ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Thermal Conductivity and Thermal Diffusivity of Twenty-Nine Liquids:  Alkenes, Cyclic (Alkanes, Alkenes, Alkadienes, Aromatics), and Deuterated Hydrocarbons

View Author Information
National Metrology Institute of Japan, AIST, 1-4, Umezono 1-chome, Tsukuba, Ibaraki 305-8563, Japan
Cite this: J. Chem. Eng. Data 2004, 49, 4, 809–825
Publication Date (Web):May 21, 2004
https://doi.org/10.1021/je034162x
Copyright © 2004 American Chemical Society

    Article Views

    1170

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Experimental values of the thermal conductivity λ and thermal diffusivity a of 29 pure substances are presented in the temperature range of −15 °C to 65 °C under atmospheric or saturation pressure. The materials measured were as follows:  alkenes (1-pentene, 1-hexene, 1-heptene, 1-octene, 2,3-dimethyl-1-butene, 2,3-dimethyl-2-butene), cycloalkenes (cyclopentene, cyclohexene), cycloalkanes (cyclopentane, cyclohexane, methylcyclopentane, cycloheptane, cyclooctane), aromatics and their relatives (benzene, ethylbenzene, o-, m-, and p-xylenes, propylbenzene, isopropylbenzene, hemimellitene, pseudocumene, mesitylene, 1,3-cyclohexadiene, 1,4-cyclohexadiene, bicyclo[2.2.1]hepta-2,5-diene [norbornadiene]), and deuterated hydrocarbons (benzene-d6, cyclohexane-d12, toluene-d8). Measurements were made with the transient hot-wire method in the manner previously presented, and the thermal diffusivity values were corrected by reference to the heat capacity of heptane as a reference material. Heat capacities (volumic, cpρ; massic, cp; molar, Cm,p) were complementally derived from the relationship cpρ = λ/a, with values for the density and the molar mass. The uncertainty of the data is estimated to be 0.4% for the thermal conductivity (absolutely measured) and about 1.8% for the thermal diffusivity (with a coverage factor of kp = 2; p = 95%), although that of λ (not of a) is possibly inferior for a few substances containing slightly more impurities (i.e., mainly other isomers).

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     To whom correspondence may be addressed. Phone:  +81-298-61-4395. Fax:  +81-298-61-4099. E-mail:  [email protected].

    Cited By

    This article is cited by 43 publications.

    1. Maximilian Piszko, Frances D. Lenahan, Tobias Klein, Andreas P. Fröba. Diffusivities in Binary Mixtures of Cyclohexane or Ethyl Butanoate with Dissolved CH4 or R143a Close to Infinite Dilution. Journal of Chemical & Engineering Data 2023, 68 (2) , 339-348. https://doi.org/10.1021/acs.jced.2c00696
    2. Maximilian Piszko, Frances D. Lenahan, Lukas Friedl, Tobias Klein, Andreas P. Fröba. Mutual and Thermal Diffusivities in Mixtures of Cyclohexane, n-Hexadecane, n-Octacosane, or n-Hexanoic Acid with Carbon Dioxide Obtained by Dynamic Light Scattering and Molecular Dynamics Simulations. Journal of Chemical & Engineering Data 2022, 67 (10) , 3059-3076. https://doi.org/10.1021/acs.jced.2c00487
    3. Frances D. Lenahan, Maximilian Piszko, Tobias Klein, Andreas P. Fröba. Diffusivities in Binary Mixtures of n-Decane, n-Hexadecane, n-Octacosane, 2-Methylpentane, 2,2-Dimethylbutane, Cyclohexane, Benzene, Ethanol, 1-Decanol, Ethyl Butanoate, or n-Hexanoic Acid with Dissolved He or Kr Close to Infinite Dilution. Journal of Chemical & Engineering Data 2022, 67 (3) , 622-635. https://doi.org/10.1021/acs.jced.1c00922
    4. Jana L. van den Berg, Kallie Ilene Neumann, John A. Harrison, Hayley Weir, Edward G. Hohenstein, Todd J. Martinez, Richard N. Zare. Strong, Nonresonant Radiation Enhances Cis–Trans Photoisomerization of Stilbene in Solution. The Journal of Physical Chemistry A 2020, 124 (29) , 5999-6008. https://doi.org/10.1021/acs.jpca.0c02732
    5. Haixia Lu, Wanqiang Liu, Fan Yang, Hu Zhou, Fengping Liu, Hua Yuan, Guanfan Chen, Yinchun Jiao. Thermal Conductivity Estimation of Diverse Liquid Aliphatic Oxygen-Containing Organic Compounds Using the Quantitative Structure–Property Relationship Method. ACS Omega 2020, 5 (15) , 8534-8542. https://doi.org/10.1021/acsomega.9b04190
    6. Xiangyang Liu, Chengjie Wang, Tian Lan, Maogang He, Ying Zhang. Prediction of Thermal Conductivity for Guiding Molecular Design of Liquids. ACS Sustainable Chemistry & Engineering 2020, 8 (15) , 6022-6032. https://doi.org/10.1021/acssuschemeng.0c00801
    7. Xueqiang Wang, Shuo Qiu, Jiangtao Wu, Ilmutdin M. Abdulagatov. Measurements of the Thermal Conductivity of n-Pentane, Isopentane, 1-Pentene, and 1-Pentanol in the Temperature Range from 253 to 373 K at Pressures up to 30 MPa. Journal of Chemical & Engineering Data 2020, 65 (4) , 1993-2001. https://doi.org/10.1021/acs.jced.9b01147
    8. Onellan Govender, Jürgen Rarey, Deresh Ramjugernath. Estimation of Pure Component Properties, Part 5: Estimation of the Thermal Conductivity of Nonelectrolyte Organic Liquids via Group Contributions. Journal of Chemical & Engineering Data 2020, 65 (3) , 1300-1312. https://doi.org/10.1021/acs.jced.9b00741
    9. Xueqiang Wang, Jiangtao Wu, Shuo Qiu, Xiaojing Li. Measurements of the Thermal Conductivity of n-Octane, Isooctane, 1-Octene, and 1-Octanol in the Temperature Range from 253 to 393 K at Pressures up to 30 MPa. Journal of Chemical & Engineering Data 2019, 64 (10) , 4557-4564. https://doi.org/10.1021/acs.jced.9b00628
    10. Yun Zhu, Ranran Zhang, Shengmiao Zhang, Yeqian Chu, and Jianding Chen . Macroporous Polymers with Aligned Microporous Walls from Pickering High Internal Phase Emulsions. Langmuir 2016, 32 (24) , 6083-6088. https://doi.org/10.1021/acs.langmuir.6b00794
    11. Brian K. Peterson . Property Estimation Using Analogous Series. Industrial & Engineering Chemistry Research 2011, 50 (12) , 7696-7704. https://doi.org/10.1021/ie200214m
    12. Nak-Hyun Seong, Ying Fang and Dana D. Dlott. Vibrational Energy Dynamics of Normal and Deuterated Liquid Benzene. The Journal of Physical Chemistry A 2009, 113 (8) , 1445-1452. https://doi.org/10.1021/jp809679y
    13. Paula E. Colavita,, Jeremy A. Streifer,, Bin Sun,, Xiaoyu Wang,, Patrick Warf, and, Robert J. Hamers. Enhancement of Photochemical Grafting of Terminal Alkenes at Surfaces via Molecular Mediators:  The Role of Surface-Bound Electron Acceptors. The Journal of Physical Chemistry C 2008, 112 (13) , 5102-5112. https://doi.org/10.1021/jp711167n
    14. Carlos Nieto-Draghi,, Patrick Bonnaud, and, Philippe Ungerer. Anisotropic United Atom Model Including the Electrostatic Interactions of Methylbenzenes. II. Transport Properties. The Journal of Physical Chemistry C 2007, 111 (43) , 15942-15951. https://doi.org/10.1021/jp073715y
    15. Anatolio Pigliucci,, Guillaume Duvanel,, Latévi Max Lawson Daku, and, Eric Vauthey. Investigation of the Influence of Solute−Solvent Interactions on the Vibrational Energy Relaxation Dynamics of Large Molecules in Liquids. The Journal of Physical Chemistry A 2007, 111 (28) , 6135-6145. https://doi.org/10.1021/jp069010y
    16. Sofia Sotiriadou, Eleftheria Ntonti, Marc J. Assael, Marcia L. Huber. Reference Correlations of the Viscosity and Thermal Conductivity of 1-Hexene from the Triple Point to High Temperatures and Pressures. International Journal of Thermophysics 2023, 44 (7) https://doi.org/10.1007/s10765-023-03217-y
    17. Luis F. Cardona, Luis A. Forero, Jorge A. Velásquez. A group contribution method to model the thermal conductivity of pure substances. Fluid Phase Equilibria 2023, 564 , 113592. https://doi.org/10.1016/j.fluid.2022.113592
    18. Boris A. Grigoriev, Anatoly A. Gerasimov, Igor S. Alexandrov, Boris V. Nemzer. Methods for calculating the thermal conductivity of hydrocarbons. 2022, 825-879. https://doi.org/10.1016/B978-0-323-95217-0.00007-5
    19. M.R. Mohebbifar. Study of the effect of temperature on thermophysical properties of ethyl myristate by dual-beam thermal lens technique. Optik 2021, 247 , 168000. https://doi.org/10.1016/j.ijleo.2021.168000
    20. Michael H. Abraham, William E. Acree. Estimation of heat capacities of gases, liquids and solids, and heat capacities of vaporization and of sublimation of organic chemicals at 298.15 K. Journal of Molecular Liquids 2020, 317 , 113969. https://doi.org/10.1016/j.molliq.2020.113969
    21. Martin Geisler, Albena Lederer. Non-Parabolicity correction for fifty-nine solvents and a retention study for strongly distorted flow-profiles in thermal field-flow fractionation. Journal of Chromatography A 2020, 1621 , 461082. https://doi.org/10.1016/j.chroma.2020.461082
    22. Daniel Schumacher, Pedro Henrique da Rosa Braun, Michaela Wilhelm, Kurosch Rezwan. Unidirectional solution-based freeze cast polymer-derived ceramics: influence of freezing conditions and templating solvent on capillary transport in isothermal wicking. Journal of Materials Science 2020, 55 (10) , 4157-4169. https://doi.org/10.1007/s10853-019-04310-0
    23. Xiaoyang Zeng, Chuanqi Yao, Xiaoming Zhao, Hanwei He. Thermal Conductivity of n-Pentadecane (C15H32). International Journal of Thermophysics 2019, 40 (8) https://doi.org/10.1007/s10765-019-2537-x
    24. Anne M. Hofmeister. Transport Behavior of Common, Pourable Liquids. 2019, 181-199. https://doi.org/10.1016/B978-0-12-809981-0.00006-1
    25. Mostafa Lashkarbolooki, Ali Zeinolabedini Hezave, Mahdi Bayat. Thermal Diffusivity of Hydrocarbons and Aromatics: Artificial Neural Network Predicting Model. Journal of Thermophysics and Heat Transfer 2017, 31 (3) , 621-627. https://doi.org/10.2514/1.T5041
    26. Mostafa Lashkarbolooki, Ali Zeinolabedini Hezave, Mahdi Bayat. Correlating thermal conductivity of pure hydrocarbons and aromatics via perceptron artificial neural network (PANN) method. Chinese Journal of Chemical Engineering 2017, 25 (5) , 547-554. https://doi.org/10.1016/j.cjche.2016.08.025
    27. A. Koutian, M. J. Assael, M. L. Huber, R. A. Perkins. Reference Correlation of the Thermal Conductivity of Cyclohexane from the Triple Point to 640 K and up to 175 MPa. Journal of Physical and Chemical Reference Data 2017, 46 (1) https://doi.org/10.1063/1.4974325
    28. Mostafa Lashkarbolooki, Ali Zeinolabedini Hezave, Mahdi Bayat, Mohammad Hasan Khademi, Behzad Vaferi. A simple correlation for prediction of thermal conductivity of liquid hydrocarbons and aromatics. Journal of Theoretical and Computational Chemistry 2016, 15 (08) , 1650065. https://doi.org/10.1142/S0219633616500656
    29. Y. Mauricio Muñoz-Muñoz, Gabriela Guevara-Carrion, Mario Llano-Restrepo, Jadran Vrabec. Lennard-Jones force field parameters for cyclic alkanes from cyclopropane to cyclohexane. Fluid Phase Equilibria 2015, 404 , 150-160. https://doi.org/10.1016/j.fluid.2015.06.033
    30. C.-M. Vassiliou, M. J. Assael, M. L. Huber, R. A. Perkins. Reference Correlations of the Thermal Conductivity of Cyclopentane, iso -Pentane, and n -Pentane. Journal of Physical and Chemical Reference Data 2015, 44 (3) https://doi.org/10.1063/1.4927095
    31. S. K. Mylona, K. D. Antoniadis, M. J. Assael, M. L. Huber, R. A. Perkins. Reference Correlations of the Thermal Conductivity of o -Xylene, m -Xylene, p -Xylene, and Ethylbenzene from the Triple Point to 700 K and Moderate Pressures. Journal of Physical and Chemical Reference Data 2014, 43 (4) https://doi.org/10.1063/1.4901166
    32. Michael J. Lance, John Storey, Sam Lewis, C. Scott Sluder. Analysis of Lacquer Deposits and Plugging Found in Field-Tested EGR Coolers. 2014https://doi.org/10.4271/2014-01-0629
    33. J.M. Khodadadi, Liwu Fan, Hasan Babaei. Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews 2013, 24 , 418-444. https://doi.org/10.1016/j.rser.2013.03.031
    34. Liwu Fan, J.M. Khodadadi. An experimental investigation of enhanced thermal conductivity and expedited unidirectional freezing of cyclohexane-based nanoparticle suspensions utilized as nano-enhanced phase change materials (NePCM). International Journal of Thermal Sciences 2012, 62 , 120-126. https://doi.org/10.1016/j.ijthermalsci.2011.11.005
    35. M. J. Assael, E. K. Mihailidou, M. L. Huber, R. A. Perkins. Reference Correlation of the Thermal Conductivity of Benzene from the Triple Point to 725 K and up to 500 MPa. Journal of Physical and Chemical Reference Data 2012, 41 (4) https://doi.org/10.1063/1.4755781
    36. Elena A. Algaer, Florian Müller-Plathe. Molecular Dynamics Calculations of the Thermal Conductivity of Molecular Liquids, Polymers, and Carbon Nanotubes. Soft Materials 2012, 10 (1-3) , 42-80. https://doi.org/10.1080/1539445X.2011.599699
    37. Elizabeth A. Ploetz, Paul E. Smith. Local fluctuations in solution mixtures. The Journal of Chemical Physics 2011, 135 (4) https://doi.org/10.1063/1.3615718
    38. A. P. Fröba, M. H. Rausch, K. Krzeminski, D. Assenbaum, P. Wasserscheid, A. Leipertz. Thermal Conductivity of Ionic Liquids: Measurement and Prediction. International Journal of Thermophysics 2010, 31 (11-12) , 2059-2077. https://doi.org/10.1007/s10765-010-0889-3
    39. R.J. Goldstein, W.E. Ibele, S.V. Patankar, T.W. Simon, T.H. Kuehn, P.J. Strykowski, K.K. Tamma, J.V.R. Heberlein, J.H. Davidson, J. Bischof, F.A. Kulacki, U. Kortshagen, S. Garrick, V. Srinivasan, K. Ghosh, R. Mittal. Heat transfer—A review of 2004 literature. International Journal of Heat and Mass Transfer 2010, 53 (21-22) , 4343-4396. https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.004
    40. Marc J. Assael, Agni E. Kalyva, Konstantinos E. Kakosimos, Konstantinos D. Antoniadis. Correlation and Prediction of Dense Fluid Transport Coefficients. VIII. Mixtures of Alkyl Benzenes with Other Hydrocarbons. International Journal of Thermophysics 2009, 30 (6) , 1733-1747. https://doi.org/10.1007/s10765-009-0682-3
    41. Daisuke Tomida, Satoshi Kenmochi, Takao Tsukada, Chiaki Yokoyama. Measurements of thermal conductivity of 1‐butyl‐3‐methylimidazolium tetrafluoroborate at high pressure. Heat Transfer—Asian Research 2007, 36 (6) , 361-372. https://doi.org/10.1002/htj.20166
    42. Daisuke Tomida, Satoshi Kenmochi, Takao Tsukada, Chiaki Yokoyama. Measurements of Thermal Conductivity of 1-Buty1-3-methylimidazolium Tetrafluoroborate at High Pressure. Netsu Bussei 2006, 20 (4) , 173-178. https://doi.org/10.2963/jjtp.20.173
    43. M. Khayet, J. M. Ortiz de Zárate. Application of the Multi-Current Transient Hot-Wire Technique for Absolute Measurements of the Thermal Conductivity of Glycols. International Journal of Thermophysics 2005, 26 (3) , 637-646. https://doi.org/10.1007/s10765-005-5568-4

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect