ACS Publications. Most Trusted. Most Cited. Most Read
Heat Capacities of α,ω-Dichloroalkanes at Temperatures from 284.15 K to 353.15 K and a Group Additivity Analysis
My Activity

Figure 1Loading Img
    Article

    Heat Capacities of α,ω-Dichloroalkanes at Temperatures from 284.15 K to 353.15 K and a Group Additivity Analysis
    Click to copy article linkArticle link copied!

    View Author Information
    University of Łódź, Department of Physical Chemistry, Pomorska 165, 90-236 Łódź, Poland, and University of Silesia, Institute of Chemistry, Szkolna 9, 40-006 Katowice, Poland
    Other Access Options

    Journal of Chemical & Engineering Data

    Cite this: J. Chem. Eng. Data 2003, 48, 3, 492–496
    Click to copy citationCitation copied!
    https://doi.org/10.1021/je020042y
    Published March 26, 2003
    Copyright © 2003 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Heat capacities at constant pressure of five α,ω-dichloroalkanes (1,2-dichloroethane, 1,3-dichloropropane, 1,4-dichlorobutane, 1,5-dichloropentane, 1,6-dichlorohexane) were measured at temperatures ranging from 284 K to 353 K by using a highly sensitive Tian−Calvet differential scanning microcalorimeter (DSC). Changes in the standard procedures increased the accuracy of Cp measurements. The influence of the evaporation heat effect on the Cp value is analyzed. In the described method, the uncertainty of the measurements is estimated to be ±0.15% for uncertainties arising solely from the measurement system and method. The group contributions to Cp for CH2 and Cl and their temperature dependence were determined by a group additivity analysis.

    Copyright © 2003 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     Corresponding author. Fax:  (+48) 42 6355814. E-mail:  pawgor@ krysia.uni.lodz.pl.

     University of Łódź.

     University of Silesia.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 67 publications.

    1. Alain Valtz, Esther Neyrolles, Farid Brahim Belaribi, Christophe Coquelet. Volumetric Properties of Binary Mixtures of 1,2-Dichloroethane with Ethers from 278.15–333.15 K and at Atmospheric Pressure. Journal of Chemical & Engineering Data 2022, 67 (3) , 554-567. https://doi.org/10.1021/acs.jced.1c00810
    2. Mirosław Chorążewski, Eugene B. Postnikov, Kamil Oster, and Ilya Polishuk . Thermodynamic Properties of 1,2-Dichloroethane and 1,2-Dibromoethane under Elevated Pressures: Experimental Results and Predictions of a Novel DIPPR-Based Version of FT-EoS, PC-SAFT, and CP-PC-SAFT. Industrial & Engineering Chemistry Research 2015, 54 (39) , 9645-9656. https://doi.org/10.1021/acs.iecr.5b02626
    3. Paweł Góralski and Mariola Tkaczyk . Measurement and Prediction of the Molar Heat Capacities of Liquid Polyoxyethylene Glycol Monoalkyl Ethers (CnEm). Journal of Chemical & Engineering Data 2015, 60 (8) , 2240-2247. https://doi.org/10.1021/acs.jced.5b00051
    4. Miguel A. García-Castro, Patricia Amador, Julio M. Hernández-Pérez, Adrián E. Medina-Favela, and Henoc Flores . Experimental and Computational Thermochemistry of 3- and 4-Nitrophthalic Anhydride. The Journal of Physical Chemistry A 2014, 118 (21) , 3820-3826. https://doi.org/10.1021/jp5003929
    5. Marzena Dzida, Sylwia Jężak, Justyna Sumara, Monika Żarska, and Paweł Góralski . High-Pressure Physicochemical Properties of Ethyl Caprylate and Ethyl Caprate. Journal of Chemical & Engineering Data 2013, 58 (7) , 1955-1962. https://doi.org/10.1021/je400157s
    6. Ana M. Navarro, Begoña García, Francisco J. Hoyuelos, Indalecio A. Peñacoba, S. Ibeas, and José M. Leal . Heat Capacity Behavior and Structure of Alkan-1-ol/Alkylbenzoate Binary Solvents. The Journal of Physical Chemistry B 2012, 116 (32) , 9768-9775. https://doi.org/10.1021/jp302934b
    7. Sylwia Belica, Katarzyna Łudzik, and Bartłomiej Pałecz . Partial Molar Heat Capacities at Chosen Temperatures in the Range (298.15 to 328.15) K and Partial Molar Volumes at 298.15 K of N-Acetyl-N′-methyl-l-α-amino Acid Amides in Aqueous Solution. Journal of Chemical & Engineering Data 2012, 57 (5) , 1423-1432. https://doi.org/10.1021/je2012555
    8. Paweł Góralski and Mariola Tkaczyk . Heat Capacity of α,ω-Bromochloroalkanes and α,ω-Dibromoalkanes: Their Dependence on the Hydrocarbon Chain Length and Temperature (285.15 to 355.15) K. Journal of Chemical & Engineering Data 2012, 57 (3) , 790-795. https://doi.org/10.1021/je201002j
    9. Mirosław Chora̧żewski, Paweł Góralski, Małgorzata Hrynko, Jean-Pierre Grolier, and Emmerich Wilhelm . Thermodynamic and Acoustic Properties of Mixtures of 1,6-Dichlorohexane with Heptane from (293 to 313) K. Journal of Chemical & Engineering Data 2010, 55 (12) , 5471-5477. https://doi.org/10.1021/je100610v
    10. Małgorzata Jóźwiak, Monika A. Kosiorowska, and Michał Wasiak. Effect of Temperature on the Process of Hydrophobic Hydration. Part II. Hydrophobic Hydration of 15-Crown-5 and 18-Crown-6 Ethers. Journal of Chemical & Engineering Data 2010, 55 (11) , 5138-5143. https://doi.org/10.1021/je100700z
    11. Paweł Góralski and Mariola Tkaczyk. Heat Capacities of Some Liquid α,ω-Alkanediamines in the Temperature Range between (293.15 and 353.15) K. Journal of Chemical & Engineering Data 2010, 55 (2) , 953-955. https://doi.org/10.1021/je900537y
    12. Edward Zorȩbski, Marzena Dzida and Magdalena Cempa. Study of the Effects of Temperature and Pressure on the Acoustic and Thermodynamic Properties of 2-Methyl-2,4-pentanediol. Journal of Chemical & Engineering Data 2008, 53 (8) , 1950-1955. https://doi.org/10.1021/je800244q
    13. Paweł Góralski and Mariola Tkaczyk. Heat Capacities of Some Liquid α,ω-Alkanediols within the Temperature Range between (293.15 and 353.15) K. Journal of Chemical & Engineering Data 2008, 53 (8) , 1932-1934. https://doi.org/10.1021/je800356x
    14. Paweł Góralski and, Henryk Piekarski. Heat Capacities and Densities of Some Liquid Chloro-, Bromo-, and Bromochloro-Substituted Benzenes. Journal of Chemical & Engineering Data 2007, 52 (2) , 655-659. https://doi.org/10.1021/je600573w
    15. Mirosław Chora̧żewski. Thermophysical and Acoustical Properties of the Binary Mixtures 1,2-Dibromoethane + Heptane within the Temperature Range from 293.15 K to 313.15 K. Journal of Chemical & Engineering Data 2007, 52 (1) , 154-163. https://doi.org/10.1021/je0603325
    16. Mirosław Chora̧żewski and, Mariola Tkaczyk. Heat Capacity, Speed of Ultrasound, and Density for 1,5-Dibromopentane + Heptane within the Temperature Range from 293.15 K to 313.15 K. Journal of Chemical & Engineering Data 2006, 51 (5) , 1825-1831. https://doi.org/10.1021/je060200b
    17. Mirosław Chora̧żewski,, Paweł Góralski, and, Mariola Tkaczyk. Heat Capacities of 1-Chloroalkanes and 1-Bromoalkanes within the Temperature Range from 284.15 K to 353.15 K. A Group Additivity and Molecular Connectivity Analysis. Journal of Chemical & Engineering Data 2005, 50 (2) , 619-624. https://doi.org/10.1021/je049652j
    18. Yury Chernyak and, John H. Clements. Vapor Pressure and Liquid Heat Capacity of Alkylene Carbonates. Journal of Chemical & Engineering Data 2004, 49 (5) , 1180-1184. https://doi.org/10.1021/je034173q
    19. Dinesh Singh, Javid Safarov, Thorsten Windmann, Karsten Müller, Jadran Vrabec. Isobaric heat capacity of liquid polyoxymethylene dimethyl ethers (OME x ) under ambient pressure. The Journal of Chemical Thermodynamics 2025, 202 , 107412. https://doi.org/10.1016/j.jct.2024.107412
    20. Roman N. Belenkov, Vyachelav V. Melent’ev, Alexander V. Sychev, Olga S. Ryshkova, Michał Wasiak, Mirosław Chora̧żewski, Eugene B. Postnikov. Acoustic and volumetric properties of triflate-based ionic liquids at high pressures. Fluid Phase Equilibria 2024, 586 , 114179. https://doi.org/10.1016/j.fluid.2024.114179
    21. Felix Fiedler, Joel Karog, Eric W. Lemmon, Monika Thol. Fundamental Equation of State for Fluid Tetrahydrofuran. International Journal of Thermophysics 2023, 44 (10) https://doi.org/10.1007/s10765-023-03258-3
    22. Magdalena Tyczyńska, Aleksandra Dentkiewicz, Małgorzata Jóźwiak. Thermodynamic and Thermal Analyze of N,N-Dimethylformamide + 1-Butanol Mixture Properties Based on Density, Sound Velocity and Heat Capacity Data. Molecules 2023, 28 (12) , 4698. https://doi.org/10.3390/molecules28124698
    23. Jeremiasz Pilarz, Joanna Feder-Kubis, Eugene Postnikov, Vyacheslav V. Melent'ev, Olga S. Ryshkova, Vadim I. Korotkovskii, Anton K. Radchenko, Michał Wasiak, Ilya Polishuk, Mirosław Chorążewski. Speeds of sound and densities in imidazolium-based ionic liquids under elevated pressures: New experimental data and modelling by spinodal method and CP-PC-SAFT. The Journal of Chemical Thermodynamics 2023, 176 , 106905. https://doi.org/10.1016/j.jct.2022.106905
    24. Małgorzata Jóźwiak, Marlena Komudzińska, Magdalena Tyczyńska, Wojciech Marczak, Andrzej Jóźwiak. Heat capacity of six glymes in N,N-dimethylformamide + water mixtures. Solvation of glymes. Journal of Molecular Liquids 2022, 361 , 119624. https://doi.org/10.1016/j.molliq.2022.119624
    25. Alexander P. Shchamialiou, Vladimir S. Samuilov, Fares M. Mosbakh, Nadejda V. Holubeva, Aleh G. Paddubski, Dana Drăgoescu, Florinela Sîrbu. Densities, speed of sound, and derived thermodynamic properties of toluene, tetradecane, and 1-chlorohexane in the compressed liquid region. Fluid Phase Equilibria 2020, 507 , 112427. https://doi.org/10.1016/j.fluid.2019.112427
    26. Rudolf Naef. Calculation of the Isobaric Heat Capacities of the Liquid and Solid Phase of Organic Compounds at 298.15K by Means of the Group-Additivity Method. Molecules 2020, 25 (5) , 1147. https://doi.org/10.3390/molecules25051147
    27. D. González-Salgado, K. Zemánková, J. Troncoso, L. Romaní. Volumetric and thermal excess properties of the {(1,2-dichloroethane or 1,4-dichlorobutane) + n-dodecane systems}. The Journal of Chemical Thermodynamics 2020, 141 , 105031. https://doi.org/10.1016/j.jct.2017.03.037
    28. Marlena Komudzińska, Magdalena Tyczyńska, Małgorzata Jóźwiak, Andrzej Burakowski, Jacek Gliński. Volumetric, acoustic and thermal properties of aqueous N,N-dimethylformamide system. Effect of temperature and composition. Journal of Molecular Liquids 2020, 300 , 112321. https://doi.org/10.1016/j.molliq.2019.112321
    29. Magdalena Tyczyńska, Małgorzata Jóźwiak, Marlena Komudzińska, Tomasz Majak. Effect of temperature and composition on the volumetric, acoustic and thermal properties of N,N-dimethylformamide + propan-1-ol mixture. Journal of Molecular Liquids 2019, 290 , 111124. https://doi.org/10.1016/j.molliq.2019.111124
    30. Michał Wasiak. Two-point scaling analysis of the isobaric heat capacity of dodecyltrimethylammonium bromide aqueous solutions in the presence of the n-hexan-1-ol as a co-surfactant. Journal of Molecular Liquids 2019, 285 , 557-561. https://doi.org/10.1016/j.molliq.2019.04.056
    31. Miguel A. García-Castro, Patricia Amador, Aarón Rojas, Julio M. Hernández-Pérez, J.M. Solano-Altamirano, Henoc Flores, Karina Salas-López. Experimental and computational thermochemistry of 3- and 4-nitrophthalic acids. The Journal of Chemical Thermodynamics 2018, 127 , 117-125. https://doi.org/10.1016/j.jct.2018.07.026
    32. M. Wasiak, M. Komudzińska, H. Piekarski, M. Tkaczyk. Heat capacity and phase behaviour of {pentaethylene glycol monoheptyl ether + water} system. Two-point scaling approach. Journal of Molecular Liquids 2018, 266 , 781-788. https://doi.org/10.1016/j.molliq.2018.07.006
    33. Monika Thol, Gábor Rutkai, Andreas Köster, Svetlana Miroshnichenko, Wolfgang Wagner, Jadran Vrabec, Roland Span. Equation of state for 1,2-dichloroethane based on a hybrid data set. Molecular Physics 2017, 115 (9-12) , 1166-1185. https://doi.org/10.1080/00268976.2016.1262557
    34. Michał Wasiak, Mariola Tkaczyk, Henryk Piekarski. Heat capacity and phase behaviour of aqueous solutions of triethylene glycol monopentyl ether. Two point scaling analysis. Fluid Phase Equilibria 2017, 431 , 16-23. https://doi.org/10.1016/j.fluid.2016.10.005
    35. Joseph W. Hogge, Neil F. Giles, Thomas A. Knotts, Richard L. Rowley, W. Vincent Wilding. The Riedel vapor pressure correlation and multi-property optimization. Fluid Phase Equilibria 2016, 429 , 149-165. https://doi.org/10.1016/j.fluid.2016.08.032
    36. Paweł Góralski, Mariola Tkaczyk, Katarzyna Łudzik. Heat capacity of dowanols within a temperature range of (275.15–339.15) K. Measurements and prediction. Fluid Phase Equilibria 2016, 430 , 13-18. https://doi.org/10.1016/j.fluid.2016.09.002
    37. Michał Wasiak, Mariola Tkaczyk, Henryk Piekarski, Paweł Góralski. Heat capacity and phase behaviour of {1-propoxypropan-2-ol–water} system: Two-point scaling analysis. Journal of Molecular Liquids 2016, 224 , 842-848. https://doi.org/10.1016/j.molliq.2016.10.067
    38. A. Pietrzak, K. Łudzik. Excess volumes and excess heat capacities of {1,2-alkanediol+methanol} mixtures and ionic volumes in these systems. Fluid Phase Equilibria 2015, 401 , 56-63. https://doi.org/10.1016/j.fluid.2015.05.016
    39. V. K. Sharma, Rajni Dua, D. Sharma. Topological Investigations of Excess Heat Capacities of Binary and Ternary Liquid Mixtures Containing o-Chlorotoluene, Amides and Cyclohexane at 298.15, 303.15 and 308.15 K. Journal of Solution Chemistry 2015, 44 (7) , 1452-1478. https://doi.org/10.1007/s10953-015-0358-5
    40. V.K. Sharma, A. Rohilla, S. Bhagour, J.S. Yadav. Excess heat capacities of mixtures containing 1-methylpyrrolidin-2-one, chlorotoluenes and benzene. The Journal of Chemical Thermodynamics 2015, 85 , 1-12. https://doi.org/10.1016/j.jct.2014.12.022
    41. Karolina Machanová, Zdeněk Wagner, Adéla Andresová, Jan Rotrekl, Aurélien Boisset, Johan Jacquemin, Magdalena Bendová. Thermal Properties of Alkyl-triethylammonium bis $$\{$$ { (trifluoromethyl)sulfonyl $$\}$$ } imide Ionic Liquids. Journal of Solution Chemistry 2015, 44 (3-4) , 790-810. https://doi.org/10.1007/s10953-015-0323-3
    42. Mariola Tkaczyk, Henryk Piekarski, Paweł Góralski. Phase Behavior and Heat Capacity of {DPnP + Water} Mixtures at the Temperature Range of 273.15–338.15 K. Journal of Chemistry 2015, 2015 , 1-7. https://doi.org/10.1155/2015/932819
    43. A. Pietrzak, H. Piekarski. Molar heat capacities for {isomer of butanediol+methanol} as function of mixture composition and temperature. The Journal of Chemical Thermodynamics 2014, 79 , 171-177. https://doi.org/10.1016/j.jct.2014.07.023
    44. V.K. Sharma, Rajni Dua, Dimple, S.K. Jangra. Heat capacities of binary and ternary mixtures containing o -chlorotoluene, cyclic ether and aromatic hydrocarbons. Fluid Phase Equilibria 2014, 378 , 83-92. https://doi.org/10.1016/j.fluid.2014.06.024
    45. Edward Zorębski, Paweł Góralski, Bożena Godula, Michał Zorębski. Thermodynamic and acoustic properties of binary mixtures of 1-butanol with 1,2-butanediol. The comparison with the results for 1,3-, and 1,4-butanediol. The Journal of Chemical Thermodynamics 2014, 68 , 145-152. https://doi.org/10.1016/j.jct.2013.08.033
    46. M. Wasiak, W. Kunz, H. Piekarski. Heat capacities and the two-point scaling analysis of short-chain surfactant solutions. Fluid Phase Equilibria 2013, 358 , 78-82. https://doi.org/10.1016/j.fluid.2013.08.005
    47. Marzena Dzida, Sylwia Jężak, Justyna Sumara, Monika Żarska, Paweł Góralski. High pressure physicochemical properties of biodiesel components used for spray characteristics in diesel injection systems. Fuel 2013, 111 , 165-171. https://doi.org/10.1016/j.fuel.2013.04.031
    48. K. Łudzik, H. Piekarski, K. Kubalczyk, M. Wasiak. Micellization properties of cationic gemini surfactants in aqueous solution. Thermochimica Acta 2013, 558 , 29-35. https://doi.org/10.1016/j.tca.2013.01.016
    49. Henryk Piekarski, Mariola Tkaczyk, Magdalena Tyczyńska. Heat capacity and phase behavior of aqueous diethylene glycol n-pentyl ether by DSC. Thermochimica Acta 2012, 550 , 19-26. https://doi.org/10.1016/j.tca.2012.09.027
    50. Henryk Piekarski, Michał Wasiak, Leszek Wojtczak. Modification of the Two-Point Scaling Theory for the Description of the Phase Transition in Solution. Analysis of Sodium Octanoate Aqueous Solutions. Journal of Solution Chemistry 2012, 41 (2) , 318-334. https://doi.org/10.1007/s10953-012-9795-6
    51. Anna Przybyła, Mirosław Chorążewski, Edward Zorębski, Wojciech Marczak. Thermodynamic and Acoustic Properties of Mixtures of Dibromomethane + Heptane. International Journal of Thermophysics 2011, 32 (4) , 852-866. https://doi.org/10.1007/s10765-010-0773-1
    52. Jovan Jovanovic, Andjela Knezevic-Stevanovic, Dusan Grozdanic. Prediction of high pressure liquid heat capacities of organic compounds by a group contribution method. Journal of the Serbian Chemical Society 2011, 76 (3) , 417-423. https://doi.org/10.2298/JSC100511031J
    53. Milan Zábranský, Zdenka Kolská, Vlastimil Růžička, Eugene S. Domalski. Heat Capacity of Liquids: Critical Review and Recommended Values. Supplement II. Journal of Physical and Chemical Reference Data 2010, 39 (1) https://doi.org/10.1063/1.3182831
    54. Dariusz Waliszewski, Henryk Piekarski. Heat capacities of the mixtures of ionic liquids with acetonitrile. The Journal of Chemical Thermodynamics 2010, 42 (2) , 189-192. https://doi.org/10.1016/j.jct.2009.08.002
    55. Marzena Dzida. Study of the Effects of Temperature and Pressure on the Thermodynamic and Acoustic Properties of 2-Methyl-1-butanol at Temperatures from 293K to 318K and Pressures up to 100MPa. International Journal of Thermophysics 2010, 31 (1) , 55-69. https://doi.org/10.1007/s10765-009-0607-1
    56. M. Chorążewski, M. Skrzypek. Thermodynamic and Acoustic Properties of 1,3-Dibromopropane and 1,5-Dibromopentane within the Temperature Range From 293K to 313K at Pressures up to 100MPa. International Journal of Thermophysics 2010, 31 (1) , 26-41. https://doi.org/10.1007/s10765-009-0610-6
    57. Edward Zorębski. Internal pressure in liquids and binary liquid mixtures. Journal of Molecular Liquids 2009, 149 (1-2) , 52-54. https://doi.org/10.1016/j.molliq.2009.07.010
    58. Marzena Dzida, Paweł Góralski. Molar heat capacities for (2-methyl-2-butanol+heptane) mixtures and cyclopentanol at temperatures from (284 to 353)K. The Journal of Chemical Thermodynamics 2009, 41 (3) , 402-413. https://doi.org/10.1016/j.jct.2008.10.010
    59. Marzena Dzida, Piotr Prusakiewicz. The effect of temperature and pressure on the physicochemical properties of petroleum diesel oil and biodiesel fuel. Fuel 2008, 87 (10-11) , 1941-1948. https://doi.org/10.1016/j.fuel.2007.10.010
    60. Dariusz Waliszewski. Heat capacities of the mixtures of ionic liquids with methanol at temperatures from 283.15K to 323.15K. The Journal of Chemical Thermodynamics 2008, 40 (2) , 203-207. https://doi.org/10.1016/j.jct.2007.07.001
    61. Edward Zorębski, Paweł Góralski. Molar heat capacities for (1-butanol+1,4-butanediol, 2,3-butanediol, 1,2-butanediol, and 2-methyl-2,4-pentanediol) as function of temperature. The Journal of Chemical Thermodynamics 2007, 39 (12) , 1601-1607. https://doi.org/10.1016/j.jct.2007.04.011
    62. Marzena Dzida, Paweł Góralski. Excess molar heat capacities for (decan-1-ol+n-heptane) at temperatures from (290 to 318)K. Experimental results and theoretical description using the ERAS model. The Journal of Chemical Thermodynamics 2006, 38 (8) , 962-969. https://doi.org/10.1016/j.jct.2005.10.009
    63. H. Piekarski, M. Tkaczyk. Heat capacity and phase behavior of {C6E4+water} solutions by DSC. Journal of Thermal Analysis and Calorimetry 2006, 83 (3) , 541-547. https://doi.org/10.1007/s10973-005-7496-8
    64. H. Piekarski, M. Tkaczyk, M. Wasiak, L. Wojtczak, T. Rychtelska, I. Zasada. Two-point scaling analysis of simple micellar solution: The C10TAB+water system. Journal of Molecular Liquids 2005, 122 (1-3) , 55-60. https://doi.org/10.1016/j.molliq.2005.01.010
    65. D. Waliszewski, I. Stępniak, H. Piekarski, A. Lewandowski. Heat capacities of ionic liquids and their heats of solution in molecular liquids. Thermochimica Acta 2005, 433 (1-2) , 149-152. https://doi.org/10.1016/j.tca.2005.03.001
    66. Henryk Piekarski, Mariola Tkaczyk. Heat capacity and phase behaviour of aqueous 2-(hexyloxytetraethoxy)ethanol by DSC. Thermochimica Acta 2005, 428 (1-2) , 113-118. https://doi.org/10.1016/j.tca.2004.11.001
    67. Edward Zorębski, Mirosław Chorążewski, Mariola Tkaczyk. Excess molar heat capacities for (1-butanol+1,3-butanediol) at temperatures from (285 to 353) K. The Journal of Chemical Thermodynamics 2005, 37 (3) , 281-287. https://doi.org/10.1016/j.jct.2004.09.007

    Journal of Chemical & Engineering Data

    Cite this: J. Chem. Eng. Data 2003, 48, 3, 492–496
    Click to copy citationCitation copied!
    https://doi.org/10.1021/je020042y
    Published March 26, 2003
    Copyright © 2003 American Chemical Society

    Article Views

    418

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.