ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Determination of Activity Coefficients at Infinite Dilution of Polar and Nonpolar Solutes in the Ionic Liquid 1-Ethyl-3-methyl- imidazolium Bis(trifluoromethylsulfonyl) Imidate Using Gas−Liquid Chromatography at the Temperature 303.15 K or 318.15 K

View Author Information
School of Physical Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X 54001, Durban 4000, South Africa, and School of Pure and Applied Chemistry, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South Africa
Cite this: J. Chem. Eng. Data 2005, 50, 1, 105–108
Publication Date (Web):November 6, 2004
https://doi.org/10.1021/je0498107
Copyright © 2005 American Chemical Society

    Article Views

    577

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The activity coefficients at infinite dilution, , for both polar and nonpolar solutes in the ionic liquid 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl) imidate have been determined by gas−liquid chromatography at the temperatures T = 303.15 K and T = 318.15 K. The results have been used to predict the solvent potential for the hexane−benzene separation using the calculated selectivity values. The results are compared to the for similar systems found in the literature in an attempt to understand the effect that the nature of the cation has on the solute−solvent interactions. The partial molar excess enthalpies at infinite dilution values, Δ , were calculated from the experimental values obtained at the two temperatures.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     School of Physical Chemistry, University of KwaZulu-Natal.

    *

     To whom correspondence should be addressed. E-mail:  [email protected]. Fax:  +27 31 260 7000.

     School of Pure and Applied Chemistry, University of KwaZulu-Natal.

    Cited By

    This article is cited by 94 publications.

    1. Banzi Patrick Mbatha, Peterson Thokozani Ngema, Nkululeko Nkosi, Suresh Ramsuroop. Infinite Dilution Activity Coefficient Measurements for 1-Methyl-4-(1-methylethenyl)-cyclohexene as a Green Solvent for Separation. Journal of Chemical & Engineering Data 2022, 67 (4) , 966-974. https://doi.org/10.1021/acs.jced.1c00801
    2. Blane D. Green, Richard A. O’Brien, James H. Davis, Jr., and Kevin N. West . Ethane and Ethylene Solubility in an Imidazolium-Based Lipidic Ionic Liquid. Industrial & Engineering Chemistry Research 2015, 54 (18) , 5165-5171. https://doi.org/10.1021/ie505071t
    3. Samuel M. Murray, T. Kyle Zimlich, Arsalan Mirjafari, Richard A. O’Brien, James H. Davis, Jr., and Kevin N. West . Thermophysical Properties of Imidazolium-Based Lipidic Ionic Liquids. Journal of Chemical & Engineering Data 2013, 58 (6) , 1516-1522. https://doi.org/10.1021/je301004f
    4. William E. Acree, Jr., Gary A. Baker, Anne-Laure Revelli, Jean-Charles Moise, and Fabrice Mutelet . Activity Coefficients at Infinite Dilution for Organic Compounds Dissolved in 1-Alkyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide Ionic Liquids Having Six-, Eight-, and Ten-Carbon Alkyl Chains. Journal of Chemical & Engineering Data 2012, 57 (12) , 3510-3518. https://doi.org/10.1021/je300692s
    5. Zhigang Lei, Chengna Dai, Xing Liu, Li Xiao, and Biaohua Chen . Extension of the UNIFAC Model for Ionic Liquids. Industrial & Engineering Chemistry Research 2012, 51 (37) , 12135-12144. https://doi.org/10.1021/ie301159v
    6. A. B. Pereiro, A. Rodriguez, M. Blesic, K. Shimizu, J. N. Canongia Lopes, and L. P. N. Rebelo . Mixtures of Pyridine and Nicotine with Pyridinium-Based Ionic Liquids. Journal of Chemical & Engineering Data 2011, 56 (12) , 4356-4363. https://doi.org/10.1021/je2001446
    7. William E. Acree, Jr., Gary A. Baker, Fabrice Mutelet, and Jean-Charles Moise . Partition Coefficients of Organic Compounds in Four New Tetraalkylammonium Bis(trifluoromethylsulfonyl)imide Ionic Liquids Using Inverse Gas Chromatography. Journal of Chemical & Engineering Data 2011, 56 (9) , 3688-3697. https://doi.org/10.1021/je200637v
    8. Jean-Charles Moïse, Fabrice Mutelet, Jean-Noël Jaubert, Laura M. Grubbs, William E. Acree, Jr., and Gary A. Baker . Activity Coefficients at Infinite Dilution of Organic Compounds in Four New Imidazolium-Based Ionic Liquids. Journal of Chemical & Engineering Data 2011, 56 (7) , 3106-3114. https://doi.org/10.1021/je200195q
    9. Jason P. Hallett and Tom Welton . Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2. Chemical Reviews 2011, 111 (5) , 3508-3576. https://doi.org/10.1021/cr1003248
    10. Andrzej Marciniak . Influence of Anion Structure on the Liquid−Liquid Equilibria of 1-Ethyl-3-methyl-imidazolium Cation Based Ionic Liquid-Hydrocarbon Binary Systems. Journal of Chemical & Engineering Data 2011, 56 (3) , 368-374. https://doi.org/10.1021/je101114r
    11. Anne-Laure Revelli, Fabrice Mutelet, Jean-Noël Jaubert, Marina Garcia-Martinez, Laura M. Sprunger, William E. Acree, Jr. and Gary A. Baker . Study of Ether-, Alcohol-, or Cyano-Functionalized Ionic Liquids Using Inverse Gas Chromatography. Journal of Chemical & Engineering Data 2010, 55 (7) , 2434-2443. https://doi.org/10.1021/je900838a
    12. Pei-Fang Yan, Miao Yang, Xiu-Mei Liu, Qing-Shan Liu, Zhi-Cheng Tan and Urs Welz-Biermann. Activity Coefficients at Infinite Dilution of Organic Solutes in 1-Ethyl-3-methylimidazolium Tris(pentafluoroethyl)trifluorophosphate [EMIM][FAP] Using Gas−Liquid Chromatography. Journal of Chemical & Engineering Data 2010, 55 (7) , 2444-2450. https://doi.org/10.1021/je9008443
    13. Urszula Domańska and Marta Królikowska. Measurements of Activity Coefficients at Infinite Dilution in Solvent Mixtures with Thiocyanate-Based Ionic Liquids Using GLC Technique. The Journal of Physical Chemistry B 2010, 114 (25) , 8460-8466. https://doi.org/10.1021/jp103496d
    14. Laura M. Sprunger, Jennifer Gibbs, Amy Proctor, William E. Acree, Jr., Michael H. Abraham, Yunjing Meng, Cong Yao and Jared L. Anderson . Linear Free Energy Relationship Correlations for Room Temperature Ionic Liquids: Revised Cation-Specific and Anion-Specific Equation Coefficients for Predictive Applications Covering a Much Larger Area of Chemical Space. Industrial & Engineering Chemistry Research 2009, 48 (8) , 4145-4154. https://doi.org/10.1021/ie801898j
    15. Zhigang Lei, Jiguo Zhang, Qunsheng Li and Biaohua Chen. UNIFAC Model for Ionic Liquids. Industrial & Engineering Chemistry Research 2009, 48 (5) , 2697-2704. https://doi.org/10.1021/ie801496e
    16. Urszula Domańska and Andrzej Marciniak. Activity Coefficients at Infinite Dilution Measurements for Organic Solutes and Water in the Ionic Liquid 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate. The Journal of Physical Chemistry B 2008, 112 (35) , 11100-11105. https://doi.org/10.1021/jp804107y
    17. Ming-Lan Ge, Li-Sheng Wang, Jun-Sheng Wu and Qing Zhou. Activity Coefficients at Infinite Dilution of Organic Solutes in 1-Ethyl-3-methylimidazolium Tetrafluoroborate Using Gas−Liquid Chromatography. Journal of Chemical & Engineering Data 2008, 53 (8) , 1970-1974. https://doi.org/10.1021/je800218g
    18. Alan R. Katritzky, Minati Kuanar, Iva B. Stoyanova-Slavova, Svetoslav H. Slavov, Dimitar A. Dobchev, Mati Karelson and William E. Acree, Jr. . Quantitative Structure–Property Relationship Studies on Ostwald Solubility and Partition Coefficients of Organic Solutes in Ionic Liquids. Journal of Chemical & Engineering Data 2008, 53 (5) , 1085-1092. https://doi.org/10.1021/je700607b
    19. Nirmala Deenadayalu and Pravena Bhujrajh. Density, Speed of Sound, and Derived Thermodynamic Properties of Ionic Liquids [EMIM]+[BETI]− or ([EMIM]+[CH3(OCH2CH2)2OSO3]− + Methanol or + Acetone) at T = (298.15 or 303.15 or 313.15) K. Journal of Chemical & Engineering Data 2008, 53 (5) , 1098-1102. https://doi.org/10.1021/je700648c
    20. Zhigang Lei,, Biaohua Chen,, Chengyue Li, and, Hui Liu. Predictive Molecular Thermodynamic Models for Liquid Solvents, Solid Salts, Polymers, and Ionic Liquids. Chemical Reviews 2008, 108 (4) , 1419-1455. https://doi.org/10.1021/cr068441+
    21. Ming-Lan Ge and Li-Sheng Wang. Activity Coefficients at Infinite Dilution of Polar Solutes in 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate Using Gas–Liquid Chromatography. Journal of Chemical & Engineering Data 2008, 53 (3) , 846-849. https://doi.org/10.1021/je700560s
    22. Qunsheng Li, Fengying Xing, Zhigang Lei, Baohua Wang and Qiulian Chang . Isobaric Vapor–Liquid Equilibrium for Isopropanol + Water + 1-Ethyl-3-methylimidazolium Tetrafluoroborate. Journal of Chemical & Engineering Data 2008, 53 (1) , 275-279. https://doi.org/10.1021/je7003808
    23. Ming-Lan Ge,, Li-Sheng Wang,, Mi-Yi Li, and, Jun-Sheng Wu. Activity Coefficients at Infinite Dilution of Alkanes, Alkenes, and Alkyl Benzenes in 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate Using Gas−Liquid Chromatography. Journal of Chemical & Engineering Data 2007, 52 (6) , 2257-2260. https://doi.org/10.1021/je700282w
    24. Juan Zhang,, Qinghua Zhang,, Botao Qiao, and, Youquan Deng. Solubilities of the Gaseous and Liquid Solutes and Their Thermodynamics of Solubilization in the Novel Room-Temperature Ionic Liquids at Infinite Dilution by Gas Chromatography. Journal of Chemical & Engineering Data 2007, 52 (6) , 2277-2283. https://doi.org/10.1021/je700297c
    25. Urszula Domańska and, Andrzej Marciniak. Activity Coefficients at Infinite Dilution Measurements for Organic Solutes and Water in the Ionic Liquid 1-Ethyl-3-methylimidazolium Trifluoroacetate. The Journal of Physical Chemistry B 2007, 111 (41) , 11984-11988. https://doi.org/10.1021/jp075079+
    26. Urszula Domańska,, Zuzanna Żołek-Tryznowska, and, Marek Królikowski. Thermodynamic Phase Behavior of Ionic Liquids. Journal of Chemical & Engineering Data 2007, 52 (5) , 1872-1880. https://doi.org/10.1021/je700204d
    27. Laura Sprunger,, Michael Clark,, William E. AcreeJr., and, Michael H. Abraham. Characterization of Room-Temperature Ionic Liquids by the Abraham Model with Cation-Specific and Anion-Specific Equation Coefficients. Journal of Chemical Information and Modeling 2007, 47 (3) , 1123-1129. https://doi.org/10.1021/ci7000428
    28. Takeshi Ueki,, Takeshi Karino,, Yosuke Kobayashi,, Mitsuhiro Shibayama, and, Masayoshi Watanabe. Difference in Lower Critical Solution Temperature Behavior between Random Copolymers and a Homopolymer Having Solvatophilic and Solvatophobic Structures in an Ionic Liquid. The Journal of Physical Chemistry B 2007, 111 (18) , 4750-4754. https://doi.org/10.1021/jp0670900
    29. Qinghua Zhang,, Zuopeng Li,, Juan Zhang,, Shiguo Zhang,, Laiying Zhu,, Jing Yang,, Xiaoping Zhang, and, Youquan Deng. Physicochemical Properties of Nitrile-Functionalized Ionic Liquids. The Journal of Physical Chemistry B 2007, 111 (11) , 2864-2872. https://doi.org/10.1021/jp067327s
    30. Tamal Banerjee and, Ashok Khanna. Infinite Dilution Activity Coefficients for Trihexyltetradecyl Phosphonium Ionic Liquids:  Measurements and COSMO-RS Prediction. Journal of Chemical & Engineering Data 2006, 51 (6) , 2170-2177. https://doi.org/10.1021/je0602925
    31. Yuan Qin and, John M. Prausnitz. Solubilities in Ionic Liquids and Molten Salts from a Simple Perturbed-Hard-Sphere Theory. Industrial & Engineering Chemistry Research 2006, 45 (16) , 5518-5523. https://doi.org/10.1021/ie051090p
    32. Fabrice Mutelet,, Jean-Noël Jaubert,, Marek Rogalski,, Malika Boukherissa, and, Amadou Dicko. Thermodynamic Properties of Mixtures Containing Ionic Liquids:  Activity Coefficients at Infinite Dilution of Organic Compounds in 1-Propyl Boronic Acid-3-Alkylimidazolium Bromide and 1-Propenyl-3-alkylimidazolium Bromide Using Inverse Gas Chromatography. Journal of Chemical & Engineering Data 2006, 51 (4) , 1274-1279. https://doi.org/10.1021/je060033f
    33. Andreas Heintz,, Lidia M. Casás,, Igor A. Nesterov,, Vladimir N. Emel'yanenko, and, Sergey P. Verevkin. Thermodynamic Properties of Mixtures Containing Ionic Liquids. 5. Activity Coefficients at Infinite Dilution of Hydrocarbons, Alcohols, Esters, and Aldehydes in 1-Methyl-3-butyl-imidazolium Bis(trifluoromethyl-sulfonyl) Imide Using Gas−Liquid Chromatography. Journal of Chemical & Engineering Data 2005, 50 (5) , 1510-1514. https://doi.org/10.1021/je050125p
    34. Andreas Heintz and, Sergey P. Verevkin. Thermodynamic Properties of Mixtures Containing Ionic Liquids. 6. Activity Coefficients at Infinite Dilution of Hydrocarbons, Alcohols, Esters, and Aldehydes in 1-Methyl-3-octyl-imidazolium Tetrafluoroborate Using Gas−Liquid Chromatography. Journal of Chemical & Engineering Data 2005, 50 (5) , 1515-1519. https://doi.org/10.1021/je050134y
    35. Trevor M. Letcher,, Andrzej Marciniak, and, Małgorzata Marciniak, , Urszula Domańska. Determination of Activity Coefficients at Infinite Dilution of Solutes in the Ionic Liquid 1-Butyl-3-methylimidazolium Octyl Sulfate Using Gas−Liquid Chromatography at a Temperature of 298.15 K, 313.15 K, or 328.15 K. Journal of Chemical & Engineering Data 2005, 50 (4) , 1294-1298. https://doi.org/10.1021/je0500375
    36. Fabrice Mutelet,, Vincent Butet, and, Jean-Noël Jaubert. Application of Inverse Gas Chromatography and Regular Solution Theory for Characterization of Ionic Liquids. Industrial & Engineering Chemistry Research 2005, 44 (11) , 4120-4127. https://doi.org/10.1021/ie048806l
    37. Joanna Lachwa,, Jerzy Szydlowski,, Vesna Najdanovic-Visak,, Luís P. N. Rebelo,, Kenneth R. Seddon,, Manuel Nunes da Ponte,, José M. S. S. Esperança, and, Henrique J. R. Guedes. Evidence for Lower Critical Solution Behavior in Ionic Liquid Solutions. Journal of the American Chemical Society 2005, 127 (18) , 6542-6543. https://doi.org/10.1021/ja0510257
    38. Ncomeka Mgxadeni, Bakusele Kabane, Indra Bahadur, Márcio L. L. Paredes, Rafael de P. Soares, Shailendra Kumar Singh, Faruq Mohammad, Ahmed Abdullah Soleiman. Thermodynamic Properties, Activity Coefficients at Infinite Dilution and Cosmo‐SAC Modelling of Deep Eutectic Solvents at Different Temperatures. ChemistrySelect 2023, 8 (30) https://doi.org/10.1002/slct.202204192
    39. Chang‐Che Tsai, Adam McNeeley, Shiang‐Tai Lin, Y. A. Liu. Evaluation of thermophysical data, COSMO‐SAC predictions, and feed simplifications for aromatic extraction process simulation using ionic liquid [EMIM][NTf2]. AIChE Journal 2023, 69 (2) https://doi.org/10.1002/aic.17916
    40. Amel Ayad, Fabrice Mutelet, Amina Negadi. Temperature-Dependent Linear Solvation Energy Relationship for the Determination of Gas-Liquid Partition Coefficients of Organic Compounds in Ionic Liquids. 2022https://doi.org/10.5772/intechopen.102733
    41. Ncomeka Mgxadeni, Oarabile Mmelesi, Bakusele Kabane, Indra Bahadur. Influence of hydrogen bond donor on zinc chloride in separation of binary mixtures: Activity coefficients at infinite dilution. Journal of Molecular Liquids 2022, 351 , 118596. https://doi.org/10.1016/j.molliq.2022.118596
    42. Thomas Brouwer, Sascha R.A. Kersten, Gerrald Bargeman, Boelo Schuur. trends in solvent impact on infinite dilution activity coefficients of solutes reviewed and visualized using an algorithm to support selection of solvents for greener fluid separations. Separation and Purification Technology 2021, 272 , 118727. https://doi.org/10.1016/j.seppur.2021.118727
    43. Sergey P. Verevkin. Imidazolium Based Ionic Liquids: Unbiased Recovering of Vaporization Enthalpies from Infinite-Dilution Activity Coefficients. Molecules 2021, 26 (19) , 5873. https://doi.org/10.3390/molecules26195873
    44. Nikolai G. Polikhronidi, Rabiyat G. Batyrova, Marzena Dzida, Ilmutdin M. Abdulagatov. Effect of compositional variability due to thermal instability on critical phenomena in n-hexane + IL mixture. Journal of Molecular Liquids 2021, 337 , 116368. https://doi.org/10.1016/j.molliq.2021.116368
    45. Colin F. Poole, Sanka N. Atapattu. Determination of physicochemical properties of ionic liquids by gas chromatography. Journal of Chromatography A 2021, 1644 , 461964. https://doi.org/10.1016/j.chroma.2021.461964
    46. Tian Zhang, Yi-Nan Bao, Liu Zhang, Rui-Zhen Ren, Yu-Hai Jiao, Ming-Lan Ge. Thermodynamics and selectivity of separation based on activity coefficients at infinite dilution of various solutes in ionic liquid [DMIM][Tf2N]. The Journal of Chemical Thermodynamics 2020, 147 , 106120. https://doi.org/10.1016/j.jct.2020.106120
    47. Zhuang-Zhuang He, Rui-Qi Li, Ai-Lin Sun, Zhao Mu, Yan-Li Xiao, Hui-Wen Chang, Yu-Hai Jiao, Ming-Lan Ge. Experimental and theoretical study on infinite dilution activity coefficients of various solutes in ionic liquid 1-propyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide. The Journal of Chemical Thermodynamics 2020, 140 , 105894. https://doi.org/10.1016/j.jct.2019.105894
    48. Wenxue Li, Bo Xu, Zhigang Lei, Chengna Dai. Separation of benzene and cyclohexane by extractive distillation intensified with ionic liquid. Chemical Engineering and Processing - Process Intensification 2018, 126 , 81-89. https://doi.org/10.1016/j.cep.2018.02.016
    49. Monika Karpińska, Michał Wlazło, Urszula Domańska. Separation of binary mixtures based on gamma infinity data using [EMIM][TCM] ionic liquid and modelling of thermodynamic functions. Journal of Molecular Liquids 2017, 225 , 382-390. https://doi.org/10.1016/j.molliq.2016.11.081
    50. M. Karpińska, M. Wlazło, D. Ramjugernath, P. Naidoo, U. Domańska. Assessment of certain ionic liquids for separation of binary mixtures based on gamma infinity data measurements. RSC Advances 2017, 7 (12) , 7092-7107. https://doi.org/10.1039/C6RA25208G
    51. Michal Wlazło, Monika Karpińska, Urszula Domańska. Thermodynamics and selectivity of separation based on activity coefficients at infinite dilution of various solutes in 1-allyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide ionic liquid. The Journal of Chemical Thermodynamics 2016, 102 , 39-47. https://doi.org/10.1016/j.jct.2016.06.028
    52. Ming-Lan Ge, Qin Zhang, Sai-Nan Li, Yin-Juan Li, Xiu-Zhen Zhang, Zhao Mu. Thermodynamics and activity coefficients at infinite dilution for organic solutes in the ionic liquid 1-hexyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide. The Journal of Chemical Thermodynamics 2016, 102 , 303-309. https://doi.org/10.1016/j.jct.2016.07.021
    53. Michal Wlazło, Monika Karpińska, Urszula Domańska. A 1-alkylcyanopyridinium-based ionic liquid in the separation processes. The Journal of Chemical Thermodynamics 2016, 97 , 253-260. https://doi.org/10.1016/j.jct.2016.01.017
    54. Mikhail A. Varfolomeev, Artashes A. Khachatrian, Bulat S. Akhmadeev, Boris N. Solomonov. Thermodynamics of hydrogen bonding and van der Waals interactions of organic solutes in solutions of imidazolium based ionic liquids: “Structure-property” relationships. Thermochimica Acta 2016, 633 , 12-23. https://doi.org/10.1016/j.tca.2016.03.036
    55. Meghna Dilip, Nicholas J. Bridges, Héctor Rodríguez, Jorge F. B. Pereira, Robin D. Rogers. Effect of Temperature on Salt–Salt Aqueous Biphasic Systems: Manifestations of Upper Critical Solution Temperature. Journal of Solution Chemistry 2015, 44 (3-4) , 454-468. https://doi.org/10.1007/s10953-014-0278-9
    56. Indra Bahadur, Byron Bradley Govender, Khalid Osman, Mark D. Williams-Wynn, Wayne Michael Nelson, Paramespri Naidoo, Deresh Ramjugernath. Measurement of activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate at T=(308.15, 313.15, 323.15 and 333.15)K using gas+liquid chromatography. The Journal of Chemical Thermodynamics 2014, 70 , 245-252. https://doi.org/10.1016/j.jct.2013.10.017
    57. Tom Welton. Introducing Ionic Liquids. 2014, 11-36. https://doi.org/10.1002/9783527654789.ch2
    58. Bong-Seop Lee, Shiang-Tai Lin. Prediction of phase behaviors of ionic liquids over a wide range of conditions. Fluid Phase Equilibria 2013, 356 , 309-320. https://doi.org/10.1016/j.fluid.2013.07.046
    59. Kaniki Tumba, Trevor M. Letcher, Paramespri Naidoo, Deresh Ramjugernath. Activity coefficients at infinite dilution of organic solutes in the ionic liquid trihexyltetradecylphosphonium bis (trifluoromethylsulfonyl) imide using gas–liquid chromatography at T=(313.15, 333.15, 353.15 and 373.15)K. The Journal of Chemical Thermodynamics 2013, 65 , 159-167. https://doi.org/10.1016/j.jct.2013.05.030
    60. Amalendu Pal, Sheena Chaudhary. Ionic liquid induced alterations in the physicochemical properties of aqueous solutions of sodium dodecylsulfate (SDS). Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013, 430 , 58-64. https://doi.org/10.1016/j.colsurfa.2013.04.001
    61. Amalendu Pal, Sheena Chaudhary. Effect of hydrophilic ionic liquid on aggregation behavior of aqueous solutions of sodium dodecylsulfate (SDS). Fluid Phase Equilibria 2013, 352 , 42-46. https://doi.org/10.1016/j.fluid.2013.05.009
    62. Marta Królikowska, Monika Karpińska, Marek Królikowski. Measurements of activity coefficients at infinite dilution for organic solutes and water in N-hexylisoquinolinium thiocyanate, [HiQuin][SCN] using GLC. The Journal of Chemical Thermodynamics 2013, 62 , 1-7. https://doi.org/10.1016/j.jct.2013.02.004
    63. Kurosh Tabar Heydar, Mina Nazifi, Ali Sharifi, Mojtaba Mirzaei, Halime Gharavi, Seyyed Hamid Ahmadi. Determination of Activity Coefficients at Infinite Dilution of Solutes in New Dicationic Ionic Liquids Based on Morpholine Using Gas–Liquid Chromatography. Chromatographia 2013, 76 (3-4) , 165-175. https://doi.org/10.1007/s10337-012-2385-3
    64. Zhigang Lei, Li Xiao, Chengna Dai, Biaohua Chen. Group contribution lattice fluid equation of state (GCLF EOS) for ionic liquids. Chemical Engineering Science 2012, 75 , 1-13. https://doi.org/10.1016/j.ces.2012.03.002
    65. Kaniki Tumba, Trevor Letcher, Paramespri Naidoo, Deresh Ramjugernath. Activity coefficients at infinite dilution of organic solutes in the ionic liquid trihexyltetradecylphosphonium hexafluorophosphate using gas–liquid chromatography at T=(313.15, 333.15, 353.15, and 363.15)K. The Journal of Chemical Thermodynamics 2012, 49 , 46-53. https://doi.org/10.1016/j.jct.2012.01.004
    66. Y. Deng, P. Husson, J. Jacquemin, T.G.A. Youngs, V.L. Kett, C. Hardacre, M.F. Costa Gomes. Volumetric properties and enthalpies of solution of alcohols CkH2k+1OH (k=1, 2, 6) in 1-methyl-3-alkylimidazolium bis(trifluoromethylsulfonyl)imide {[C1CnIm][NTf2] n=2, 4, 6, 8, 10} ionic liquids. The Journal of Chemical Thermodynamics 2011, 43 (11) , 1708-1718. https://doi.org/10.1016/j.jct.2011.05.033
    67. Eugene Olivier, Trevor M. Letcher, Paramespri Naidoo, Deresh Ramjugernath. Activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-butyl-3-methylimidazolium hexafluoroantimonate using gas–liquid chromatography at T= (313.15, 323.15, and 333.15) K. The Journal of Chemical Thermodynamics 2011, 43 (6) , 829-833. https://doi.org/10.1016/j.jct.2010.12.019
    68. Kaniki Tumba, Prashant Reddy, Paramespri Naidoo, Deresh Ramjugernath. Activity coefficients at infinite dilution of organic solutes in the ionic liquid trihexyl(tetradecyl)phosphonium tetrafluoroborate using gas–liquid chromatography at T=(313.15, 333.15, 353.15, and 373.15)K. The Journal of Chemical Thermodynamics 2011, 43 (5) , 670-676. https://doi.org/10.1016/j.jct.2010.12.005
    69. Prashant Reddy, Nobuhle V. Gwala, Nirmala Deenadayalu, Deresh Ramjugernath. Activity coefficients at infinite dilution of organic solutes in the ionic liquid, methyl(trioctyl)ammonium thiosalicylate, [N1888][TS] by gas–liquid chromatography at T=(303.15, 313.15, and 323.15)K. The Journal of Chemical Thermodynamics 2011, 43 (5) , 754-758. https://doi.org/10.1016/j.jct.2010.12.020
    70. Laura M. Grubbs, Shulin Ye, Mariam Saifullah, McCoy Cornelius McMillan-Wiggins, William E. Acree, Michael H. Abraham, Pamela Twu, Jared L. Anderson. Correlations for describing gas-to-ionic liquid partitioning at 323K based on ion-specific equation coefficient and group contribution versions of the Abraham model. Fluid Phase Equilibria 2011, 301 (2) , 257-266. https://doi.org/10.1016/j.fluid.2010.12.005
    71. Pei-Fang Yan, Qing-Shan Liu, Miao Yang, Xiu-Mei Liu, Zhi-Cheng Tan, Urs Welz-Biermann. Activity coefficients at infinite dilution of organic solutes in N-alkylpyridinium bis(trifluoromethylsulfonyl)imide ([CnPY][NTf2], n=2,4,5) using gas–liquid chromatography. The Journal of Chemical Thermodynamics 2010, 42 (12) , 1415-1422. https://doi.org/10.1016/j.jct.2010.06.009
    72. Andrzej Marciniak. Influence of cation and anion structure of the ionic liquid on extraction processes based on activity coefficients at infinite dilution. A review. Fluid Phase Equilibria 2010, 294 (1-2) , 213-233. https://doi.org/10.1016/j.fluid.2009.12.025
    73. Pei-Fang Yan, Miao Yang, Xiu-Mei Liu, Chang Wang, Zhi-Cheng Tan, Urs Welz-Biermann. Activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate [EMIM][TCB] using gas–liquid chromatography. The Journal of Chemical Thermodynamics 2010, 42 (6) , 817-822. https://doi.org/10.1016/j.jct.2010.02.006
    74. Eugene Olivier, Trevor M. Letcher, Paramespri Naidoo, Deresh Ramjugernath. Activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate using gas–liquid chromatography at T= (313.15, 323.15, and 333.15) K. The Journal of Chemical Thermodynamics 2010, 42 (5) , 646-650. https://doi.org/10.1016/j.jct.2009.12.004
    75. Eugene Olivier, Trevor M. Letcher, Paramespri Naidoo, Deresh Ramjugernath. Activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate using gas–liquid chromatography at T=(313.15, 323.15, and 333.15)K. The Journal of Chemical Thermodynamics 2010, 42 (1) , 78-83. https://doi.org/10.1016/j.jct.2009.07.010
    76. A. Ananth Praveen Kumar, Tamal Banerjee. Thiophene separation with ionic liquids for desulphurization: A quantum chemical approach. Fluid Phase Equilibria 2009, 278 (1-2) , 1-8. https://doi.org/10.1016/j.fluid.2008.11.019
    77. Trevor M. Letcher, Deresh Ramjugernath, Marek Królikowski, Marta Laskowska, Paramespri Naidoo, Urszula Domańska. Activity coefficients at infinite dilution measurements for organic solutes in the ionic liquid N-butyl-4-methylpyridinium tosylate using GLC at T= (328.15, 333.15, 338.15, and 343.15) K. Fluid Phase Equilibria 2009, 276 (1) , 31-36. https://doi.org/10.1016/j.fluid.2008.10.008
    78. Bogusław Buszewski, Sylwia Studzińska. A Review of Ionic Liquids in Chromatographic and Electromigration Techniques. Chromatographia 2008, 68 (1-2) , 1-10. https://doi.org/10.1365/s10337-008-0662-y
    79. Urszula Domańska, Andrzej Marciniak. Measurements of activity coefficients at infinite dilution of aromatic and aliphatic hydrocarbons, alcohols, and water in the new ionic liquid [EMIM][SCN] using GLC. The Journal of Chemical Thermodynamics 2008, 40 (5) , 860-866. https://doi.org/10.1016/j.jct.2008.01.004
    80. Shengying Li, Weidong Yan, Hong Dong. Determination of partial molar excess enthalpies at infinite dilution for the systems four alcohols+[bmim]PF6 at different temperatures by isothermal titration calorimeter. Fluid Phase Equilibria 2007, 261 (1-2) , 444-448. https://doi.org/10.1016/j.fluid.2007.06.007
    81. Urszula Domańska, Aneta Pobudkowska, Marek Królikowski. Separation of aromatic hydrocarbons from alkanes using ammonium ionic liquid C2NTf2 at T=298.15K. Fluid Phase Equilibria 2007, 259 (2) , 173-179. https://doi.org/10.1016/j.fluid.2007.06.025
    82. Fabrice Mutelet, Jean-Noël Jaubert. Measurement of activity coefficients at infinite dilution in 1-hexadecyl-3-methylimidazolium tetrafluoroborate ionic liquid. The Journal of Chemical Thermodynamics 2007, 39 (8) , 1144-1150. https://doi.org/10.1016/j.jct.2007.01.004
    83. Xiao-Chuan Jiang, Jun-Feng Wang, Chun-Xi Li, La-Mei Wang, Zi-Hao Wang. Vapour pressure measurement for binary and ternary systems containing water methanol ethanol and an ionic liquid 1-ethyl-3-ethylimidazolium diethylphosphate. The Journal of Chemical Thermodynamics 2007, 39 (6) , 841-846. https://doi.org/10.1016/j.jct.2006.11.013
    84. Pravena Bhujrajh, Nirmala Deenadayalu. Liquid Densities and Excess Molar Volumes for Binary Systems (Ionic Liquids + Methanol or Water) at 298.15, 303.15 and 313.15 K, and at Atmospheric Pressure. Journal of Solution Chemistry 2007, 36 (5) , 631-642. https://doi.org/10.1007/s10953-007-9135-4
    85. Andreas Heintz, Sergey P. Verevkin, Jochen K. Lehmann, Tatiana V. Vasiltsova, Daniel Ondo. Activity coefficients at infinite dilution and enthalpies of solution of methanol, 1-butanol, and 1-hexanol in 1-hexyl-3-methyl-imidazolium bis(trifluoromethyl-sulfonyl) imide. The Journal of Chemical Thermodynamics 2007, 39 (2) , 268-274. https://doi.org/10.1016/j.jct.2006.07.006
    86. Jin Zhao, Xiao-Chuan Jiang, Chun-Xi Li, Zi-Hao Wang. Vapor pressure measurement for binary and ternary systems containing a phosphoric ionic liquid. Fluid Phase Equilibria 2006, 247 (1-2) , 190-198. https://doi.org/10.1016/j.fluid.2006.07.007
    87. Urszula Domańska. Thermophysical properties and thermodynamic phase behavior of ionic liquids. Thermochimica Acta 2006, 448 (1) , 19-30. https://doi.org/10.1016/j.tca.2006.06.018
    88. William E Acree, Jr, Michael H Abraham. The analysis of solvation in ionic liquids and organic solvents using the Abraham linear free energy relationship. Journal of Chemical Technology & Biotechnology 2006, 81 (8) , 1441-1446. https://doi.org/10.1002/jctb.1589
    89. N. Deenadayalu, S.H. Thango, T.M. Letcher, D. Ramjugernath. Measurement of activity coefficients at infinite dilution using polar and non-polar solutes in the ionic liquid 1-methyl-3-octyl-imidazolium diethyleneglycolmonomethylethersulfate at T=(288.15, 298.15, and 313.15)K. The Journal of Chemical Thermodynamics 2006, 38 (5) , 542-546. https://doi.org/10.1016/j.jct.2005.07.003
    90. Jin Zhao, Cong-Cong Dong, Chun-Xi Li, Hong Meng, Zi-Hao Wang. Isobaric vapor–liquid equilibria for ethanol–water system containing different ionic liquids at atmospheric pressure. Fluid Phase Equilibria 2006, 242 (2) , 147-153. https://doi.org/10.1016/j.fluid.2006.01.023
    91. Joanna Łachwa, Jerzy Szydłowski, Anna Makowska, Kenneth R. Seddon, José M. S. S. Esperança, Henrique J.R. Guedes, Luís Paulo N. Rebelo. Changing from an unusual high-temperature demixing to a UCST-type in mixtures of 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide and arenes. Green Chemistry 2006, 8 (3) , 262. https://doi.org/10.1039/b513308d
    92. Trevor M. Letcher, Andrzej Marciniak, Małgorzata Marciniak, Urszula Domańska. Activity coefficients at infinite dilution measurements for organic solutes in the ionic liquid 1-hexyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)-imide using g.l.c. at T=(298.15, 313.15, and 333.15) K. The Journal of Chemical Thermodynamics 2005, 37 (12) , 1327-1331. https://doi.org/10.1016/j.jct.2005.03.014
    93. Trevor M. Letcher, Urszula Domańska, Małgorzata Marciniak, Andrzej Marciniak. Activity coefficients at infinite dilution measurements for organic solutes in the ionic liquid 1-butyl-3-methyl-imidazolium 2-(2-methoxyethoxy) ethyl sulfate using g.l.c. at T=(298.15, 303.15, and 308.15)K. The Journal of Chemical Thermodynamics 2005, 37 (6) , 587-593. https://doi.org/10.1016/j.jct.2005.01.015
    94. Andreas Heintz. Recent developments in thermodynamics and thermophysics of non-aqueous mixtures containing ionic liquids. A review. The Journal of Chemical Thermodynamics 2005, 37 (6) , 525-535. https://doi.org/10.1016/j.jct.2005.04.003

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect