ACS Publications. Most Trusted. Most Cited. Most Read
Surface Tensions and Densities of Sulfuric Acid + Dimethylamine + Water Solutions
My Activity

Figure 1Loading Img
    Article

    Surface Tensions and Densities of Sulfuric Acid + Dimethylamine + Water Solutions
    Click to copy article linkArticle link copied!

    View Author Information
    Finnish Meteorological Institute, Sahaajankatu 20 E, 00880 Helsinki, Finland, and Department Of Applied Physics, University of Kuopio, P.O. Box 1627, 70211 Kuopio, Finland
    Other Access Options

    Journal of Chemical & Engineering Data

    Cite this: J. Chem. Eng. Data 2004, 49, 4, 917–922
    Click to copy citationCitation copied!
    https://doi.org/10.1021/je034225b
    Published May 29, 2004
    Copyright © 2004 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    The surface tensions and densities of aqueous solutions of dimethylamine, (CH3)2NH, and sulfuric acid, H2SO4, were measured at 24.2 °C. Mol fractions of dimethylamine were varied between 0 and 0.21 and of sulfuric acid between 0 and 0.48. The surface tension of the binary dimethylamine + water solution decreased exponentially as dimethylamine was added, from the surface tension of water (72 mN·m-1 at 25 °C) to the value of 34 mN·m-1 at the maximum dimethylamine mol fraction of 0.21. The surface tension of the ternary system did not change from that of water + sulfuric acid until a sufficient amount of dimethylamine was added to turn the solution alkaline. When the mol fraction of dimethylamine was more than double the mol fraction of sulfuric acid, the surface tension of the solution started to approach that of water + dimethylamine. Polynomial fits were applied to measured data sets of both surface tension and density. Results and fitting parameters are presented.

    Copyright © 2004 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     To whom correspondence may be addressed. E-mail: [email protected].

     Finnish Meteorological Institute.

     University of Kuopio.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 20 publications.

    1. Henning Henschel, Juan C. Acosta Navarro, Taina Yli-Juuti, Oona Kupiainen-Määttä, Tinja Olenius, Ismael K. Ortega, Simon L. Clegg, Theo Kurtén, Ilona Riipinen, and Hanna Vehkamäki . Hydration of Atmospherically Relevant Molecular Clusters: Computational Chemistry and Classical Thermodynamics. The Journal of Physical Chemistry A 2014, 118 (14) , 2599-2611. https://doi.org/10.1021/jp500712y
    2. S. L. Clegg and A. S. Wexler . Densities and Apparent Molar Volumes of Atmospherically Important Electrolyte Solutions. 1. The Solutes H2SO4, HNO3, HCl, Na2SO4, NaNO3, NaCl, (NH4)2SO4, NH4NO3, and NH4Cl from 0 to 50 °C, Including Extrapolations to Very Low Temperature and to the Pure Liquid State, and NaHSO4, NaOH, and NH3 at 25 °C. The Journal of Physical Chemistry A 2011, 115 (15) , 3393-3460. https://doi.org/10.1021/jp108992a
    3. Cari S. Dutcher, Anthony S. Wexler, and Simon L. Clegg. Surface Tensions of Inorganic Multicomponent Aqueous Electrolyte Solutions and Melts. The Journal of Physical Chemistry A 2010, 114 (46) , 12216-12230. https://doi.org/10.1021/jp105191z
    4. Tomi Raatikainen, Ari Laaksonen, Antti-Pekka Hyvärinen, Joonas Vanhanen, Kaisa Hautio, Heikki Lihavainen, Yrjö Viisanen and Ismo Napari. Surface Tensions of Multicomponent Aqueous Electrolyte Solutions: Predictive Models Based on Binary Limits. The Journal of Physical Chemistry C 2008, 112 (28) , 10428-10434. https://doi.org/10.1021/jp7117136
    5. Saeid Azizian and, Nowrouz Bashavard. Surface Tension of Dilute Solutions of Linear Alcohols in Benzyl Alcohol. Journal of Chemical & Engineering Data 2005, 50 (4) , 1303-1307. https://doi.org/10.1021/je0500431
    6. Boxiao Li, Jun Li, Dongkai Ni, Songsong Tang, Juncheng Fan, Kaiyuan Shi, Zhen Li, Jian Zhou. Spontaneously spread polymer thin films on the miscible liquid substrates. Chemical Engineering Journal 2022, 437 , 135443. https://doi.org/10.1016/j.cej.2022.135443
    7. Jiao Chen. Studies on the Conformation, Thermodynamics, and Evaporation Rate Characteristics of Sulfuric Acid and Amines Molecular Clusters Jiao Chen1. SSRN Electronic Journal 2022, 35 https://doi.org/10.2139/ssrn.4122791
    8. Jiao Chen. Studies on the conformation, thermodynamics, and evaporation rate characteristics of sulfuric acid and amines molecular clusters. Results in Chemistry 2022, 4 , 100527. https://doi.org/10.1016/j.rechem.2022.100527
    9. Tuomas Vielma, Lubomir Hnedkovsky, Glenn Hefter. Chemical speciation effects on the volumetric properties of aqueous sulfuric acid solutions. The Journal of Chemical Thermodynamics 2021, 158 , 106408. https://doi.org/10.1016/j.jct.2021.106408
    10. Santeri Tuovinen, Jenni Kontkanen, Jingkun Jiang, Markku Kulmala. Investigating the effectiveness of condensation sink based on heterogeneous nucleation theory. Journal of Aerosol Science 2020, 149 , 105613. https://doi.org/10.1016/j.jaerosci.2020.105613
    11. Muhammad Bilal, Masatoshi Sakairi. Fast Fabrication of Localized Porous Alumina Patterns with 3D Printed Microdroplet Cell. Journal of The Electrochemical Society 2020, 167 (8) , 081501. https://doi.org/10.1149/1945-7111/ab8877
    12. L. Ahlm, T. Yli-Juuti, S. Schobesberger, A. P. Praplan, J. Kim, O.-P. Tikkanen, M. J. Lawler, J. N. Smith, J. Tröstl, J. C. Acosta Navarro, U. Baltensperger, F. Bianchi, N. M. Donahue, J. Duplissy, A. Franchin, T. Jokinen, H. Keskinen, J. Kirkby, A. Kürten, A. Laaksonen, K. Lehtipalo, T. Petäjä, F. Riccobono, M. P. Rissanen, L. Rondo, S. Schallhart, M. Simon, P. M. Winkler, D. R. Worsnop, A. Virtanen, I. Riipinen. Modeling the thermodynamics and kinetics of sulfuric acid-dimethylamine-water nanoparticle growth in the CLOUD chamber. Aerosol Science and Technology 2016, 50 (10) , 1017-1032. https://doi.org/10.1080/02786826.2016.1223268
    13. J. Kim, L. Ahlm, T. Yli-Juuti, M. Lawler, H. Keskinen, J. Tröstl, S. Schobesberger, J. Duplissy, A. Amorim, F. Bianchi, N. M. Donahue, R. C. Flagan, J. Hakala, M. Heinritzi, T. Jokinen, A. Kürten, A. Laaksonen, K. Lehtipalo, P. Miettinen, T. Petäjä, M. P. Rissanen, L. Rondo, K. Sengupta, M. Simon, A. Tomé, C. Williamson, D. Wimmer, P. M. Winkler, S. Ehrhart, P. Ye, J. Kirkby, J. Curtius, U. Baltensperger, M. Kulmala, K. E. J. Lehtinen, J. N. Smith, I. Riipinen, A. Virtanen. Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments. Atmospheric Chemistry and Physics 2016, 16 (1) , 293-304. https://doi.org/10.5194/acp-16-293-2016
    14. L. Skrabalova, D. Brus, T. Anttila, V. Zdimal, H. Lihavainen. Growth of sulphuric acid nanoparticles under wet and dry conditions. Atmospheric Chemistry and Physics 2014, 14 (12) , 6461-6475. https://doi.org/10.5194/acp-14-6461-2014
    15. C. J. Zou, H. M. Wu, L. Ma. The Surface Tension of a Mixture System of Acetophenone + Isopropyl Benzene + Phenol at 283.15 K. Petroleum Science and Technology 2012, 30 (8) , 800-806. https://doi.org/10.1080/10916466.2010.490817
    16. M. E. Erupe, A. A. Viggiano, S.-H. Lee. The effect of trimethylamine on atmospheric nucleation involving H2SO4. Atmospheric Chemistry and Physics 2011, 11 (10) , 4767-4775. https://doi.org/10.5194/acp-11-4767-2011
    17. K. C. Barsanti, P. H. McMurry, J. N. Smith. The potential contribution of organic salts to new particle growth. Atmospheric Chemistry and Physics 2009, 9 (9) , 2949-2957. https://doi.org/10.5194/acp-9-2949-2009
    18. Ch. Wohlfarth. Surface tension of the mixture (1) water; (2) dimethylamine. 2008, 281-281. https://doi.org/10.1007/978-3-540-75508-1_206
    19. Ch. Wohlfarth. Surface tension of water. 2008, 16-21. https://doi.org/10.1007/978-3-540-75508-1_4
    20. Antti‐Pekka Hyvärinen, Tomi Raatikainen, Ari Laaksonen, Yrjö Viisanen, Heikki Lihavainen. Surface tensions and densities of H 2 SO 4 + NH 3 + water solutions. Geophysical Research Letters 2005, 32 (16) https://doi.org/10.1029/2005GL023268

    Journal of Chemical & Engineering Data

    Cite this: J. Chem. Eng. Data 2004, 49, 4, 917–922
    Click to copy citationCitation copied!
    https://doi.org/10.1021/je034225b
    Published May 29, 2004
    Copyright © 2004 American Chemical Society

    Article Views

    833

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.