ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Solubility of 1-Alkyl-3-methylimidazolium Hexafluorophosphate in Hydrocarbons

View Author Information
Warsaw University of Technology, Faculty of Chemistry, Physical Chemistry Division, Noakowskiego 3, 00-664 Warsaw, Poland
Cite this: J. Chem. Eng. Data 2003, 48, 3, 451–456
Publication Date (Web):February 27, 2003
https://doi.org/10.1021/je020145g
Copyright © 2003 American Chemical Society

    Article Views

    1994

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The solubilities of 1-ethyl-3-methylimidazolium hexafluorophosphate, [emim][PF6], in aromatic hydrocarbons (benzene, toluene, ethylbenzene, o-xylene, m-xylene, p-xylene) and of 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6], in the same aromatic hydrocarbons, in n-alkanes (pentane, hexane, heptane, octane), and in cyclohydrocarbons (cyclopentane, cyclohexane) have been measured by a dynamic method from 290 K to the melting point of the ionic liquid or to the boiling point of the solvent. The melting point, enthalpy of fusion, and enthalpies of solid−solid phase transitions were determined by differential scanning calorimetry (DSC). The solubilities of [emim][PF6] and [bmim][PF6] in aromatic hydrocarbons decrease with an increase of the molecular weight of the solvent. The differences of the solubilities in o-, m-, and p-xylene are not significant. The intermolecular solute−solvent interactions are very small. The liquidus curves were correlated by means of the UNIQUAC and NRTL equations, utilizing parameters derived from the solid−liquid equilibrium. The average root-mean-square deviation of the solubility temperatures for all solvents was 0.41 K and depended on the particular equation used.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This contribution will be part of a special print edition containing papers presented at the Workshop on Ionic Liquids at the 17th IUPAC Conference on Chemical Thermodynamics, Rostock, Germany, July 28 to August 2, 2002.

    *

     Corresponding author. E-mail:  [email protected].

    Cited By

    This article is cited by 169 publications.

    1. Chenyu Tang, Giacomo Saielli, Yanting Wang. Influence of Anion Species on Liquid–Liquid Phase Separation in [EMIm+][X–]/Benzene Mixtures. The Journal of Physical Chemistry B 2023, 127 (49) , 10583-10591. https://doi.org/10.1021/acs.jpcb.3c06205
    2. Dhruve Kumar Mital, Paul Nancarrow, Taleb Hassan Ibrahim, Nabil Abdel Jabbar, Mustafa I. Khamis. Ionic Liquid Melting Points: Structure–Property Analysis and New Hybrid Group Contribution Model. Industrial & Engineering Chemistry Research 2022, 61 (13) , 4683-4706. https://doi.org/10.1021/acs.iecr.1c04292
    3. Ctirad Červinka, Martin Klajmon, Vojtěch Štejfa. Cohesive Properties of Ionic Liquids Calculated from First Principles. Journal of Chemical Theory and Computation 2019, 15 (10) , 5563-5578. https://doi.org/10.1021/acs.jctc.9b00625
    4. Yunxiang Qiao, Wenbao Ma, Nils Theyssen, Chen Chen, and Zhenshan Hou . Temperature-Responsive Ionic Liquids: Fundamental Behaviors and Catalytic Applications. Chemical Reviews 2017, 117 (10) , 6881-6928. https://doi.org/10.1021/acs.chemrev.6b00652
    5. Patricia Fernández Requejo, Ismael Díaz, Emilio J. González, and Ángeles Domínguez . Mutual Solubility of Aromatic Hydrocarbons in Pyrrolidinium and Ammonium-Based Ionic Liquids and Its Modeling Using the Cubic-Plus-Association (CPA) Equation of State. Journal of Chemical & Engineering Data 2017, 62 (2) , 633-642. https://doi.org/10.1021/acs.jced.6b00655
    6. Kai Zhang, Xianbao Cui, Tianyang Feng, Ying Zhang, and Haofei Liu . Solubilities of Diethyl Phthalate, Dicyclopentadiene, and Styrene in Ionic Liquid 1-Ethyl-3-methylimidazolium Acetate. Journal of Chemical & Engineering Data 2017, 62 (2) , 857-863. https://doi.org/10.1021/acs.jced.6b00901
    7. Ricardo A. M. Faria, Tiago F. M. Vieira, Catarina I. Melo, and Ewa Bogel-Łukasik . Solubility Data as a Response for a Challenge for Formulation Chemists: Imidazolium-Based Ionic Liquids and Antitubercular Antibiotic Medicines. Journal of Chemical & Engineering Data 2016, 61 (9) , 3116-3126. https://doi.org/10.1021/acs.jced.6b00201
    8. Dzmitry H. Zaitsau, Andrei V. Yermalayeu, Vladimir N. Emel’yanenko, Simon Butler, Thomas Schubert, and Sergey P. Verevkin . Thermodynamics of Imidazolium-Based Ionic Liquids Containing PF6 Anions. The Journal of Physical Chemistry B 2016, 120 (32) , 7949-7957. https://doi.org/10.1021/acs.jpcb.6b06081
    9. Fumiya Nemoto, Maiko Kofu, and Osamu Yamamuro . Thermal and Structural Studies of Imidazolium-Based Ionic Liquids with and without Liquid-Crystalline Phases: The Origin of Nanostructure. The Journal of Physical Chemistry B 2015, 119 (15) , 5028-5034. https://doi.org/10.1021/acs.jpcb.5b01080
    10. Cui Huang, Zhiping Xie, Jinchao Xu, Yujia Qin, Yanni Du, Shichao Du, and Junbo Gong . Experimental and Modeling Studies on the Solubility of d-Pantolactone in Four Pure Solvents and Ethanol–Water Mixtures. Journal of Chemical & Engineering Data 2015, 60 (3) , 870-875. https://doi.org/10.1021/je500996n
    11. Jia-rong Guo, Ling-Hua Zhuang, Guo-Wei Wang, Yan Wang, and Jie Sun . Solubilities of 1,1′-[1,2-Ethanediylbis(oxy-1,2-ethanediyl)]bis-[3-methyl-1H-imidazolium-1-yl] Dihexafluorophosphate in Water, Methanol, Ethanol, Dimethylformamide, Dimethyl Sulfoxide, and (Acetone + Water) Binary Solvent Mixtures. Journal of Chemical & Engineering Data 2014, 59 (9) , 2827-2833. https://doi.org/10.1021/je5004466
    12. Takatsugu Endo, Hyuma Masu, Kozo Fujii, Takeshi Morita, Hiroko Seki, Sabyasachi Sen, and Keiko Nishikawa . Determination of Missing Crystal Structures in the 1-Alkyl-3-methylimidazolium Hexafluorophosphate Series: Implications on Structure–Property Relationships. Crystal Growth & Design 2013, 13 (12) , 5383-5390. https://doi.org/10.1021/cg401293g
    13. Christiane Wertz, Jochen K. Lehmann, and Andreas Heintz . Liquid–Liquid Phase Equilibria of the Binary Ionic Liquid Systems [Cn MIM][NTf2] + n-Butanol, + n-Pentanol, + H2O Using UV Spectroscopic and Densimetric Analytical Methods. Journal of Chemical & Engineering Data 2013, 58 (9) , 2375-2380. https://doi.org/10.1021/je300672q
    14. Lexing Xue, Xianbao Cui, Ying Zhang, Tianyang Feng, Zheng Tian, and Yanmei Peng . Solid–Liquid Equilibria of 1-Ethyl-3-methylimidazolium Hexafluorophosphate + Polyols. Journal of Chemical & Engineering Data 2013, 58 (9) , 2389-2394. https://doi.org/10.1021/je301265w
    15. Marina P. Shevelyova, Yauheni U. Paulechka, Gennady J. Kabo, Andrey V. Blokhin, and Andrey G. Kabo , Tatiana M. Gubarevich . Physicochemical Properties of Imidazolium-Based Ionic Nanofluids: Density, Heat Capacity, and Enthalpy of Formation. The Journal of Physical Chemistry C 2013, 117 (9) , 4782-4790. https://doi.org/10.1021/jp3059432
    16. Stephan Josef Aschauer and Andreas Jess . Effective and Intrinsic Kinetics of the Two-Phase Alkylation of i-Paraffins with Olefins Using Chloroaluminate Ionic Liquids As Catalyst. Industrial & Engineering Chemistry Research 2012, 51 (50) , 16288-16298. https://doi.org/10.1021/ie302259j
    17. Annegret Stark, Bernd Ondruschka, Dzmitry H. Zaitsau, and Sergey P. Verevkin . Biomass-Derived Platform Chemicals: Thermodynamic Studies on the Extraction of 5-Hydroxymethylfurfural from Ionic Liquids. Journal of Chemical & Engineering Data 2012, 57 (11) , 2985-2991. https://doi.org/10.1021/je300529j
    18. Yong Zhang and Edward J. Maginn . A Simple AIMD Approach to Derive Atomic Charges for Condensed Phase Simulation of Ionic Liquids. The Journal of Physical Chemistry B 2012, 116 (33) , 10036-10048. https://doi.org/10.1021/jp3037999
    19. A. B. Pereiro, A. Rodriguez, M. Blesic, K. Shimizu, J. N. Canongia Lopes, and L. P. N. Rebelo . Mixtures of Pyridine and Nicotine with Pyridinium-Based Ionic Liquids. Journal of Chemical & Engineering Data 2011, 56 (12) , 4356-4363. https://doi.org/10.1021/je2001446
    20. Bai Juan, Jiang Pan, Xia Shuqian, and Ma Peisheng . Measurement and Study on the Liquid–Liquid Equilibrium of Ionic Liquids with Aliphatic Alcohols. Journal of Chemical & Engineering Data 2011, 56 (11) , 3963-3970. https://doi.org/10.1021/je101261z
    21. Shruti Trivedi and Siddharth Pandey . Densities of 1-Butyl-3-methylimidazolium Hexafluorophosphate + Poly(ethylene glycol) in the Temperature Range (283.15 to 363.15) K. Journal of Chemical & Engineering Data 2011, 56 (5) , 2168-2174. https://doi.org/10.1021/je1012229
    22. Ana R. Ferreira, Mara G. Freire, Jorge C. Ribeiro, Fernando M. Lopes, João G. Crespo, and João A. P. Coutinho . An Overview of the Liquid−Liquid Equilibria of (Ionic Liquid + Hydrocarbon) Binary Systems and Their Modeling by the Conductor-like Screening Model for Real Solvents. Industrial & Engineering Chemistry Research 2011, 50 (9) , 5279-5294. https://doi.org/10.1021/ie102471b
    23. Andrzej Marciniak . Influence of Anion Structure on the Liquid−Liquid Equilibria of 1-Ethyl-3-methyl-imidazolium Cation Based Ionic Liquid-Hydrocarbon Binary Systems. Journal of Chemical & Engineering Data 2011, 56 (3) , 368-374. https://doi.org/10.1021/je101114r
    24. Santiago Aparicio, Mert Atilhan, and Ferdi Karadas . Thermophysical Properties of Pure Ionic Liquids: Review of Present Situation. Industrial & Engineering Chemistry Research 2010, 49 (20) , 9580-9595. https://doi.org/10.1021/ie101441s
    25. Jana Dreiseitlová, Karel Řehák, and Remko Vreekamp . Mutual Solubility of Pyridinium-Based Tetrafluoroborates and Toluene. Journal of Chemical & Engineering Data 2010, 55 (9) , 3051-3054. https://doi.org/10.1021/je901065e
    26. Jun Wang, Shi-De Wu, and Xu-Zhao Yang. Solubility of 1,1′-(Butane-1,4-diyl)-bis(3-methylpyridinium) Dihexafluorophosphate in Different Solvents from (288.15 to 333.15) K. Journal of Chemical & Engineering Data 2010, 55 (9) , 3942-3945. https://doi.org/10.1021/je9010954
    27. Takatsugu Endo, Tatsuya Kato and Keiko Nishikawa. Effects of Methylation at the 2 Position of the Cation Ring on Phase Behaviors and Conformational Structures of Imidazolium-Based Ionic Liquids. The Journal of Physical Chemistry B 2010, 114 (28) , 9201-9208. https://doi.org/10.1021/jp104123v
    28. Xu-Zhao Yang and Jun Wang. Solubility of 1,1′-(Butane-1,4-diyl)-bis(3-methyl-1H-imidazolium-1-yl) Dihexafluorophosphate in Water, Acetophenone, Cyclohexanone, Acetylacetone, and 2-Butanone. Journal of Chemical & Engineering Data 2010, 55 (7) , 2594-2595. https://doi.org/10.1021/je900826p
    29. Andrzej Marciniak and Ewa Karczemna. Influence of Cation Structure on Binary Liquid−Liquid Equilibria for Systems Containing Ionic Liquids Based on Trifluoromethanesulfonate Anion with Hydrocarbons. The Journal of Physical Chemistry B 2010, 114 (16) , 5470-5474. https://doi.org/10.1021/jp100994d
    30. Xu-Zhao Yang and Jun Wang. Solubility of 1,1′-(Ethane-1,2-diyl)-bis(3-methylpyridinium) Dihexafluorophosphate in Different Solvents. Journal of Chemical & Engineering Data 2010, 55 (4) , 1710-1713. https://doi.org/10.1021/je900627q
    31. Xu-Zhao Yang and Jun Wang. Solubilities of 1,1′-(Propane-1,3-diyl)-bis(3-methyl-1H-imidazolium-1-yl) Dihexafluorophosphate in Different Solvents. Journal of Chemical & Engineering Data 2010, 55 (4) , 1708-1709. https://doi.org/10.1021/je9006585
    32. Azita Ahosseini, Brent Sensenich, Laurence R. Weatherley and Aaron M. Scurto. Phase Equilibrium, Volumetric, and Interfacial Properties of the Ionic Liquid, 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide and 1-Octene. Journal of Chemical & Engineering Data 2010, 55 (4) , 1611-1617. https://doi.org/10.1021/je900697w
    33. Xu-Zhao Yang, Jun Wang and Zhen-Zhen Zhang. Solubilities of 1,1-(Hexane-1,6-diyl)-bis(pyridinium) Dihexafluorophosphate in (Water + Acetone). Journal of Chemical & Engineering Data 2010, 55 (2) , 1022-1024. https://doi.org/10.1021/je9004855
    34. Xu-Zhao Yang and Jun Wang. Solubilities of 1,1′-(Ethane-1,2-diyl)-bis(pyridinium) Dihexafluorophosphate in Aqueous Acetone Mixtures. Journal of Chemical & Engineering Data 2010, 55 (2) , 1064-1066. https://doi.org/10.1021/je900524t
    35. Xu-Zhao Yang, Jun Wang, Zhen-Zhen Zhang and Gang-Sen Li. Solubilities of 1,1′-(Pentane-1,5-diyl)-bis(pyridinium) Dihexafluorophosphate in Dimethyl Sulfoxide + Water. Journal of Chemical & Engineering Data 2010, 55 (1) , 551-553. https://doi.org/10.1021/je900355h
    36. Xu-Zhao Yang, Jun Wang and Zhen-Zhen Zhang. Solubilities of 1,1′-(Propane-1,3-diyl)-bis(pyridinium) Dihexafluorophosphate in Dimethyl Sulfoxide + Water. Journal of Chemical & Engineering Data 2010, 55 (1) , 586-588. https://doi.org/10.1021/je900386p
    37. Takatsugu Endo, Tatsuya Kato, Ken-ichi Tozaki and Keiko Nishikawa. Phase Behaviors of Room Temperature Ionic Liquid Linked with Cation Conformational Changes: 1-Butyl-3-methylimidazolium Hexafluorophosphate. The Journal of Physical Chemistry B 2010, 114 (1) , 407-411. https://doi.org/10.1021/jp909256j
    38. Urszula Domańska, M. Laskowska and Aneta Pobudkowska. Phase Equilibria Study of the Binary Systems (1-Butyl-3-methylimidazolium Thiocyanate Ionic Liquid + Organic Solvent or Water). The Journal of Physical Chemistry B 2009, 113 (18) , 6397-6404. https://doi.org/10.1021/jp900990s
    39. Xu-Zhao Yang, Jun Wang, Zhen-Zhen Zhang and Gang-Sen Li. Solubilities of 1,1′-(Butane-1,4-diyl)-bis(pyridinium) Dihexafluorophosphate in Acetone + Water from (278.15 to 328.15) K. Journal of Chemical & Engineering Data 2009, 54 (4) , 1385-1388. https://doi.org/10.1021/je800893n
    40. Xu-Zhao Yang, Jun Wang, Gang-Sen Li and Zhen-Zhen Zhang. Solubilities of 1-Ethylpyridinium Hexafluorophosphate in Ethanol + Water from (278.15 to 345.15) K. Journal of Chemical & Engineering Data 2009, 54 (1) , 75-77. https://doi.org/10.1021/je800618x
    41. Nishat Anjum, Marie-Alice Guedeau-Boudeville, Cosima Stubenrauch and Ahmed Mourchid . Phase Behavior and Microstructure of Microemulsions Containing the Hydrophobic Ionic Liquid 1-Butyl-3-methylimidazolium Hexafluorophosphate. The Journal of Physical Chemistry B 2009, 113 (1) , 239-244. https://doi.org/10.1021/jp808643s
    42. Aoife M. O’Mahony, Debbie S. Silvester, Leigh Aldous, Christopher Hardacre and Richard G. Compton . Effect of Water on the Electrochemical Window and Potential Limits of Room-Temperature Ionic Liquids. Journal of Chemical & Engineering Data 2008, 53 (12) , 2884-2891. https://doi.org/10.1021/je800678e
    43. Yan Huo, Shuqian Xia and Peisheng Ma. Solubility of Alcohols and Aromatic Compounds in Imidazolium-Based Ionic Liquids. Journal of Chemical & Engineering Data 2008, 53 (11) , 2535-2539. https://doi.org/10.1021/je800331n
    44. Urszula Domańska and Kamil Paduszyński. Phase Equilibria Study in Binary Systems (Tetra-n-butylphosphonium Tosylate Ionic Liquid + 1-Alcohol, or Benzene, or n-Alkylbenzene). The Journal of Physical Chemistry B 2008, 112 (35) , 11054-11059. https://doi.org/10.1021/jp8037957
    45. Hitoshi Kato,, Keiko Nishikawa, and, Yoshikata Koga. Relative Hydrophobicity and Hydrophilicity of Some “Ionic Liquid” Anions Determined by the 1-Propanol Probing Methodology:  A Differential Thermodynamic Approach. The Journal of Physical Chemistry B 2008, 112 (9) , 2655-2660. https://doi.org/10.1021/jp710867s
    46. Urszula Domańska, Marta Laskowska and Andrzej Marciniak. Phase Equilibria of (1-Ethyl-3-methylimidazolium Ethylsulfate + Hydrocarbon, + Ketone, and + Ether) Binary Systems. Journal of Chemical & Engineering Data 2008, 53 (2) , 498-502. https://doi.org/10.1021/je700591h
    47. Mohammed Taghi Zafarani-Moattar and, Roghayeh Majdan-Cegincara. Viscosity, Density, Speed of Sound, and Refractive Index of Binary Mixtures of Organic Solvent + Ionic Liquid, 1-Butyl-3-methylimidazolium Hexafluorophosphate at 298.15 K. Journal of Chemical & Engineering Data 2007, 52 (6) , 2359-2364. https://doi.org/10.1021/je700338t
    48. Urszula Domańska,, Zuzanna Żołek-Tryznowska, and, Marek Królikowski. Thermodynamic Phase Behavior of Ionic Liquids. Journal of Chemical & Engineering Data 2007, 52 (5) , 1872-1880. https://doi.org/10.1021/je700204d
    49. F. Aliotta,, R. C. Ponterio,, F. Saija,, G. Salvato, and, A. Triolo. Excess Thermodynamic Properties in Mixtures of a Representative Room-Temperature Ionic Liquid and Acetonitrile. The Journal of Physical Chemistry B 2007, 111 (34) , 10202-10207. https://doi.org/10.1021/jp072836v
    50. J. O. Valderrama and, P. A. Robles. Critical Properties, Normal Boiling Temperatures, and Acentric Factors of Fifty Ionic Liquids. Industrial & Engineering Chemistry Research 2007, 46 (4) , 1338-1344. https://doi.org/10.1021/ie0603058
    51. Katya Sahandzhieva,, Dirk Tuma,, Silke Breyer,, Álvaro Pérez-Salado Kamps, and, Gerd Maurer. Liquid−Liquid Equilibrium in Mixtures of the Ionic Liquid 1-n-Butyl-3-methylimidazolium Hexafluorophosphate and an Alkanol. Journal of Chemical & Engineering Data 2006, 51 (5) , 1516-1525. https://doi.org/10.1021/je050474j
    52. Jacobo Troncoso,, Claudio A. Cerdeiriña,, Yolanda A. Sanmamed,, Luís Romaní, and, Luís Paulo N. Rebelo. Thermodynamic Properties of Imidazolium-Based Ionic Liquids:  Densities, Heat Capacities, and Enthalpies of Fusion of [bmim][PF6] and [bmim][NTf2]. Journal of Chemical & Engineering Data 2006, 51 (5) , 1856-1859. https://doi.org/10.1021/je060222y
    53. José N. Canongia Lopes,, Margarida F. Costa Gomes, and, Agílio A. H. Pádua. Nonpolar, Polar, and Associating Solutes in Ionic Liquids. The Journal of Physical Chemistry B 2006, 110 (34) , 16816-16818. https://doi.org/10.1021/jp063603r
    54. Hong-Tao Shang,, Jun-Sheng Wu,, Qing Zhou, and, Li-Sheng Wang. Solubilities of Benzene, Toluene, and Xylene Isomers in 1-Butyl-3-methylimidazolium Tetrafluoroborate. Journal of Chemical & Engineering Data 2006, 51 (4) , 1286-1288. https://doi.org/10.1021/je060041w
    55. Mohammed Taghi Zafarani-Moattar and, Hemayat Shekaari. Volumetric and Speed of Sound of Ionic Liquid, 1-Butyl-3-methylimidazolium Hexafluorophosphate with Acetonitrile and Methanol at T = (298.15 to 318.15) K. Journal of Chemical & Engineering Data 2005, 50 (5) , 1694-1699. https://doi.org/10.1021/je050165t
    56. David Morgan,, Lee Ferguson, and, Paul Scovazzo. Diffusivities of Gases in Room-Temperature Ionic Liquids:  Data and Correlations Obtained Using a Lag-Time Technique. Industrial & Engineering Chemistry Research 2005, 44 (13) , 4815-4823. https://doi.org/10.1021/ie048825v
    57. Ricardo Gomes de Azevedo,, José M. S. S. Esperança,, Vesna Najdanovic-Visak,, Zoran P. Visak,, Henrique J. R. Guedes,, Manuel Nunes da Ponte, and, Luís P. N. Rebelo. Thermophysical and Thermodynamic Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate and 1-Butyl-3-methylimidazolium Hexafluorophosphate over an Extended Pressure Range. Journal of Chemical & Engineering Data 2005, 50 (3) , 997-1008. https://doi.org/10.1021/je049534w
    58. Andreas Heintz,, Jochen K. Lehmann,, Christiane Wertz, and, Johan Jacquemin. Thermodynamic Properties of Mixtures Containing Ionic Liquids. 4. LLE of Binary Mixtures of [C2MIM][NTf2] with Propan-1-ol, Butan-1-ol, and Pentan-1-ol and [C4MIM][NTf2] with Cyclohexanol and 1,2-Hexanediol Including Studies of the Influence of Small Amounts of Water. Journal of Chemical & Engineering Data 2005, 50 (3) , 956-960. https://doi.org/10.1021/je049564z
    59. Alberto Arce,, Oscar Rodríguez, and, Ana Soto. tert-Amyl Ethyl Ether Separation from Its Mixtures with Ethanol Using the 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid:  Liquid−Liquid Equilibrium. Industrial & Engineering Chemistry Research 2004, 43 (26) , 8323-8327. https://doi.org/10.1021/ie049621h
    60. Urszula Domańska and, Aneta Pobudkowska, , Marek Rogalski. Solubility of Imidazoles, Benzimidazoles, and Phenylimidazoles in Dichloromethane, 1-Chlorobutane, Toluene, and 2-Nitrotoluene. Journal of Chemical & Engineering Data 2004, 49 (4) , 1082-1090. https://doi.org/10.1021/je049907t
    61. Alberto Arce,, Oscar Rodríguez, and, Ana Soto. Experimental Determination of Liquid−Liquid Equilibrium Using Ionic Liquids:  tert-Amyl Ethyl Ether + Ethanol + 1-Octyl-3-Methylimidazolium Chloride System at 298.15 K. Journal of Chemical & Engineering Data 2004, 49 (3) , 514-517. https://doi.org/10.1021/je0302147
    62. Lionel S. Belvèze,, Joan F. Brennecke, and, Mark A. Stadtherr. Modeling of Activity Coefficients of Aqueous Solutions of Quaternary Ammonium Salts with the Electrolyte-NRTL Equation. Industrial & Engineering Chemistry Research 2004, 43 (3) , 815-825. https://doi.org/10.1021/ie0340701
    63. Urszula Domańska and, Andrzej Marciniak. Solubility of Ionic Liquid [emim][PF6] in Alcohols. The Journal of Physical Chemistry B 2004, 108 (7) , 2376-2382. https://doi.org/10.1021/jp030582h
    64. Urszula Domańska and, Ewa Bogel-Łukasik. Measurements and Correlation of the (Solid + Liquid) Equilibria of [1-Decyl-3-methylimidazolium Chloride + Alcohols (C2−C12)]. Industrial & Engineering Chemistry Research 2003, 42 (26) , 6986-6992. https://doi.org/10.1021/ie030464g
    65. Junjun Shi, Xiaojia Wu, Guojia Yu, Lei Xi, Hu Zou, Wei Wu, Zhiyong Zhou, Zhongqi Ren. Study of aromatic extraction from light cycle oil from the viewpoint of industrial applications. Fuel 2024, 357 , 130023. https://doi.org/10.1016/j.fuel.2023.130023
    66. Claudio A. Faúndez, Luis A. Forero, José O. Valderrama. Use of Thermodynamically Consistent Phase Equilibrium Data to Obtain a Generalized Padé-Type Model for the Henry’s Constants of Gases in Ionic Liquids. Processes 2024, 12 (2) , 343. https://doi.org/10.3390/pr12020343
    67. Gabriela B. Correa, Yong Zhang, Charlles R. A. Abreu, Frederico W. Tavares, Edward J. Maginn. Revisiting the pseudo-supercritical path method: An improved formulation for the alchemical calculation of solid–liquid coexistence. The Journal of Chemical Physics 2023, 159 (10) https://doi.org/10.1063/5.0163564
    68. Ilya Polishuk, Asaf Chiko, Esteban Cea-Klapp, José Matías Garrido. Simultaneous prediction of vapor-liquid and liquid-liquid phase equilibria in systems of ionic liquids belonging to [Cnmim][BF4] and [Cnmim][PF6] families by CP-PC-SAFT and SAFT-VR-Mie with universal kij values. Journal of Molecular Liquids 2022, 365 , 120141. https://doi.org/10.1016/j.molliq.2022.120141
    69. Yunita Anggraini, Akhmad Yusuf, Surjani Wonorahardjo, Daniel Kurnia, Sparisoma Viridi, Inge Magdalena Sutjahja. Role of C2 methylation and anion type on the physicochemical and thermal properties of imidazolium-based ionic liquids. Arabian Journal of Chemistry 2022, 15 (8) , 103963. https://doi.org/10.1016/j.arabjc.2022.103963
    70. Bharath Kumar Chennuri, Venkatramana Losetty, K. Sreenivasulu, Ramesh L. Gardas, K. Sivakumar. Study of thermophysical properties of binary mixtures of N-phenyl ethanolammonium based protic ionic liquids with water and ethanol solvents. Journal of Ionic Liquids 2022, 2 (1) , 100015. https://doi.org/10.1016/j.jil.2021.100015
    71. Masahiro Kawano, Koichiro Sadakane, Hiroki Iwase, Masaru Matsugami, Bogdan A. Marekha, Abdenacer Idrissi, Toshiyuki Takamuku. Assessment of the UCST-type liquid–liquid phase separation mechanism of imidazolium-based ionic liquid, [C 8 mim][TFSI], and 1,4-dioxane by SANS, NMR, IR, and MD simulations. Physical Chemistry Chemical Physics 2021, 23 (42) , 24449-24463. https://doi.org/10.1039/D1CP01940F
    72. Juriti Rajbangshi, Ranjit Biswas. Heterogeneous dynamics in [BMIM][PF6] + Cosolvent binary Mixtures: Does It depend upon cosolvent Polarity?. Journal of Molecular Liquids 2021, 341 , 117342. https://doi.org/10.1016/j.molliq.2021.117342
    73. MohammadSaeed Afsharian, Aliakbar Paraj. Thermodynamic representation of ionic liquids phase equilibrium with PDH-ASOG and PDH-UNIFAC models. Journal of Molecular Liquids 2021, 333 , 115926. https://doi.org/10.1016/j.molliq.2021.115926
    74. Monika Kazancioglu, George Tsilomelekis, Richard Lehman, Masanori Hara. FTIR studies on plasticization of silicate glass with ionic liquids (conversion to silicate polymers). Journal of Non-Crystalline Solids 2021, 561 , 120757. https://doi.org/10.1016/j.jnoncrysol.2021.120757
    75. Dhruve Kumar Mital, Paul Nancarrow, Samira Zeinab, Nabil Abdel Jabbar, Taleb Hassan Ibrahim, Mustafa I. Khamis, Alnoman Taha. Group Contribution Estimation of Ionic Liquid Melting Points: Critical Evaluation and Refinement of Existing Models. Molecules 2021, 26 (9) , 2454. https://doi.org/10.3390/molecules26092454
    76. Juriti Rajbangshi, Swarup Banerjee, Pradip Kr. Ghorai, Ranjit Biswas. Cosolvent polarity dependence of solution structure in [BMIM] [PF6] + acetonitrile/1, 4-dioxane/hexane binary mixtures: Insights from composition dependent Voronoi polyhedra analyses, iso-surfaces and radial distribution functions. Journal of Molecular Liquids 2020, 317 , 113746. https://doi.org/10.1016/j.molliq.2020.113746
    77. Kalil Bernardino, Yong Zhang, Mauro C. C. Ribeiro, Edward J. Maginn. Effect of alkyl-group flexibility on the melting point of imidazolium-based ionic liquids. The Journal of Chemical Physics 2020, 153 (4) https://doi.org/10.1063/5.0015992
    78. Marziyeh Zare, Javad Kondori, Sohrab Zendehboudi, Faisal Khan. PC-SAFT/UNIQUAC model assesses formation condition of methane hydrate in the presence of imidazolium-based ionic liquid systems. Fuel 2020, 266 , 116757. https://doi.org/10.1016/j.fuel.2019.116757
    79. Zhaoyou Zhu, Wenting Bai, Ying Xu, Huaizheng Gong, Yinglong Wang, Dongmei Xu, Jun Gao. Liquid-liquid extraction of methanol from its mixtures with hexane using three imidazolium-based ionic liquids. The Journal of Chemical Thermodynamics 2019, 138 , 189-195. https://doi.org/10.1016/j.jct.2019.06.024
    80. Nisar Ahmad Malik, Ummer Farooq. Ionic Liquids as Potential Green Solvents Their Interactions with Surfactants and Antidepressant Drugs. 2019, 291-323. https://doi.org/10.1002/9781119509868.ch10
    81. Takatsugu Endo, Kozo Fujii, Keiko Nishikawa. Crystal Polymorphism of 1-Butyl-3-methylimidazolium Hexafluorophosphate: Phase Diagram, Structure, and Dynamics. Australian Journal of Chemistry 2019, 72 (2) , 11. https://doi.org/10.1071/CH18422
    82. Reza Haghbakhsh, Sona Raeissi. Excess volumes of mixtures consisting of deep eutectic solvents by the Prigogine–Flory–Patterson theory. Journal of Molecular Liquids 2018, 272 , 731-737. https://doi.org/10.1016/j.molliq.2018.09.111
    83. Di Bao, Xiangping Zhang, Haifeng Dong, Shaojuan Zeng, Dawei Shang, Suojiang Zhang. A new FCCS-CFD coupled method for understanding the influence of molecular structure of ionic liquid on bubble behaviors. Chemical Engineering and Processing - Process Intensification 2018, 125 , 266-274. https://doi.org/10.1016/j.cep.2018.02.012
    84. Reza Haghbakhsh, Sona Raeissi. Modeling vapor-liquid equilibria of mixtures of SO2 and deep eutectic solvents using the CPA-NRTL and CPA-UNIQUAC models. Journal of Molecular Liquids 2018, 250 , 259-268. https://doi.org/10.1016/j.molliq.2017.11.161
    85. Paulo B.P. Serra, Filipe M.S. Ribeiro, Marisa A.A. Rocha, Michal Fulem, Květoslav Růžička, João A.P. Coutinho, Luís M.N.B.F. Santos. Solid-liquid equilibrium and heat capacity trend in the alkylimidazolium PF6 series. Journal of Molecular Liquids 2017, 248 , 678-687. https://doi.org/10.1016/j.molliq.2017.10.042
    86. Alireza Fazlali, Yasaman Shahebrahimi, Nader Aliyari, Amir H. Mohammadi. Oil products desulfurization by 1-butyl-3-methylimidazolium tetrachloroaluminate ionic liquid: Experimental study and thermodynamic modelling. Journal of Molecular Liquids 2017, 237 , 437-446. https://doi.org/10.1016/j.molliq.2017.04.101
    87. Yongtao Qiu, Jizhong Ren, Dan Zhao, Hui Li, Kaisheng Hua, Xinxue Li, Maicun Deng. Blend membranes of poly(amide-6-b-ethylene oxide)/[Emim][PF6] for CO2 separation. Separation and Purification Technology 2017, 179 , 309-319. https://doi.org/10.1016/j.seppur.2017.02.003
