Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Mutual Solubility and Lower Critical Solution Temperature for Water + Glycol Ether Systems

View Author Information
The Dow Chemical Company, Midland, Michigan 48667, and Union Carbide Corporation, a Subsidiary of The Dow Chemical Company, South Charleston, West Virginia 25303
Cite this: J. Chem. Eng. Data 2005, 50, 3, 869–877
Publication Date (Web):March 2, 2005
https://doi.org/10.1021/je049635u
Copyright © 2005 American Chemical Society

    Article Views

    1482

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Mutual solubility and the lower critical solution temperature (LCST) are reported for a number of water + ethylene glycol ether and water + propylene glycol ether systems near atmospheric pressure. For the systems studied, the LCST is in the range of −10 °C to 48 °C. Glycol ethers are unusual organic solvents in that they have both hydrophobic and hydrophilic functionality and can hydrogen bond with water. Because of this, their interactions with water are complex and difficult to predict. The presence of an LCST is characteristic of hydrogen-bonding mixtures, and the value of the LCST reflects the relative magnitude of hydrophobic/hydrophilic interactions in solution. A higher LCST value is indicative of a glycol ether with greater hydrophilic character. For water + ethylene glycol ether mixtures, the glycol ether becomes increasingly hydrophilic (LCST increases) as the number of oxyalkylene repeating units increases. The opposite effect is seen for water + propylene glycol ether mixtures. In this case, the glycol ether becomes more hydrophobic (LCST decreases) as the number of oxyalkylene repeating units increases. The results clearly demonstrate that water + glycol ether interactions are strong functions of both chemical structure and temperature.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author. E-mail:  [email protected].

     Dow Chemical Company.

     Union Carbide Corporation.

    Cited By

    This article is cited by 56 publications.

    1. Danielle L. de Klerk, Cara E. Schwarz. Simplified Approach to the Parameterization of the NRTL Model for Partially Miscible Binary Systems: Tττ LLE Methodology. Industrial & Engineering Chemistry Research 2023, 62 (4) , 2021-2035. https://doi.org/10.1021/acs.iecr.2c03953
    2. Raphaël Lebeuf, Agathe Mazaud, Véronique Nardello-Rataj. Hydrotropic Cloud Point Extraction of Lipids from Microalgae: A New Pathway for Biofuels Production. Energy & Fuels 2021, 35 (24) , 20151-20159. https://doi.org/10.1021/acs.energyfuels.1c02995
    3. Ivan Cibulka . Partial Molar Volumes and Partial Molar Isentropic Compressions of Four 2-Alkoxyethanols at Infinite Dilution in Water at Temperatures T = 278–343 K and Atmospheric Pressure. Journal of Chemical & Engineering Data 2017, 62 (9) , 2649-2658. https://doi.org/10.1021/acs.jced.7b00095
    4. Jing Gao, Jieyi Guo, Fanghong Nie, Hongwu Ji, and Shucheng Liu . LCST-Type Phase Behavior of Aqueous Biphasic Systems Composed of Phosphonium-Based Ionic Liquids and Potassium Phosphate. Journal of Chemical & Engineering Data 2017, 62 (4) , 1335-1340. https://doi.org/10.1021/acs.jced.6b00884
    5. Lauren Morrow, Vittoria Balsamo, and Duy Nguyen . Effect of Emulsion Breakers on Interfacial Tension Behavior of Heavy Oil–Water Systems. Energy & Fuels 2016, 30 (10) , 8072-8079. https://doi.org/10.1021/acs.energyfuels.6b00446
    6. Raphaël Lebeuf, Estelle Illous, Corentin Dussenne, Valérie Molinier, Eric Da Silva, Marc Lemaire, and Jean-Marie Aubry . Solvo-Surfactant Properties of Dialkyl Glycerol Ethers: Application as Eco-Friendly Extractants of Plant Material through a Novel Hydrotropic Cloud Point Extraction (HCPE) Process. ACS Sustainable Chemistry & Engineering 2016, 4 (9) , 4815-4823. https://doi.org/10.1021/acssuschemeng.6b01101
    7. Zachary J. West, Linda M. Shafer, Richard C. Striebich, Steven Zabarnick, Charles Delaney, Donald Phelps, and Matthew J. DeWitt . Equilibrium Partitioning of Di-ethylene Glycol Monomethyl Ether (DiEGME) between Fuel and Aqueous Phases at Sub-Ambient Temperatures. Energy & Fuels 2014, 28 (7) , 4501-4510. https://doi.org/10.1021/ef500900p
    8. Cheng-Hao Su and Li-Jen Chen . Liquid–Liquid Equilibria for the Ternary System Water + Dodecane + 1-(1-Methyl-2-propoxyethoxy)-2-propanol. Journal of Chemical & Engineering Data 2012, 57 (7) , 1899-1902. https://doi.org/10.1021/je300450j
    9. Cheng-Hao Su and Li-Jen Chen . Liquid–Liquid Equilibria for the Ternary System Water + Tetradecane + Propylene Glycol n-Propyl Ether. Journal of Chemical & Engineering Data 2011, 56 (6) , 2976-2979. https://doi.org/10.1021/je200320z
    10. Cheng-Hao Su and Li-Jen Chen . Liquid−Liquid Equilibria for the Ternary System Water + Hexadecane + Propylene Glycol n-Propyl Ether. Journal of Chemical & Engineering Data 2011, 56 (3) , 589-594. https://doi.org/10.1021/je101281x
    11. Sumi Lee, Ji-Seok Lee, Cheol Hee Lee, Young-Sik Jung, and Jong-Man Kim . Nonpolymeric Thermosensitive Benzenetricarboxamides. Langmuir 2011, 27 (5) , 1560-1564. https://doi.org/10.1021/la104568c
    12. Sudhakar S. Dhondge, Chandrashekhar P. Pandhurnekar, Dilip V. Parwate. Density, Speed of Sound, and Refractive Index of Aqueous Binary Mixtures of Some Glycol Ethers at T = 298.15 K. Journal of Chemical & Engineering Data 2010, 55 (9) , 3962-3968. https://doi.org/10.1021/je901072c
    13. Timothy C. Frank,, John J. Anderson, and, James D. Olson, , Charles A. Eckert. Application of MOSCED and UNIFAC to Screen Hydrophobic Solvents for Extraction of Hydrogen-Bonding Organics from Aqueous Solution. Industrial & Engineering Chemistry Research 2007, 46 (13) , 4621-4625. https://doi.org/10.1021/ie070010+
    14. Timothy C. Frank,, Felipe A. Donate,, Andrei S. Merenov,, Grant A. Von Wald,, Barbara J. Alstad,, Christian W. Green, and, Thomas C. Thyne. Separation of Glycol Ethers and Similar LCST-Type Hydrogen-Bonding Organics from Aqueous Solution Using Distillation or Liquid−Liquid Extraction. Industrial & Engineering Chemistry Research 2007, 46 (11) , 3774-3786. https://doi.org/10.1021/ie061646o
    15. Qinghai Long, Shuo Wang, Shufeng Shen. CO2 capture using EGHE-based water-lean solvents with novel water balance design. Chemical Engineering Science 2023, 273 , 118658. https://doi.org/10.1016/j.ces.2023.118658
    16. Dragana Dimitrijević, Markus Bösenhofer, Michael Harasek. Liquid–Liquid Phase Separation of Two Non-Dissolving Liquids—A Mini Review. Processes 2023, 11 (4) , 1145. https://doi.org/10.3390/pr11041145
    17. Zi Hao Foo, Caleb Stetson, Elizabeth Dach, Akshay Deshmukh, Hyeonseok Lee, Akanksha K. Menon, Ravi Prasher, Ngai Yin Yip, John H. Lienhard, Aaron D. Wilson. Solvent-driven aqueous separations for hypersaline brine concentration and resource recovery. Trends in Chemistry 2022, 4 (12) , 1078-1093. https://doi.org/10.1016/j.trechm.2022.09.004
    18. Hiroyuki Matsuda, Yuki Nakazato, Rei Tsuchiya, Yoshihiro Inoue, Kiyofumi Kurihara, Tomoya Tsuji, Katsumi Tochigi, Kenji Ochi. Fish-shaped diagram of liquid–liquid equilibria for the mixtures water + n-alkane + n-alkyl polyglycol ether. Fluid Phase Equilibria 2022, 559 , 113492. https://doi.org/10.1016/j.fluid.2022.113492
    19. Ying-Chieh Hung, Chieh-Ming Hsieh, Hiroshi Machida, Shiang-Tai Lin, Yusuke Shimoyama. Phase equilibrium modeling of mixtures containing conformationally flexible molecules with the COSMO-SAC model. Journal of Molecular Liquids 2022, 356 , 118896. https://doi.org/10.1016/j.molliq.2022.118896
    20. Emanuel A. Crespo, Lourdes F. Vega, Germán Pérez-Sánchez, João A. P. Coutinho. Unveiling the phase behavior of C i E j non-ionic surfactants in water through coarse-grained molecular dynamics simulations. Soft Matter 2021, 17 (20) , 5183-5196. https://doi.org/10.1039/D1SM00362C
    21. Yifan Hao, Chau‐Chyun Chen. Nonrandom two‐liquid activity coefficient model with association theory. AIChE Journal 2021, 67 (1) https://doi.org/10.1002/aic.17061
    22. İsmaı̇l Tosun. Liquid–liquid and vapor–liquid–liquid equilibrium. 2021, 509-559. https://doi.org/10.1016/B978-0-12-820530-3.00021-0
    23. M. Wasiak, M. Komudzińska, H. Piekarski, M. Tkaczyk. Heat capacity and phase behaviour of {pentaethylene glycol monoheptyl ether + water} system. Two-point scaling approach. Journal of Molecular Liquids 2018, 266 , 781-788. https://doi.org/10.1016/j.molliq.2018.07.006
    24. Xuezhi Dai, Jinhang Li, Yuzhi Ma, Xianqiu Lan, Hang Song. Synthesis, properties of pentaalkylguanidinium-based magnetic room temperature ionic liquids (MRTILs) and the mutual solubility of (MRTILs + cyclohexane) and (MRTILs + n-octane) binary systems. Journal of Molecular Liquids 2018, 254 , 226-230. https://doi.org/10.1016/j.molliq.2018.01.107
    25. Siavash Darvishmanesh, Brian A. Pethica, Sankaran Sundaresan. Forward osmosis using draw solutions manifesting liquid-liquid phase separation. Desalination 2017, 421 , 23-31. https://doi.org/10.1016/j.desal.2017.05.036
    26. Ali Khoshsima, Reza Shahriari. Modeling study of the phase behavior of mixtures containing non-ionic glycol ether surfactant. Journal of Molecular Liquids 2017, 230 , 529-541. https://doi.org/10.1016/j.molliq.2017.01.058
    27. Lan-mu Zeng, Ming-yuan Du, Xiao-lin Wang. A Thermodynamical Approach for Evaluating Energy Consumption of the Forward Osmosis Process Using Various Draw Solutes. Water 2017, 9 (3) , 189. https://doi.org/10.3390/w9030189
    28. Michał Wasiak, Mariola Tkaczyk, Henryk Piekarski. Heat capacity and phase behaviour of aqueous solutions of triethylene glycol monopentyl ether. Two point scaling analysis. Fluid Phase Equilibria 2017, 431 , 16-23. https://doi.org/10.1016/j.fluid.2016.10.005
    29. Anton A. Kiss, Jean-Paul Lange, Boelo Schuur, D.W.F. Brilman, A.G.J. van der Ham, Sascha R.A. Kersten. Separation technology–Making a difference in biorefineries. Biomass and Bioenergy 2016, 95 , 296-309. https://doi.org/10.1016/j.biombioe.2016.05.021
    30. Paweł Góralski, Mariola Tkaczyk, Katarzyna Łudzik. Heat capacity of dowanols within a temperature range of (275.15–339.15) K. Measurements and prediction. Fluid Phase Equilibria 2016, 430 , 13-18. https://doi.org/10.1016/j.fluid.2016.09.002
    31. Michał Wasiak, Mariola Tkaczyk, Henryk Piekarski, Paweł Góralski. Heat capacity and phase behaviour of {1-propoxypropan-2-ol–water} system: Two-point scaling analysis. Journal of Molecular Liquids 2016, 224 , 842-848. https://doi.org/10.1016/j.molliq.2016.10.067
    32. Cheng-Hao Su, Li-Jen Chen. Phase behavior and interfacial tensions in the ternary systems water + dodecane + propylene glycol n -propyl ether and water + tetradecane + propylene glycol n -propyl ether. Journal of the Taiwan Institute of Chemical Engineers 2016, 68 , 74-79. https://doi.org/10.1016/j.jtice.2016.09.019
    33. Ali Khoshsima, Mohammad Reza Dehghani. Phase behavior of glycol ether surfactant systems in the presence of brine and hydrocarbon: Experiment and modeling. Fluid Phase Equilibria 2016, 414 , 101-110. https://doi.org/10.1016/j.fluid.2016.01.019
    34. Andrew J. Worthen, Vu Tran, Kevin A. Cornell, Thomas M. Truskett, Keith P. Johnston. Steric stabilization of nanoparticles with grafted low molecular weight ligands in highly concentrated brines including divalent ions. Soft Matter 2016, 12 (7) , 2025-2039. https://doi.org/10.1039/C5SM02787J
    35. Maria-Luísa C.J. Moita, Marina C. Reis, Ângela F.S. Santos, Isabel M.S. Lampreia. Energetic characterisation of the system (water + 1-propoxypropan-2-ol) at T = 298.15 K. The Journal of Chemical Thermodynamics 2015, 91 , 172-176. https://doi.org/10.1016/j.jct.2015.07.044
    36. Ali Khoshsima, Mohammad Reza Dehghani, Didier Touraud, Werner Kunz. An investigation of the fish diagrams of water or brine/decane or dodecane/propylene glycol ether (C3P1 or C3P2) systems. Journal of Molecular Liquids 2015, 206 , 170-175. https://doi.org/10.1016/j.molliq.2015.02.016
    37. Mariola Tkaczyk, Henryk Piekarski, Paweł Góralski. Phase Behavior and Heat Capacity of {DPnP + Water} Mixtures at the Temperature Range of 273.15–338.15 K. Journal of Chemistry 2015, 2015 , 1-7. https://doi.org/10.1155/2015/932819
    38. Soojin Lee, Heesoo Pyo, Bong Chul Chung, Haidong Kim, Jeongae Lee. Simultaneous Determination of Alkoxyalcohols in Wet Wipes Using Static Headspace Gas Chromatography and Mass Spectrometry. Bulletin of the Korean Chemical Society 2014, 35 (11) , 3280-3288. https://doi.org/10.5012/bkcs.2014.35.11.3280
    39. Timothy C. Frank, Steven G. Arturo, Bruce S. Holden. Framework for correlating the effect of temperature on nonelectrolyte and ionic liquid activity coefficients. AIChE Journal 2014, 60 (10) , 3675-3690. https://doi.org/10.1002/aic.14557
    40. Ângela F.S. Santos, João F.C. Costa e Silva, Maria-Luísa C.J. Moita, Isabel M.S. Lampreia. Water activity in 1-propoxypropan-2-ol aqueous mixtures at T=298K. The Journal of Chemical Thermodynamics 2014, 77 , 87-90. https://doi.org/10.1016/j.jct.2014.05.010
    41. Ali Khoshsima, Mohammad Reza Dehghani. Vapor–liquid and liquid–liquid equilibrium calculations in mixtures containing non-ionic glycol ether surfactant using PHSC equation of state. Fluid Phase Equilibria 2014, 377 , 16-26. https://doi.org/10.1016/j.fluid.2014.05.041
    42. Shih-Yao Lin, Cheng-Hao Su, Li-Jen Chen. Liquid–liquid equilibria for the binary systems of propylene glycol ether+water measured by the phase volume method. Journal of the Taiwan Institute of Chemical Engineers 2014, 45 (1) , 63-67. https://doi.org/10.1016/j.jtice.2013.04.012
    43. Daichi Nakayama, Yeongbong Mok, Minwoo Noh, Jeongseon Park, Sunyoung Kang, Yan Lee. Lower critical solution temperature (LCST) phase separation of glycol ethers for forward osmotic control. Phys. Chem. Chem. Phys. 2014, 16 (11) , 5319-5325. https://doi.org/10.1039/C3CP55467H
    44. D. Berti, P. Lo Nostro. Cleaning I: Solvents and Solutions. 2013, 93-123. https://doi.org/10.1039/9781849737630-00093
    45. Cheng-Hao Su, Li-Jen Chen. Liquid–liquid equilibria for the ternary system (water+hexadecane+dipropylene glycol n-propyl ether). Fluid Phase Equilibria 2013, 346 , 20-24. https://doi.org/10.1016/j.fluid.2013.03.002
    46. Ismail Tosun. Liquid-Liquid Equilibrium. 2013, 477-507. https://doi.org/10.1016/B978-0-44-459497-6.00011-6
    47. Henryk Piekarski, Mariola Tkaczyk, Magdalena Tyczyńska. Heat capacity and phase behavior of aqueous diethylene glycol n-pentyl ether by DSC. Thermochimica Acta 2012, 550 , 19-26. https://doi.org/10.1016/j.tca.2012.09.027
    48. Cheng-Hao Su, Shih-Yao Lin, Li-Jen Chen. (Liquid + liquid) equilibria for the ternary system (water + dodecane + propylene glycol n-propyl ether). The Journal of Chemical Thermodynamics 2012, 47 , 358-361. https://doi.org/10.1016/j.jct.2011.11.013
    49. Minwoo Noh, Yeongbong Mok, Seonju Lee, Heejin Kim, So Hyun Lee, Geun-woo Jin, Ji-Hun Seo, Heebeom Koo, Tae Ha Park, Yan Lee. Novel lower critical solution temperature phase transition materials effectively control osmosis by mild temperature changes. Chemical Communications 2012, 48 (32) , 3845. https://doi.org/10.1039/c2cc30890h
    50. Sudhakar S. Dhondge, Chandrashekhar P. Pandhurnekar, Shaziya Sheikh, Dinesh W. Deshmukh. Volumetric and viscometric study of aqueous binary mixtures of some glycol ethers at T=(275.15 and 283.15)K. The Journal of Chemical Thermodynamics 2011, 43 (12) , 1961-1968. https://doi.org/10.1016/j.jct.2011.07.008
    51. Fiona H. Case, Anne Chaka, Jonathan D. Moore, Raymond D. Mountain, Richard B. Ross, Vincent K. Shen, Eric A. Stahlberg. The sixth industrial fluid properties simulation challenge. Fluid Phase Equilibria 2011, 310 (1-2) , 1-3. https://doi.org/10.1016/j.fluid.2011.07.016
    52. Felipe A. Donate, Kazuyuki Hasegawa, Jonathan D. Moore. Benchmarks for the sixth industrial fluid properties simulation challenge. Fluid Phase Equilibria 2011, 310 (1-2) , 4-6. https://doi.org/10.1016/j.fluid.2011.08.014
    53. James D. Olson, Richard E. Morrison, Loren C. Wilson. Benchmarks for the fifth industrial fluid properties simulation challenge. Fluid Phase Equilibria 2009, 285 (1-2) , 4-7. https://doi.org/10.1016/j.fluid.2009.07.004
    54. Georgia Melagraki, Antreas Afantitis, Haralambos Sarimveis, Panayiotis A. Koutentis, John Markopoulos, Olga Igglessi-Markopoulou. A novel QSPR model for predicting θ (lower critical solution temperature) in polymer solutions using molecular descriptors. Journal of Molecular Modeling 2006, 13 (1) , 55-64. https://doi.org/10.1007/s00894-006-0125-z
    55. Yuji OKAUCHI, Ryo KOIKE, Yoshihiro YAMAZAKI, Shigeru TAMURA, Akihiro WAKISAKA. Microscopic Structures in Water-propylene Glycol Monoalkyl Ether Binary Mixtures as Clarified by NMR and Mass Spectrometry. Journal of Oleo Science 2006, 55 (12) , 647-652. https://doi.org/10.5650/jos.55.647
    56. Chih-Kang Wu, Li-Jen Chen. Observation of a sequence of wetting transitions in the binary water+ethylene glycol monobutyl ether mixture. The Journal of Chemical Physics 2005, 123 (8) https://doi.org/10.1063/1.2008235