu, H.; Wang, Z.; Weiss, P. S. Steering two-dimensional porous networks with σ-hole interactions of Br··· S and Br··· Br. Chem. Mater. 2019, 31 (8), 30413048,  DOI: 10.1021/acs.chemmater.9b01126
    37. 37
      Aakeroy, C. B.; Bryce, D. L.; Desiraju, G. R.; Frontera, A.; Legon, A. C.; Nicotra, F.; Rissanen, K.; Scheiner, S.; Terraneo, G.; Metrangolo, P. Definition of the chalcogen bond (IUPAC Recommendations 2019). Pure Appl. Chem. 2019, 91 (11), 18891892,  DOI: 10.1515/pac-2018-0713
    38. 38
      Biot, N.; Bonifazi, D. Chalcogen-bond driven molecular recognition at work. Coord. Chem. Rev. 2020, 413, 213243,  DOI: 10.1016/j.ccr.2020.213243
    39. 39
      De Silva, V.; Magueres, P. L.; Averkiev, B. B.; Aakeröy, C. B. Competition between chalcogen and halogen bonding assessed through isostructural species. Acta Crystallogr., Sect. C: Struct. Chem. 2022, 78 (12), 716721,  DOI: 10.1107/S205322962201052X
    40. 40
      Torubaev, Y. V.; Rozhkov, A. V.; Skabitsky, I. V.; Gomila, R. M.; Frontera, A.; Kukushkin, V. Y. Heterovalent chalcogen bonding: supramolecular assembly driven by the occurrence of a tellurium (ii)··· Ch (i)(Ch= S, Se, Te) linkage. Inorg. Chem. Front. 2022, 9 (21), 56355644,  DOI: 10.1039/D2QI01420C
    41. 41
      Ishigaki, Y.; Asai, K.; Jacquot de Rouville, H. P.; Shimajiri, T.; Hu, J.; Heitz, V.; Suzuki, T. Solid-State Assembly by Chelating Chalcogen Bonding in Quinodimethane Tetraesters Fused with a Chalcogenadiazole. ChemPlusChem. 2022, 87 (4), e202200075  DOI: 10.1002/cplu.202200075
    42. 42
      Romito, D.; Ho, P. C.; Vargas-Baca, I.; Bonifazi, D. Supramolecular Chemistry via Chalcogen Bonding Interactions. In Chalcogen Chemistry: Fundamentals and Applications; The Royal Society of Chemistry, 2023; pp 494528.
    43. 43
      Ho, P. C.; Wang, J. Z.; Meloni, F.; Vargas-Baca, I. Chalcogen bonding in materials chemistry. Coord. Chem. Rev. 2020, 422, 213464,  DOI: 10.1016/j.ccr.2020.213464
    44. 44
      Romito, D.; Fresta, E.; Cavinato, L. M.; Kählig, H.; Amenitsch, H.; Caputo, L.; Chen, Y.; Samorì, P.; Charlier, J. C.; Costa, R. D.; Bonifazi, D. Supramolecular Chalcogen-Bonded Semiconducting Nanoribbons at Work in Lighting Devices. Angew. Chem., Int. Ed. 2022, 61 (38), e202202137  DOI: 10.1002/anie.202202137
    45. 45
      Cameron, J.; Kanibolotsky, A. L.; Skabara, P. J. Lest we Forget-the Importance of Heteroatom Interactions in Heterocyclic Conjugated Systems, from Synthetic Metals to Organic Semiconductors. Adv. Mater. 2024, 36, 2302259,  DOI: 10.1002/adma.202302259
    46. 46
      Ren, B.; Lu, Y.; Wang, R.; Liu, H. First-principles study of chalcogen-bonded self-assembly structures on silicene: Some insight into the fabrication of molecular architectures on surfaces through chalcogen bonding. Chem. Phys. 2023, 565, 111763,  DOI: 10.1016/j.chemphys.2022.111763
    47. 47
      Wang, H.; Li, B.; Wang, X.; Yin, F.; Wei, Q.; Wang, X.; Ni, Y.; Wang, H. First-principles study of square chalcogen bond interactions and its adsorption behavior on silver surface. Phys. Chem. Chem. Phys. 2023, 25 (15), 1083610844,  DOI: 10.1039/D2CP05825A
    48. 48
      Yang, W.; Chai, X.; Chi, L.; Liu, X.; Cao, Y.; Lu, R.; Jiang, Y.; Tang, X.; Fuchs, H.; Li, T. From achiral molecular components to chiral supermolecules and supercoil self-assembly. Chem. Eur. J. 1999, 5 (4), 11441149,  DOI: 10.1002/(SICI)1521-3765(19990401)5:4<1144::AID-CHEM1144>3.0.CO;2-K
    49. 49
      Semenov, A.; Spatz, J. P.; Möller, M.; Lehn, J. M.; Sell, B.; Schubert, D.; Weidl, C. H.; Schubert, U. S. Controlled arrangement of supramolecular metal coordination arrays on surfaces. Angew. Chem., Int. Ed. 1999, 38 (17), 25472550,  DOI: 10.1002/(SICI)1521-3773(19990903)38:17<2547::AID-ANIE2547>3.0.CO;2-M
    50. 50
      Yokoyama, T.; Yokoyama, S.; Kamikado, T.; Okuno, Y.; Mashiko, S. Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature 2001, 413 (6856), 619621,  DOI: 10.1038/35098059
    51. 51
      Wu, T.; Xue, N.; Wang, Z.; Li, J.; Li, Y.; Huang, W.; Shen, Q.; Hou, S.; Wang, Y. Surface self-assembly involving the interaction between S and N atoms. Chem. Commun. 2021, 57, 13281331,  DOI: 10.1039/D0CC07931F
    52. 52
      Cozzolino, A. F.; Dimopoulos-Italiano, G.; Lee, L. M.; Vargas-Baca, I. Chalcogen-Nitrogen Secondary Bonding Interactions in the Gas Phase - Spectrometric Detection of Ionized Benzo-2,1,3-telluradiazole Dimers. Eur. J. Inorg. Chem. 2013, 2013, 27512756,  DOI: 10.1002/ejic.201201439
    53. 53
      Risto, M.; Reed, R. W.; Robertson, C. M.; Oilunkaniemi, R.; Laitinen, R. S.; Oakley, R. T. Self-association of the N-methyl benzotellurodiazolylium cation: implications for the generation of super-heavy atom radicals. Chem. Commun. 2008, 32783280,  DOI: 10.1039/b803159b
    54. 54
      Biot, N.; Bonifazi, D. Programming Recognition Arrays through Double Chalcogen-Bonding Interactions. Chem. Eur. J. 2018, 24 (21), 54395443,  DOI: 10.1002/chem.201705428
    55. 55
      Romito, D.; Biot, N.; Babudri, F.; Bonifazi, D. Non-covalent bridging of bithiophenes through chalcogen bonding grips. New J. Chem. 2020, 44 (17), 67326738,  DOI: 10.1039/C9NJ06202E
    56. 56
      Biot, N.; Bonifazi, D. Concurring Chalcogen-and Halogen-Bonding Interactions in Supramolecular Polymers for Crystal Engineering Applications. Chem. Eur. J. 2020, 26 (13), 29042913,  DOI: 10.1002/chem.201904762
    57. 57
      Romito, D.; Bonifazi, D. Engineering Te-Containing Recognition Modules for Chalcogen Bonding: Towards Supramolecular Polymeric Materials. Helv. Chim. Acta 2023, 106 (2), e202200159  DOI: 10.1002/hlca.202200159
    58. 58
      Chivers, T.; Laitinen, R. S. Tellurium: a maverick among the chalcogens. Chem. Soc. Rev. 2015, 44 (7), 17251739,  DOI: 10.1039/C4CS00434E
    59. 59
      Michalczyk, M.; Malik, M.; Zierkiewicz, W.; Scheiner, S. Experimental and theoretical studies of dimers stabilized by two chalcogen bonds in the presence of a N··· N pnicogen bond. J. Phys. Chem. A 2021, 125 (2), 657668,  DOI: 10.1021/acs.jpca.0c10814
    60. 60
      Scheiner, S. Principles guiding the square bonding motif containing a pair of chalcogen bonds between chalcogenadiazoles. J. Phys. Chem. A 2022, 126 (7), 11941203,  DOI: 10.1021/acs.jpca.1c10818
    61. 61
      Tsuzuki, S.; Sato, N. Origin of Attraction in Chalgogen-Nitrogen Interaction of 1, 2, 5-Chalcogenadiazole Dimers. J. Phys. Chem. B 2013, 117 (22), 68496855,  DOI: 10.1021/jp403200j
    62. 62
      Haberhauer, G.; Gleiter, R. The Nature of Strong Chalcogen Bonds Involving Chalcogen-Containing Heterocycles. Angew. Chem., Int. Ed. 2020, 59 (47), 2123621243,  DOI: 10.1002/anie.202010309
    63. 63
      Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132 (18), 64986506,  DOI: 10.1021/ja100936w
    64. 64
      Cioslowski, J. A Theory of Molecules: Atoms In Molecules. A Quantum Theory. Science 1991, 252 (5012), 15661567,  DOI: 10.1126/science.252.5012.1566-b
    65. 65
      Garrett, G. E.; Gibson, G. L.; Straus, R. N.; Seferos, D. S.; Taylor, M. S. Chalcogen bonding in solution: interactions of benzotelluradiazoles with anionic and uncharged Lewis bases. J. Am. Chem. Soc. 2015, 137 (12), 41264133,  DOI: 10.1021/ja512183e
    66. 66
      Nečas, D.; Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Open Physics 2012, 10 (1), 181188,  DOI: 10.2478/s11534-011-0096-2
    67. 67
      Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 2009, 21 (39), 395502,  DOI: 10.1088/0953-8984/21/39/395502
    68. 68
      Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77 (18), 38653868,  DOI: 10.1103/PhysRevLett.77.3865
    69. 69
      Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32 (7), 14561465,  DOI: 10.1002/jcc.21759
    70. 70
      Marzari, N.; Vanderbilt, D.; De Vita, A.; Payne, M. Thermal contraction and disordering of the Al (110) surface. Phys. Rev. Lett. 1999, 82 (16), 32963299,  DOI: 10.1103/PhysRevLett.82.3296
    71. 71
      Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132 (18), 64986506,  DOI: 10.1021/ja100936w
    72. 72
      Otero-de-la-Roza, A.; Johnson, E. R.; Luaña, V. Critic2: A program for real-space analysis of quantum chemical interactions in solids. Comput. Phys. Commun. 2014, 185 (3), 10071018,  DOI: 10.1016/j.cpc.2013.10.026
    73. 73
      Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44 (6), 12721276,  DOI: 10.1107/S0021889811038970
    74. 74
      Tersoff, J.; Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 1985, 31 (2), 805813,  DOI: 10.1103/PhysRevB.31.805
    75. 75
      Fonseca Guerra, C.; Handgraaf, J. W.; Baerends, E. J.; Bickelhaupt, F. M. Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis. J. Comput. Chem. 2004, 25 (2), 189210,  DOI: 10.1002/jcc.10351
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacsau.4c00325.

    • Experimental details and additional data (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.