ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Isobaric Vapor−Liquid Equilibria and Excess Properties for the Binary Systems of Methyl Esters + Heptane

View Author Information
Laboratorio de Termodinámica y Fisicoquímica, Escuela Superior de Ingenieros Industriales, Universidad de Las Palmas de Gran Canaria, 35071-Las Palmas de Gran Canaria, Islas Canarias, Spain
Departamento de Ingeniería Química, Universidad de Vigo, 36200-Vigo, Spain
Cite this: J. Chem. Eng. Data 2003, 48, 5, 1183–1190
Publication Date (Web):July 11, 2003
https://doi.org/10.1021/je030117d
Copyright © 2003 American Chemical Society

    Article Views

    399

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The behavior was investigated for several binary mixtures that were composed of five methyl esters (from methanoate to pentanoate) with n-heptane, by using different thermodynamic quantities as obtained from experimental results such as isobaric vapor−liquid equilibria at the pressure 101.32 kPa and the corresponding excess properties. The equilibrium data show that all the mixtures reveal a positive deviation from ideality and that they are consistent with a point-to-point test. All the mixtures studied, with the exception of methyl pentanoate + n-heptane, reveal an azeotrope. Various equations were used to treat the equilibrium data. The use of a new polynomial correlation with temperature-dependent coefficients was deemed to be convenient. Various theoretical models were used in this study, including UNIFAC and ASOG, but the Gmehling et al. version was found to be more acceptable when estimating excess enthalpies with differences of between (3 and 17)%.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author. E-mail:  [email protected].

    Cited By

    This article is cited by 50 publications.

    1. Pedro Susial Badajoz, Isabel Montesdeoca, Diego García-Vera, Aníbal Marrero-Pérez, Luis Calvo-Castillo, Patricia Herrera-Vega. High Pressure Vapor–Liquid Equilibria of n-Heptane with Ethanol, 1-Propanol, 2-Propanol, and 1-Butanol at 1.5 MPa: Experimental Data of Binary Systems and Perturbed Chain–Statistical Associating Fluid Theory Model Predictions. Journal of Chemical & Engineering Data 2022, 67 (5) , 1140-1156. https://doi.org/10.1021/acs.jced.1c00902
    2. Juan Ortega, Luis Fernández, Adriel Sosa, Beatriz Lorenzo, Raúl Ríos, Jaime Wisniak. New Advances in the Modeling and Verification of Experimental Information for Ester–Alkane Solutions: Application to a Batch-Distillation Case. Industrial & Engineering Chemistry Research 2020, 59 (17) , 8346-8360. https://doi.org/10.1021/acs.iecr.0c00850
    3. Pedro Susial Badajoz, Diego García-Vera, Anibal Marrero-Pérez, Nieves Padrón-Guerra, Tatiana Mujica-González. Measurement of VLE Data by Using an Experimental Installation with Automatic Control: Modeling of Binary Systems of Methyl Acetate or Ethyl Acetate with n-Heptane or 2,2,4-Trimethylpentane at Both 0.1 and 1.5 MPa. Journal of Chemical & Engineering Data 2019, 64 (12) , 5591-5608. https://doi.org/10.1021/acs.jced.9b00668
    4. Niklas Haarmann, Sabine Enders, Gabriele Sadowski. Heterosegmental Modeling of Long-Chain Molecules and Related Mixtures using PC-SAFT: 1. Polar Compounds. Industrial & Engineering Chemistry Research 2019, 58 (7) , 2551-2574. https://doi.org/10.1021/acs.iecr.8b03799
    5. Raúl Rios, Juan Ortega, Adriel Sosa, Luis Fernández. Strategy for the Management of Thermodynamic Data with Application to Practical Cases of Systems Formed by Esters and Alkanes through Experimental Information, Checking-Modeling, and Simulation. Industrial & Engineering Chemistry Research 2018, 57 (9) , 3410-3429. https://doi.org/10.1021/acs.iecr.7b04918
    6. Jamie T. Cripwell, Cara E. Schwarz, and Andries J. Burger . Vapor–Liquid Equilibria Measurements for the Five Linear C6 Esters with n-Octane. Journal of Chemical & Engineering Data 2016, 61 (7) , 2353-2362. https://doi.org/10.1021/acs.jced.5b01058
    7. Juan Ortega, Luis Fernández, Maykel Castro, Elena Ortega, and Raul Rios . A Study on Alkane + Ester + Ester Systems. Physicochemical Behavior of Binaries and Ternaries of Octane or Iso-octane with Methyl Esters (Ethanoate, Butanoate, Pentanoate). Journal of Chemical & Engineering Data 2016, 61 (3) , 1177-1191. https://doi.org/10.1021/acs.jced.5b00813
    8. Raúl Ríos, Juan Ortega, Luís Fernández, Ignacio de Nuez, and Jaime Wisniak . Improvements in the Experimentation and the Representation of Thermodynamic Properties (iso-p VLE and yE) of Alkyl Propanoate + Alkane Binaries. Journal of Chemical & Engineering Data 2014, 59 (1) , 125-142. https://doi.org/10.1021/je4009415
    9. Amalendu Pal, Harsh Kumar, Ritu Maan, and Harish Kumar Sharma . Volumetric and Ultrasonic Studies of Molecular Interactions in n-Alkoxypropanols + Alkyl Acetates Mixtures at Different Temperatures. Journal of Chemical & Engineering Data 2013, 58 (11) , 3190-3200. https://doi.org/10.1021/je400637y
    10. Luís Fernández, Juan Ortega, Estefanía Pérez, Francisco Toledo, and José Canosa . Multiproperty Correlation of Experimental Data of the Binaries Propyl Ethanoate + Alkanes (Pentane to Decane). New Experimental Information for Vapor–Liquid Equilibrium and Mixing Properties. Journal of Chemical & Engineering Data 2013, 58 (3) , 686-706. https://doi.org/10.1021/je3011979
    11. Amalendu Pal, Harsh Kumar, Ritu Maan, and Harish Kumar Sharma . Densities and Speeds of Sound of Binary Liquid Mixtures of Some n-Alkoxypropanols with Methyl Acetate, Ethyl Acetate, and n-Butyl Acetate at T = (288.15, 293.15, 298.15, 303.15, and 308.15) K. Journal of Chemical & Engineering Data 2013, 58 (2) , 225-239. https://doi.org/10.1021/je300789a
    12. Raúl Ríos, Juan Ortega, and Luís Fernández . Measurements and Correlations of the Isobaric Vapor–Liquid Equilibria of Binary Mixtures and Excess Properties for Mixtures Containing an Alkyl (Methyl, Ethyl) Butanoate with an Alkane (Heptane, Nonane) at 101.3 kPa. Journal of Chemical & Engineering Data 2012, 57 (11) , 3210-3224. https://doi.org/10.1021/je300799f
    13. Juan Ortega,, Gisela Sabater,, Ignacio de la Nuez, and, Juan J. Quintana, , Jaime Wisniak. Isobaric Vapor−Liquid Equilibrium Data and Excess Properties of Binary Systems Comprised of Alkyl Methanoates + Hexane. Journal of Chemical & Engineering Data 2007, 52 (1) , 215-225. https://doi.org/10.1021/je060355j
    14. Juan Ortega,, Fernando Espiau, and, Miguel Postigo. Excess Properties and Isobaric Vapor−Liquid Equilibria for Binary Mixtures of Methyl Esters + tert-Butanol. Journal of Chemical & Engineering Data 2004, 49 (6) , 1602-1612. https://doi.org/10.1021/je034290l
    15. Andrey V. Plyasunov,, Natalia V. Plyasunova, and, Everett L. Shock. Group Contribution Values for the Thermodynamic Functions of Hydration of Aliphatic Esters at 298.15 K, 0.1 MPa. Journal of Chemical & Engineering Data 2004, 49 (5) , 1152-1167. https://doi.org/10.1021/je049850a
    16. Hussain A. AlNazr, Nabeel Ahmad, Usama Ahmed, Balaji Mohan, Abdul Gani Abdul Jameel. Predicting physical properties of oxygenated gasoline and diesel range fuels using machine learning. Alexandria Engineering Journal 2023, 76 , 193-219. https://doi.org/10.1016/j.aej.2023.06.037
    17. Hongru Zhang, Bingjie Huo, Mengya Sun, Rongli Shan, Peizhe Cui, Jingwei Yang, Yinglong Wang, Shiqing Zheng. The mechanism explosion of separating binary azeotropic system with intermediate-boiling-point solvent based on vapor–liquid equilibrium experiment, quantum chemical calculation and molecular dynamics simulation. The Journal of Chemical Thermodynamics 2022, 168 , 106730. https://doi.org/10.1016/j.jct.2022.106730
    18. Dzmitry H. Zaitsau, Andrey A. Pimerzin, Sergey P. Verevkin. Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics. The Journal of Chemical Thermodynamics 2019, 132 , 322-340. https://doi.org/10.1016/j.jct.2019.01.007
    19. Raúl Rios, Adriel Sosa, Luis Fernández, Juan Ortega. Azeotropy: A Limiting Factor in Separation Operations in Chemical Engineering - Analysis, Experimental Techniques, Modeling and Simulation on Binary Solutions of Ester-Alkane. 2018https://doi.org/10.5772/intechopen.75786
    20. Ali Khoshsima, Reza Shahriari. Molecular modeling of systems related to the biodiesel production using the PHSC equation of state. Fluid Phase Equilibria 2018, 458 , 58-83. https://doi.org/10.1016/j.fluid.2017.10.029
    21. Jamie T. Cripwell, Cara E. Schwarz, Andries J. Burger. SAFT-VR-Mie with an incorporated polar term for accurate holistic prediction of the thermodynamic properties of polar components. Fluid Phase Equilibria 2018, 455 , 24-42. https://doi.org/10.1016/j.fluid.2017.09.027
    22. Bryan W. Weber, Justin A. Bunnell, Kamal Kumar, Chih-Jen Sung. Experiments and modeling of the autoignition of methyl pentanoate at low to intermediate temperatures and elevated pressures in a rapid compression machine. Fuel 2018, 212 , 479-486. https://doi.org/10.1016/j.fuel.2017.10.037
    23. José Plácido, Juan Ortega, Adriel Sosa, Luís Fernández. Molecular interactions in methanoate/alkanol solutions. Computation of mixing properties and characterization by FTIR/ATR spectroscopy. Journal of Molecular Liquids 2017, 248 , 725-737. https://doi.org/10.1016/j.molliq.2017.10.041
    24. Luís J. Fernández, Juan Ortega, Jaime Wisniak. A rigorous method to evaluate the consistency of experimental data in phase equilibria. Application to VLE and VLLE. AIChE Journal 2017, 63 (11) , 5125-5148. https://doi.org/10.1002/aic.15876
    25. William Acree, James S. Chickos. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2015. Part 1. C 1 − C 10. Journal of Physical and Chemical Reference Data 2016, 45 (3) , 033101. https://doi.org/10.1063/1.4948363
    26. Juan Ortega, Luis Fernández, Gisela Sabater. Solutions of alkyl methanoates and alkanes: Simultaneous modeling of phase equilibria and mixing properties. Estimation of behavior by UNIFAC with recalculation of parameters. Fluid Phase Equilibria 2015, 402 , 38-49. https://doi.org/10.1016/j.fluid.2015.05.031
    27. Eugene D. Nikitin, Alexander P. Popov. Vapour–liquid critical properties of components of biodiesel. 1. Methyl esters of n -alkanoic acids. Fuel 2015, 153 , 634-639. https://doi.org/10.1016/j.fuel.2015.03.060
    28. Luís Fernández, Juan Ortega, Noelia Pérez, Francisco Toledo. Mixing thermodynamic properties of ester-containing solutions: A study on the ternary (methyl alkanoate (pentanoate and methanoate) + methanol) and the corresponding binaries. New contributions to the (ester + ester) interactions. The Journal of Chemical Thermodynamics 2015, 86 , 80-89. https://doi.org/10.1016/j.jct.2015.02.019
    29. Felipe A. Perdomo, Beatriz M. Millán, José L. Aragón. Predicting the physical–chemical properties of biodiesel fuels assessing the molecular structure with the SAFT−γ group contribution approach. Energy 2014, 72 , 274-290. https://doi.org/10.1016/j.energy.2014.05.035
    30. Luis Fernández, Juan Ortega, Gisela Sabater, Fernando Espiau. Experimentation and thermodynamic representations of binaries containing compounds of low boiling points: Pentane and alkyl methanoates. Fluid Phase Equilibria 2014, 363 , 167-179. https://doi.org/10.1016/j.fluid.2013.11.026
    31. Amalendu Pal, Harsh Kumar, Ritu Maan, Harish Kumar Sharma. Volumetric and Acoustic Studies of Binary Liquid Mixtures of Dipropylene Glycol Dimethyl Ether with Methyl Acetate, Ethyl Acetate and n-Butyl Acetate in the Temperature Range T = (288.15, 293.15, 298.15, 303.15, and 308.15) K. Journal of Solution Chemistry 2013, 42 (10) , 1988-2011. https://doi.org/10.1007/s10953-013-0086-7
    32. Luís Fernández, Estefanía Pérez, Juan Ortega, José Canosa, Jaime Wisniak. Multiproperty modeling for a set of binary systems. Evaluation of a model to correlate simultaneously several mixing properties of methyl ethanoate+alkanes and new experimental data. Fluid Phase Equilibria 2013, 341 , 105-123. https://doi.org/10.1016/j.fluid.2012.12.027
    33. A.J. de Villiers, C.E. Schwarz, A.J. Burger. Extension of the CPA equation of state with dipolar theories to improve vapour–liquid-equilibria predictions. Fluid Phase Equilibria 2011, 312 , 66-78. https://doi.org/10.1016/j.fluid.2011.09.007
    34. A.J. de Villiers, C.E. Schwarz, A.J. Burger. Improving vapour–liquid-equilibria predictions for mixtures with non-associating polar components using sPC-SAFT extended with two dipolar terms. Fluid Phase Equilibria 2011, 305 (2) , 174-184. https://doi.org/10.1016/j.fluid.2011.03.025
    35. Jinlong Li, Meng Tong, Changjun Peng, Honglai Liu, Ying Hu. Equation of state for square-well chain molecules with variable range II. Extension to mixtures. Fluid Phase Equilibria 2009, 287 (1) , 50-61. https://doi.org/10.1016/j.fluid.2009.09.011
    36. D. NguyenHuynh, A. Falaix, J.-P. Passarello, P. Tobaly, J.-C. de Hemptinne. Predicting VLE of heavy esters and their mixtures using GC-SAFT. Fluid Phase Equilibria 2008, 264 (1-2) , 184-200. https://doi.org/10.1016/j.fluid.2007.11.013
    37. J. Ortega, A. Navas, G. Sabater, M. Ascanio, J. Plácido. Thermodynamic properties of (an ester+an alkane). XVIII. Experimental values for (an alkyl butanoate+an alkane) at T=318.15K. The Journal of Chemical Thermodynamics 2007, 39 (11) , 1514-1529. https://doi.org/10.1016/j.jct.2007.02.010
    38. J. Ortega, E. Marrero. Thermodynamic study of (alkyl esters+α,ω-alkyl dihalides) V. for 25 binary mixtures {xCu−1H2u−1CO2CH3+(1−x)α,ω-ClCH2(CH2)v−2CH2Cl}, where u=1 to 5, α=1 and v=ω=2 to 6. The Journal of Chemical Thermodynamics 2007, 39 (5) , 742-757. https://doi.org/10.1016/j.jct.2006.10.008
    39. . References. 2007, 1577-1701. https://doi.org/10.1201/9781420009132.bmatt1
    40. J. Ortega, A. Navas, J. Plácido. Thermodynamic study of (alkyl esters+α,ω-alkyl dihalides) IV: for 25 binary mixtures {xCu−1H2u−1CO2CH3+(1−x)α,ω-BrCH2(CH2)v−2CH2Br}, where u=1 to 5, α=1 and v=ω=2 to 6. The Journal of Chemical Thermodynamics 2007, 39 (1) , 128-141. https://doi.org/10.1016/j.jct.2006.05.004
    41. Matthias Kleiner, Joachim Gross. An equation of state contribution for polar components: Polarizable dipoles. AIChE Journal 2006, 52 (5) , 1951-1961. https://doi.org/10.1002/aic.10791
    42. J. Ortega, F. Espiau, F.J. Toledo, R. Dieppa. Thermodynamic properties of (an ester+an alkane). XVII. Experimental and values for (an alkyl propanoate+an alkane) at 318.15K. The Journal of Chemical Thermodynamics 2005, 37 (9) , 967-983. https://doi.org/10.1016/j.jct.2004.12.014
    43. Eileen Collinet, Jürgen Gmehling. Activity coefficient at infinite dilution, azeotropic data, excess enthalpies and solid–liquid-equilibria for binary systems of alkanes and aromatics with esters. Fluid Phase Equilibria 2005, 230 (1-2) , 131-142. https://doi.org/10.1016/j.fluid.2004.12.005
    44. J. Ortega, F. Espiau, F.J. Toledo. Thermodynamic properties of (an ester+an alkane). XVI. Experimental HmE and VmE values and a new correlation method for (an alkyl ethanoate+an n-alkane) at 318.15 K. The Journal of Chemical Thermodynamics 2004, 36 (3) , 193-209. https://doi.org/10.1016/j.jct.2003.11.008
    45. Juan Ortega, Fernando Espiau, Ruth Dieppa. Measurement and correlation of isobaric vapour–liquid equilibrium data and excess properties of ethyl methanoate with alkanes (hexane to decane). Fluid Phase Equilibria 2004, 215 (2) , 175-186. https://doi.org/10.1016/j.fluid.2003.08.003
    46. I. Wichterle, J. Linek, Z. Wagner, J.-C. Fontaine, K. Sosnkowska-Kehiaian, H. V. Kehiaian. Methyl methanoate C2H4O2 + C7H16 Heptane. , 1-1. https://doi.org/10.1007/978-3-540-49315-0_1393
    47. I. Wichterle, J. Linek, Z. Wagner, J.-C. Fontaine, K. Sosnkowska-Kehiaian, H. V. Kehiaian. Methyl ethanoate C3H6O2 + C7H16 Heptane. , 1-1. https://doi.org/10.1007/978-3-540-49315-0_1402
    48. I. Wichterle, J. Linek, Z. Wagner, J.-C. Fontaine, K. Sosnkowska-Kehiaian, H. V. Kehiaian. Methyl propanoate C4H8O2 + C7H16 Heptane. , 1-1. https://doi.org/10.1007/978-3-540-49315-0_1410
    49. I. Wichterle, J. Linek, Z. Wagner, J.-C. Fontaine, K. Sosnkowska-Kehiaian, H. V. Kehiaian. Methyl butanoate C5H10O2 + C7H16 Heptane. , 1-1. https://doi.org/10.1007/978-3-540-49315-0_1413
    50. I. Wichterle, J. Linek, Z. Wagner, J.-C. Fontaine, K. Sosnkowska-Kehiaian, H. V. Kehiaian. Methyl pentanoate C6H12O2 + C7H16 Heptane. , 1-1. https://doi.org/10.1007/978-3-540-49315-0_1418

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect