Changes of Mass Spectra Patterns on a Brain Tissue Section Revealed by Deep Learning with Imaging Mass Spectrometry Data
- Hidemoto YamadaHidemoto YamadaDepartment of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanMore by Hidemoto Yamada
- ,
- Lili XuLili XuDepartment of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanMore by Lili Xu
- ,
- Fumihiro EtoFumihiro EtoDepartment of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanMore by Fumihiro Eto
- ,
- Rei TakeichiRei TakeichiDepartment of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanMore by Rei Takeichi
- ,
- Ariful IslamAriful IslamDepartment of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanMore by Ariful Islam
- ,
- Md. AI MamunMd. AI MamunDepartment of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanMore by Md. AI Mamun
- ,
- Chi ZhangChi ZhangDepartment of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanMore by Chi Zhang
- ,
- Ikuko YaoIkuko YaoDepartment of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanDepartment of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, JapanMore by Ikuko Yao
- ,
- Takumi SakamotoTakumi SakamotoDepartment of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanInternational Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanMore by Takumi Sakamoto
- ,
- Shuhei AramakiShuhei AramakiDepartment of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanDepartment of Radiation Oncology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanMore by Shuhei Aramaki
- ,
- Kenji KikushimaKenji KikushimaDepartment of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanInternational Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanMore by Kenji Kikushima
- ,
- Tomohito SatoTomohito SatoDepartment of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanInternational Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanMore by Tomohito Sato
- ,
- Yutaka TakahashiYutaka TakahashiDepartment of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanInternational Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanMore by Yutaka Takahashi
- ,
- Manabu MachidaManabu MachidaDepartment of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanMore by Manabu Machida
- ,
- Tomoaki Kahyo*Tomoaki Kahyo*Email: [email protected]Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanInternational Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanMore by Tomoaki Kahyo
- , and
- Mitsutoshi SetouMitsutoshi SetouDepartment of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanInternational Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanDepartment of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, JapanMore by Mitsutoshi Setou
Abstract

The characteristic patterns of mass spectra in imaging mass spectrometry (IMS) strongly reflect the tissue environment. However, the boundaries formed where different tissue environments collide have not been visually assessed. In this study, IMS and convolutional neural network (CNN), one of the deep learning methods, were applied to the extraction of characteristic mass spectra patterns from training brain regions on rodents’ brain sections. CNN produced classification models with high accuracy and low loss rate in any test data sets of mouse coronal sections measured by desorption electrospray ionization (DESI)-IMS and of mouse and rat sagittal sections by matrix-assisted laser desorption (MALDI)-IMS. On the basis of the extracted mass spectra pattern features, the histologically plausible segmentation and classification score imaging of the brain sections were obtained. The boundary imaging generated from classification scores showed the extreme changes of mass spectra patterns between the tissue environments, with no significant buffer zones for the intermediate state. The CNN-based analysis of IMS data is a useful tool for visually assessing the changes of mass spectra patterns on a tissue section, and it will contribute to a comprehensive view of the tissue environment.
Cited By
This article has not yet been cited by other publications.