    88. S. Karthika, T.K. Radhakrishnan, P. Kalaichelvi. The role of hydrogen bonding propensity in tuning the morphology of crystals obtained from imidazolium based ionic liquids. Journal of Crystal Growth 2017, 463 , 168-175. https://doi.org/10.1016/j.jcrysgro.2017.02.028
    89. Sanja Belić, Nebojša Zec, Milan Vraneš, Ljubica Grbović, Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Slobodan Gadžurić. Nature of the interactions in binary mixtures of 1-butyl-3-ethylimidazolium bromide ionic liquid with methanol and ethanol. Journal of Molecular Liquids 2017, 229 , 212-216. https://doi.org/10.1016/j.molliq.2016.12.052
    90. William Acree, James S. Chickos. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds and Ionic Liquids. Sublimation, Vaporization, and Fusion Enthalpies from 1880 to 2015. Part 2. C11–C192. Journal of Physical and Chemical Reference Data 2017, 46 (1) https://doi.org/10.1063/1.4970519
    91. Dickson Ozokwelu, Suojiang Zhang, Obiefuna C. Okafor, Weiguo Cheng, Nicholas Litombe. Properties of Ionic Liquids. 2017, 45-110. https://doi.org/10.1016/B978-0-12-802027-2.00003-0
    92. Yu-Jiao Tu, Zheng-Ming Yi, Jing Liao, Shu-Heng Song. Solubility of 1-Adamantanamine hydrochloride in Six Pure Solvents between 283.15 K and 333.15 K. Brazilian Journal of Chemical Engineering 2017, 34 (1) , 363-368. https://doi.org/10.1590/0104-6632.20170341s20140241
    93. Eugene Paulechka, Tatsiana Liavitskaya, Andrey V. Blokhin. Calorimetric study of polymorphism in 1-butyl-3-methylimidazolium hexafluorophosphate. The Journal of Chemical Thermodynamics 2016, 102 , 211-218. https://doi.org/10.1016/j.jct.2016.07.012
    94. T. Srinivasa Krishna, Anil K. Nain, S. Chentilnath, D. Punyaseshudu, B. Munibhadrayya. Densities, ultrasonic speeds, refractive indices, excess and partial molar properties of binary mixtures of imidazolium based ionic liquid with pyrrolidin-2-one at temperatures from 298.15 L to 323.15 K. The Journal of Chemical Thermodynamics 2016, 101 , 103-114. https://doi.org/10.1016/j.jct.2016.05.021
    95. T. Srinivasa Krishna, D. Punyaseshudu, M. Gowrisankar, Anil K. Nain, B. Munibhadrayya. Volumetric, ultrasonic and optical studies of molecular interactions in binary mixtures of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with N-octyl-2-pyrrolidinone at temperatures from 298.15 to 323.15K. Journal of Molecular Liquids 2016, 221 , 479-488. https://doi.org/10.1016/j.molliq.2016.06.018
    96. Byung Heung Park. Volumetric properties of binary mixtures of 1-butyl-3-methylimidazolium halides with water, methanol or ethanol at 293.15 to 318.15 K. Korean Journal of Chemical Engineering 2016, 33 (7) , 2191-2204. https://doi.org/10.1007/s11814-016-0053-2
    97. T.S. Krishna, K. Narendra, M.G. Sankar, A.K. Nain, B. Munibhadrayya. Thermodynamic, excess and optical studies on the intermolecular interactions of binary liquid mixtures of imidazolium based ILs. The Journal of Chemical Thermodynamics 2016, 98 , 262-271. https://doi.org/10.1016/j.jct.2016.03.029
    98. Ana S. M. C. Rodrigues, Luís M. N. B. F. Santos. Nanostructuration Effect on the Thermal Behavior of Ionic Liquids. ChemPhysChem 2016, 17 (10) , 1512-1517. https://doi.org/10.1002/cphc.201501128
    99. Blane D. Green, Alexander J. Badini, Richard A. O'Brien, James H. Davis, Kevin N. West. Liquid–liquid equilibria of binary mixtures of a lipidic ionic liquid with hydrocarbons. Physical Chemistry Chemical Physics 2016, 18 (4) , 2459-2467. https://doi.org/10.1039/C5CP06101F
    100. Susanta Hazra, Ana P. C. Ribeiro, M. Fátima C. Guedes da Silva, Carlos A. Nieto de Castro, Armando J. L. Pombeiro. Syntheses and crystal structures of benzene-sulfonate and -carboxylate copper polymers and their application in the oxidation of cyclohexane in ionic liquid under mild conditions. Dalton Transactions 2016, 45 (35) , 13957-13968. https://doi.org/10.1039/C6DT02271E
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect