ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Studies on the Diffusion Coefficients of Amino Acids in Aqueous Solutions

View Author Information
School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
Cite this: J. Chem. Eng. Data 2005, 50, 4, 1192–1196
Publication Date (Web):May 20, 2005
https://doi.org/10.1021/je049582g
Copyright © 2005 American Chemical Society

    Article Views

    3485

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The diffusion of amino acids in aqueous solution was investigated experimentally by a holographic interferometric technique where the real-time holographic interference fringes indicating the concentration profiles of the liquid were obtained by an automatic photographing and memorizing program. The reliability of the instrument was verified by the measurement of the diffusion coefficient of KCl and sucrose in aqueous solution at 298.15 K. Furthermore, the diffusion coefficients of glycine, l-alanine, l-valine, l-isoleucine, l-serine, l-threonine, and l-arginine in aqueous solution at 298.15 K were measured, and the affecting factors of molecular structure and polarity were analyzed and discussed. In addition, on the basis of the Gordon model of the diffusion coefficient in the literature, a new semiempirical model was proposed to predict the liquid diffusion coefficients of amino acids in aqueous solutions. The equation parameters were fitted by the experimental data of seven amino acids in this work and four in the literature.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author. E-mail:  [email protected]. Tel:  +86-22-27404772. Fax:  +86-22-27404757.

    Cited By

    This article is cited by 84 publications.

    1. Wenting Sun, Xia Chen, Lianying Wu, Yangdong Hu, Weitao Zhang. Analysis of the Distribution and Influencing Factors of Diffusion Coefficient Model Parameters Based on Molecular Dynamics Simulations. ACS Omega 2023, 8 (25) , 22536-22544. https://doi.org/10.1021/acsomega.3c00754
    2. Russell Miller, Jan Sefcik, Leo Lue. Modeling Diffusive Mixing in Antisolvent Crystallization. Crystal Growth & Design 2022, 22 (4) , 2192-2207. https://doi.org/10.1021/acs.cgd.1c01269
    3. Mengjun Xue, Roy A. Black, Zachary R. Cohen, Adrienne Roehrich, Gary P. Drobny, Sarah L. Keller. Binding of Dipeptides to Fatty Acid Membranes Explains Their Colocalization in Protocells but Does Not Select for Them Relative to Unjoined Amino Acids. The Journal of Physical Chemistry B 2021, 125 (29) , 7933-7939. https://doi.org/10.1021/acs.jpcb.1c01485
    4. Santanu Santra, Madhurima Jana. Insights into the Sensitivity of Arginine Concentration to Preserve the Folded Form of Insulin Monomer under Thermal Stress. Journal of Chemical Information and Modeling 2020, 60 (6) , 3105-3119. https://doi.org/10.1021/acs.jcim.0c00006
    5. Eiji Kamio, Masashi Tanaka, Yuta Shirono, Yujeong Keun, Farhad Moghadam, Tomohisa Yoshioka, Keizo Nakagawa, Hideto Matsuyama. Hollow Fiber-Type Facilitated Transport Membrane Composed of a Polymerized Ionic Liquid-Based Gel Layer with Amino Acidate as the CO2 Carrier. Industrial & Engineering Chemistry Research 2020, 59 (5) , 2083-2092. https://doi.org/10.1021/acs.iecr.9b05253
    6. Stuart A. Allison, Hengfu Wu, Avery Moyher, Linda Soegiarto, Bi Truong, Duy Nguyen, Tam Nguyen, and Donghyun Park . Coarse-Grained Modeling of the Titration and Conductance Behavior of Aqueous Fullerene Hexa Malonic Acid (FHMA) Solutions. The Journal of Physical Chemistry B 2014, 118 (11) , 3150-3155. https://doi.org/10.1021/jp500196j
    7. Kazuko Yui, Yuichiro Noda, Motonobu Koido, Mai Irie, Izumi Watanabe, Tatsuya Umecky, and Toshitaka Funazukuri . Binary Diffusion Coefficients of Aqueous Straight-Chain Amino Acids at Infinitesimal Concentration and Temperatures from (298.2 to 333.2) K. Journal of Chemical & Engineering Data 2013, 58 (10) , 2848-2853. https://doi.org/10.1021/je301370s
    8. Tatsuya Umecky, Kozue Ehara, Shigeyoshi Omori, Tomoyuki Kuga, Kazuko Yui, and Toshitaka Funazukuri . Binary Diffusion Coefficients of Aqueous Phenylalanine, Tyrosine Isomers, and Aminobutyric Acids at Infinitesimal Concentration and Temperatures from (293.2 to 333.2) K. Journal of Chemical & Engineering Data 2013, 58 (7) , 1909-1917. https://doi.org/10.1021/je3012698
    9. Lylian Challier, François Mavré, Julie Moreau, Claire Fave, Bernd Schöllhorn, Damien Marchal, Eric Peyrin, Vincent Noël, and Benoit Limoges . Simple and Highly Enantioselective Electrochemical Aptamer-Based Binding Assay for Trace Detection of Chiral Compounds. Analytical Chemistry 2012, 84 (12) , 5415-5420. https://doi.org/10.1021/ac301048c
    10. Tiina Sikanen, Susanna Aura, Liisa Heikkilä, Tapio Kotiaho, Sami Franssila and Risto Kostiainen . Hybrid Ceramic Polymers: New, Nonbiofouling, and Optically Transparent Materials for Microfluidics. Analytical Chemistry 2010, 82 (9) , 3874-3882. https://doi.org/10.1021/ac1004053
    11. Ying Zhao, Masayoshi Tanaka, Takatoshi Kinoshita, Masahiro Higuchi and Tianwei Tan. Controlled Release and Entrapment of Enantiomers in Self-Assembling Scaffolds Composed of β-Sheet Peptides. Biomacromolecules 2009, 10 (12) , 3266-3272. https://doi.org/10.1021/bm900857j
    12. Hongxia Pei, Markus W. Germann and Stuart A. Allison. Translational Diffusion Constants of Short Peptides: Measurement by NMR and Their Use in Structural Studies of Peptides. The Journal of Physical Chemistry B 2009, 113 (27) , 9326-9329. https://doi.org/10.1021/jp902143q
    13. Stuart A. Allison and Hongxia Pei. Viscosity of Dilute Suspensions of Rigid Bead Arrays at Low Shear: Accounting for the Variation in Hydrodynamic Stress Over the Bead Surfaces. The Journal of Physical Chemistry B 2009, 113 (23) , 8056-8065. https://doi.org/10.1021/jp9001109
    14. Sivashangari Gnanasambandam, Zhongqiao Hu, Jianwen Jiang and Raj Rajagopalan . Force Field for Molecular Dynamics Studies of Glycine/Water Mixtures in Crystal/Solution Environments. The Journal of Physical Chemistry B 2009, 113 (3) , 752-758. https://doi.org/10.1021/jp802949u
    15. Jun Huang, Thomas C. Stringfellow and Lian Yu. Glycine Exists Mainly as Monomers, Not Dimers, in Supersaturated Aqueous Solutions: Implications for Understanding Its Crystallization and Polymorphism. Journal of the American Chemical Society 2008, 130 (42) , 13973-13980. https://doi.org/10.1021/ja804836d
    16. Said Hamad, Colan E. Hughes, C. Richard A. Catlow and Kenneth D. M. Harris . Clustering of Glycine Molecules in Aqueous Solution Studied by Molecular Dynamics Simulation. The Journal of Physical Chemistry B 2008, 112 (24) , 7280-7288. https://doi.org/10.1021/jp711271z
    17. Markus W. Germann,, Tierre Turner, and, Stuart A. Allison. Translational Diffusion Constants of the Amino Acids:  Measurement by NMR and Their Use in Modeling the Transport of Peptides. The Journal of Physical Chemistry A 2007, 111 (8) , 1452-1455. https://doi.org/10.1021/jp068217o
    18. Tatsuya Umecky,, Tomoyuki Kuga, and, Toshitaka Funazukuri. Infinite Dilution Binary Diffusion Coefficients of Several α-Amino Acids in Water over a Temperature Range from (293.2 to 333.2) K with the Taylor Dispersion Technique. Journal of Chemical & Engineering Data 2006, 51 (5) , 1705-1710. https://doi.org/10.1021/je060149b
    19. Hua Zheng, Sarah W. Harcum, Jinxiang Pei, Wei Xie. Stochastic biological system-of-systems modelling for iPSC culture. Communications Biology 2024, 7 (1) https://doi.org/10.1038/s42003-023-05653-w
    20. Yuqi Su, Weijie Jia, Junshuai Chen, Songtao Cao, Maogang He, Ying Zhang. A novel measurement method for measuring the concentration-dependent mutual diffusion coefficients based on finite volume method. The Journal of Chemical Thermodynamics 2024, 189 , 107208. https://doi.org/10.1016/j.jct.2023.107208
    21. Gurdip Uppal, Dervis Can Vural. On the possibility of engineering social evolution in microfluidic environments. Biophysical Journal 2024, 2 https://doi.org/10.1016/j.bpj.2024.01.007
    22. Alberto Baldelli, Chun Wong, Hale Oguzlu, Hanieh Mahvizani, Hui Xin Ong, Athenea Pascual Rodriguez, Gurpreet Singhera, Andrew Thamboo, Anika Singh, Daniela Traini, Anubhav Pratap-Singh. Impact of amino acids on the properties of nasal dry powders. Journal of Drug Delivery Science and Technology 2023, 87 , 104848. https://doi.org/10.1016/j.jddst.2023.104848
    23. Gabriele Antonio Zingale, Irene Pandino, Alessia Distefano, Nunzio Tuccitto, Giuseppe Grasso. A novel SPR based method for measuring diffusion coefficients: From small molecules to supramolecular aggregates. Biosensors and Bioelectronics: X 2023, 13 , 100306. https://doi.org/10.1016/j.biosx.2023.100306
    24. Tirth Bhatta, Pratibha Khanal, Shyam Prakash Khanal, Narayan Prasad Adhikari. Thermodynamics and transport properties of valine and cysteine peptides in water. Journal of Molecular Liquids 2023, 376 , 121472. https://doi.org/10.1016/j.molliq.2023.121472
    25. M. Melia Rodrigo, Ana M.T.D.P.V. Cabral, Pedro M.G. Nicolau, Ana C.F. Ribeiro, A.J.M. Valente, Sónia I.G. Fangaia, Miguel A. Esteso. Effect of potassium dihydrogen citrate on the diffusion behaviour of citric acid. The Journal of Chemical Thermodynamics 2023, 179 , 106996. https://doi.org/10.1016/j.jct.2022.106996
    26. Benedict Borer, Irene H Zhang, Amy E Baker, George A O'Toole, Andrew R Babbin, . Porous marine snow differentially benefits chemotactic, motile, and nonmotile bacteria. PNAS Nexus 2023, 2 (2) https://doi.org/10.1093/pnasnexus/pgac311
    27. Cornelia Eder, Simon A. Schiele, Frederik Luxenburger, Heiko Briesen. Glycine Dissolution Behavior under Forced Convection. Crystals 2023, 13 (2) , 315. https://doi.org/10.3390/cryst13020315
    28. Antonio M. Bosch, Salvatore Assenza. Interplay of Hydropathy and Heterogeneous Diffusion in the Molecular Transport within Lamellar Lipid Mesophases. Pharmaceutics 2023, 15 (2) , 573. https://doi.org/10.3390/pharmaceutics15020573
    29. David Winogradoff, Han-Yi Chou, Christopher Maffeo, Aleksei Aksimentiev. Percolation transition prescribes protein size-specific barrier to passive transport through the nuclear pore complex. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-32857-1
    30. Tushar Raskar, Stephan Niebling, Juliette M. Devos, Briony A. Yorke, Michael Härtlein, Nils Huse, V. Trevor Forsyth, Tilo Seydel, Arwen R. Pearson. Structure and diffusive dynamics of aspartate α-decarboxylase (ADC) liganded with d -serine in aqueous solution. Physical Chemistry Chemical Physics 2022, 24 (34) , 20336-20347. https://doi.org/10.1039/D2CP02063G
    31. Daniel B. Amchin, Jenna A. Ott, Tapomoy Bhattacharjee, Sujit S. Datta, . Influence of confinement on the spreading of bacterial populations. PLOS Computational Biology 2022, 18 (5) , e1010063. https://doi.org/10.1371/journal.pcbi.1010063
    32. Mirjana Stevanovic, Thomas Boukéké-Lesplulier, Lukas Hupe, Jeff Hasty, Philip Bittihn, Daniel Schultz. Nutrient Gradients Mediate Complex Colony-Level Antibiotic Responses in Structured Microbial Populations. Frontiers in Microbiology 2022, 13 https://doi.org/10.3389/fmicb.2022.740259
    33. Yuki Suga, Ryosuke Takagi, Hideto Matsuyama. Effect of hollow fiber membrane properties and operating conditions on preventing scale precipitation in seawater desalination with vacuum membrane distillation. Desalination 2022, 527 , 115578. https://doi.org/10.1016/j.desal.2022.115578
    34. Gabriele Antonio Zingale, Irene Pandino, Alessia Distefano, Nunzio Tuccitto, Giuseppe Grasso. A Novel SPR Based Method for Measuring Diffusion Coefficients: From Small Molecules to Supramolecular Aggregates. SSRN Electronic Journal 2022, 8 https://doi.org/10.2139/ssrn.4192607
    35. Gabriele Antonio Zingale, Irene Pandino, Alessia Distefano, Nunzio Tuccitto, Giuseppe Grasso. A Novel Spr Based Method for Measuring Diffusion Coefficients: From Small Molecules to Supramolecular Aggregates. SSRN Electronic Journal 2022, 8 https://doi.org/10.2139/ssrn.4192608
    36. Alexandra Moschona, Margaritis Kostoglou, Anastasios J. Karabelas. Mass Transfer Characteristics of Haemofiltration Modules—Experiments and Modeling. Membranes 2022, 12 (1) , 62. https://doi.org/10.3390/membranes12010062
    37. Xia Chen, Yan Wang, Lianying Wu, Weitao Zhang, Yangdong Hu. Testing and validation of a self-diffusion coefficient model based on molecular dynamics simulations. Chinese Journal of Chemical Engineering 2021, 36 , 138-145. https://doi.org/10.1016/j.cjche.2021.04.036
    38. Carlo Canepa. A Model Study on the Dynamics of the Amino Acid Content in Micrometeoroids during Atmospheric Entry. Chemistry 2020, 2 (4) , 918-936. https://doi.org/10.3390/chemistry2040058
    39. Xiaochu Li, Floricel Gonzalez, Nathaniel Esteves, Birgit E. Scharf, Jing Chen, . Formation of phage lysis patterns and implications on co-propagation of phages and motile host bacteria. PLOS Computational Biology 2020, 16 (3) , e1007236. https://doi.org/10.1371/journal.pcbi.1007236
    40. Gurdip Uppal, Dervis Can Vural. Evolution of specialized microbial cooperation in dynamic fluids. Journal of Evolutionary Biology 2020, 33 (3) , 256-269. https://doi.org/10.1111/jeb.13593
    41. Rajendra Prasad Koirala, Hem Prasad Bhusal, Shyam P. Khanal, Narayan Prasad Adhikari. Effect of temperature on transport properties of cysteine in water. AIP Advances 2020, 10 (2) https://doi.org/10.1063/1.5132777
    42. Mariah L. Arral, Christian Tooley, Emily Ziino, Jeffrey Mark Halpern. Elucidating the Electrochemical Mechanism of N G -Hydroxy-L-Arginine. Journal of The Electrochemical Society 2020, 167 (2) , 025501. https://doi.org/10.1149/1945-7111/ab643a
    43. Tapomoy Bhattacharjee, Sujit S. Datta. Bacterial hopping and trapping in porous media. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-10115-1
    44. M.M. Rodrigo, M.A. Esteso, L.M.P. Veríssimo, C.M. Romero, M.L. Ramos, A.J.M. Valente, A.C.F. Ribeiro. A comparative study between the behavior diffusion of α-aminobutyric acid and γ-aminobutyric acid in sodium chloride aqueous solutions. Journal of Molecular Liquids 2019, 291 , 111289. https://doi.org/10.1016/j.molliq.2019.111289
    45. Yu Yang, Piliang Xiang, Huang Chen, Zhitao Zhao, Zaifang Zhu, Shaorong Liu. On-column and gradient focusing-induced high-resolution separation in narrow open tubular liquid chromatography and a simple and economic approach for pico-gradient separation. Analytica Chimica Acta 2019, 1072 , 95-101. https://doi.org/10.1016/j.aca.2019.04.008
    46. Carmen M. Romero, Ginna P. Trujillo, Luis M. P. Verissimo, Miguel A. Esteso, M. Luísa Ramos, Ana C. F. Ribeiro. Limiting diffusion coefficients of $\alpha$,$\omega$-amino acids in water and in sodium chloride aqueous solutions at 298.15 K. The European Physical Journal E 2019, 42 (7) https://doi.org/10.1140/epje/i2019-11856-1
    47. Shyam P. Khanal, Yadav Prasad Kandel, Narayan P. Adhikari. Transport properties of zwitterion glycine, diglycine, and triglycine in water. AIP Advances 2019, 9 (6) https://doi.org/10.1063/1.5099069
    48. Danielle King, Hakan Başağaoğlu, Hoa Nguyen, Frank Healy, Melissa Whitman, Sauro Succi. Effects of Advective-Diffusive Transport of Multiple Chemoattractants on Motility of Engineered Chemosensory Particles in Fluidic Environments. Entropy 2019, 21 (5) , 465. https://doi.org/10.3390/e21050465
    49. Lorena Fernández, Marta Herrero, Beatriz Alonso, Carmen M. Casado, M. Pilar García Armada. Three-dimensional electrocatalytic surface based on an octasilsesquioxane dendrimer for sensing applications. Journal of Electroanalytical Chemistry 2019, 839 , 16-24. https://doi.org/10.1016/j.jelechem.2019.03.010
    50. Zbigniew J. Grzywna, Przemyslaw Borys. On the significance of sodium ionic channels in analysis of the breast cancer metastaticity. Biosystems 2019, 177 , 34-38. https://doi.org/10.1016/j.biosystems.2018.10.007
    51. Marisa C.F. Barros, Ana C.F. Ribeiro, Luís M.P. Verissimo, Derek G. Leaist, Miguel A. Esteso. Diffusion in ternary aqueous {L-dopa + (NaSO3) -β-cyclodextrin} solutions using the pseudo-binary approximation. The Journal of Chemical Thermodynamics 2018, 123 , 17-21. https://doi.org/10.1016/j.jct.2018.03.014
    52. Marie-Christine Ostermann, Maren Termühlen, Gerhard Schembecker, Kerstin Wohlgemuth. Growth Rate Measurements of Organic Crystals in a Cone‐Shaped Fluidized‐Bed Cell. Chemical Engineering & Technology 2018, 41 (6) , 1165-1172. https://doi.org/10.1002/ceat.201700683
    53. Tarso B. Ledur Kist. Cyclic band compression in toroidal capillary electrophoresis delivers an unlimited number of theoretical plates with a quadratic growth in time and a constant peak capacity. Journal of Separation Science 2018, 41 (12) , 2640-2650. https://doi.org/10.1002/jssc.201800099
    54. Gurdip Uppal, Dervis Can Vural. Shearing in flow environment promotes evolution of social behavior in microbial populations. eLife 2018, 7 https://doi.org/10.7554/eLife.34862
    55. Jochen Winkelmann. Diffusion coefficient of aminoacetic acid in water. 2018, 269-273. https://doi.org/10.1007/978-3-662-54089-3_159
    56. Jochen Winkelmann. Diffusion coefficient of L-alanine in water. 2018, 431-432. https://doi.org/10.1007/978-3-662-54089-3_238
    57. Jochen Winkelmann. Diffusion coefficient of DL-2-aminopropionic acid in water. 2018, 433-434. https://doi.org/10.1007/978-3-662-54089-3_239
    58. Jochen Winkelmann. Diffusion coefficient of 3-aminopropanoic acid in water. 2018, 435-436. https://doi.org/10.1007/978-3-662-54089-3_240
    59. Jochen Winkelmann. Diffusion coefficient of L-serine in water. 2018, 438-439. https://doi.org/10.1007/978-3-662-54089-3_242
    60. Jochen Winkelmann. Diffusion coefficient of DL-2-aminobutanoic acid in water. 2018, 569-570. https://doi.org/10.1007/978-3-662-54089-3_330
    61. Jochen Winkelmann. Diffusion coefficient of 3-hydroxy-2-amino-butanoic acid in water. 2018, 572-574. https://doi.org/10.1007/978-3-662-54089-3_332
    62. Jochen Winkelmann. Diffusion coefficient of L-valine in water. 2018, 682-683. https://doi.org/10.1007/978-3-662-54089-3_401
    63. Jochen Winkelmann. Diffusion coefficient of L-isoleucine in water. 2018, 926-927. https://doi.org/10.1007/978-3-662-54089-3_579
    64. Jochen Winkelmann. Diffusion coefficient of L-arginine in water. 2018, 1003-1004. https://doi.org/10.1007/978-3-662-54089-3_629
    65. Jochen Winkelmann. Diffusion coefficient of saccharose in water. 2018, 1441-1462. https://doi.org/10.1007/978-3-662-54089-3_985
    66. Yansha Deng, Weisi Guo, Adam Noel, Arumugam Nallanathan, Maged Elkashlan. Enabling Energy Efficient Molecular Communication via Molecule Energy Transfer. IEEE Communications Letters 2017, 21 (2) , 254-257. https://doi.org/10.1109/LCOMM.2016.2624727
    67. Benjamin A. Webb, Richard F. Helm, Birgit E. Scharf. Contribution of Individual Chemoreceptors to Sinorhizobium meliloti Chemotaxis Towards Amino Acids of Host and Nonhost Seed Exudates. Molecular Plant-Microbe Interactions® 2016, 29 (3) , 231-239. https://doi.org/10.1094/MPMI-12-15-0264-R
    68. Sergio R. Aragon. Accurate Hydrodynamic Modeling with the Boundary Element Method. 2016, 219-247. https://doi.org/10.1007/978-4-431-55985-6_12
    69. M. Melia Rodrigo, Artur J.M. Valente, Marisa C.F. Barros, Luis M.P. Verissimo, M. Luísa Ramos, Licínia L.G. Justino, Hugh D. Burrows, Ana C.F. Ribeiro, Miguel A. Esteso. Binary diffusion coefficients of l-histidine methyl ester dihydrochloride in aqueous solutions. The Journal of Chemical Thermodynamics 2015, 89 , 240-244. https://doi.org/10.1016/j.jct.2015.05.013
    70. Xuehua Zhang, Alexandru Crivoi, Fei Duan. Three-dimensional patterns from the thin-film drying of amino acid solutions. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep10926
    71. Amninder S. Virk, Timothy Stait-Gardner, Scott A. Willis, Allan M. Torres, William S. Price. Macromolecular crowding studies of amino acids using NMR diffusion measurements and molecular dynamics simulations. Frontiers in Physics 2015, 3 https://doi.org/10.3389/fphy.2015.00001
    72. Li Xie, Chunliang Lu, Xiao-Lun Wu. Marine Bacterial Chemoresponse to a Stepwise Chemoattractant Stimulus. Biophysical Journal 2015, 108 (3) , 766-774. https://doi.org/10.1016/j.bpj.2014.11.3479
    73. Santiago Tolosa, Antonio Hidalgo, Jorge A. Sansón. A computational model of the glycine tautomerization reaction in aqueous solution. Journal of Molecular Modeling 2014, 20 (3) https://doi.org/10.1007/s00894-014-2147-2
    74. Ana C. F. Ribeiro, Marisa C. F. Barros, Luis M. P. Verissimo, Victor M. M. Lobo, Artur J. M. Valente. Binary Diffusion Coefficients for Aqueous Solutions of l-Aspartic Acid and Its Respective Monosodium Salt. Journal of Solution Chemistry 2014, 43 (1) , 83-92. https://doi.org/10.1007/s10953-013-0034-6
    75. Qilong REN, Huabin XING, Zongbi BAO, Baogen SU, Qiwei YANG, Yiwen YANG, Zhiguo ZHANG. Recent Advances in Separation of Bioactive Natural Products. Chinese Journal of Chemical Engineering 2013, 21 (9) , 937-952. https://doi.org/10.1016/S1004-9541(13)60560-1
    76. Sascha Hempel, Gabriele Sadowski. Water activity coefficients in aqueous amino acid solutions by molecular dynamics simulation: 1. Force field development. Molecular Simulation 2012, 38 (2) , 132-138. https://doi.org/10.1080/08927022.2011.608670
    77. Mahama A. Traoré, Ali Sahari, Bahareh Behkam. Computational and experimental study of chemotaxis of an ensemble of bacteria attached to a microbead. Physical Review E 2011, 84 (6) https://doi.org/10.1103/PhysRevE.84.061908
    78. Elizabeth E. Hills, Michael H. Abraham, Anne Hersey, Chris D. Bevan. Diffusion coefficients in ethanol and in water at 298K: Linear free energy relationships. Fluid Phase Equilibria 2011, 303 (1) , 45-55. https://doi.org/10.1016/j.fluid.2011.01.002
    79. M. N. Breckels, D. E. Boakes, E. A. Codling, G. Malin, S. D. Archer, M. Steinke. Modelling the concentration of exuded dimethylsulphoniopropionate (DMSP) in the boundary layer surrounding phytoplankton cells. Journal of Plankton Research 2010, 32 (2) , 253-257. https://doi.org/10.1093/plankt/fbp116
    80. Soumik Banerjee, Heiko Briesen. Molecular dynamics simulations of glycine crystal-solution interface. The Journal of Chemical Physics 2009, 131 (18) https://doi.org/10.1063/1.3258650
    81. Uwe Winter, Tihamér Geyer. Coarse grained simulations of a small peptide: Effects of finite damping and hydrodynamic interactions. The Journal of Chemical Physics 2009, 131 (10) https://doi.org/10.1063/1.3216573
    82. Tatsuya Umecky, Shigeyoshi Omori, Tomoyuki Kuga, Toshitaka Funazukuri. Effects of hydroxyl groups on binary diffusion coefficients of α-amino acids in dilute aqueous solutions. Fluid Phase Equilibria 2008, 264 (1-2) , 18-22. https://doi.org/10.1016/j.fluid.2007.10.013
    83. Colan E. Hughes, Said Hamad, Kenneth D. M. Harris, C. Richard A. Catlow, Peter C. Griffiths. A multi-technique approach for probing the evolution of structural properties during crystallization of organic materials from solution. Faraday Discussions 2007, 136 , 71. https://doi.org/10.1039/b616611c
    84. Mario G. Campo. Molecular dynamics simulation of glycine zwitterion in aqueous solution. The Journal of Chemical Physics 2006, 125 (11) https://doi.org/10.1063/1.2352756

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect