ACS Publications. Most Trusted. Most Cited. Most Read
My Activity

Figure 1Loading Img

Measurement of Activity Coefficients at Infinite Dilution of Benzene, Toluene, Ethanol, Esters, Ketones, and Ethers at Various Temperatures in Water Using the Dilutor Technique

View Author Information
University of Sciences and Technology Houari Boumediene, Faculty of Chemistry, P. O. Box 32 El-Alia, 16111 Bab-Ezzouar, Algeria, and Carl von Ossietzky-Universität Oldenburg, Institute for Pure and Applied Chemistry, Technische Chemie, D-26111 Oldenburg, Germany
Cite this: J. Chem. Eng. Data 2004, 49, 5, 1429–1432
Publication Date (Web):July 16, 2004
Copyright © 2004 American Chemical Society

    Article Views





    Read OnlinePDF (53 KB)


    This paper reports experimental activity coefficients at infinite dilution for 16 solutes (benzene, toluene, ethanol, esters, ketones, and ethers) at different temperatures (308 ≤ T/K ≤ 343) measured with the help of a dilutor technique (inert gas stripping). The activity coefficients obtained are in good agreement with data derived from LLE data. Furthermore, the partial molar excess enthalpies derived from these data are in agreement with the values derived from enthalpy of mixing data.

     University of Sciences and Technology Houari Boumediene.

     Carl von Ossietzky-Universität Oldenburg.


     Present address:  Nordland Papier GmbH, P.O. Box 1160, D-26888 Dörpen, Germany.

     Present address:  Thermo Electron, Barkhausenstrasse 2, D-28197 Bremen, Germany.


     Corresponding author. E-mail:  [email protected]. Fax:  +49-441-7983330.

    Cited By

    This article is cited by 31 publications.

    1. Gabrielly Miyazaki, Bernardino Tirri, Olivier Baudouin, Alain Valtz, Céline Houriez, Christophe Coquelet, Carlo Adamo. Role of Computational Variables on the Performances of COSMO-SAC Model: A Combined Theoretical and Experimental Investigation. Industrial & Engineering Chemistry Research 2021, 60 (5) , 2314-2325.
    2. Štěpán Hovorka, Pavel Vrbka, Carolina Bermúdez-Salguero, Alexander Böhme, Vladimír Dohnal. Air–Water Partitioning of C5 and C6 Alkanones: Measurement, Critical Compilation, Correlation, and Recommended Data. Journal of Chemical & Engineering Data 2019, 64 (12) , 5765-5774.
    3. Elisa Rodeghero, Annalisa Martucci, Giuseppe Cruciani, Elena Sarti, Alberto Cavazzini, Valentina Costa, Roberto Bagatin, and Luisa Pasti . Detailed Investigation of Thermal Regeneration of High-Silica ZSM-5 Zeolite through in Situ Synchrotron X-ray Powder Diffraction and Adsorption Studies. The Journal of Physical Chemistry C 2017, 121 (33) , 17958-17968.
    4. Matthias Voges, Florian Fischer, Melanie Neuhaus, Gabriele Sadowski, and Christoph Held . Measuring and Predicting Thermodynamic Limitation of an Alcohol Dehydrogenase Reaction. Industrial & Engineering Chemistry Research 2017, 56 (19) , 5535-5546.
    5. Zachary J. West, Linda M. Shafer, Richard C. Striebich, Steven Zabarnick, Charles Delaney, Donald Phelps, and Matthew J. DeWitt . Equilibrium Partitioning of Di-ethylene Glycol Monomethyl Ether (DiEGME) between Fuel and Aqueous Phases at Sub-Ambient Temperatures. Energy & Fuels 2014, 28 (7) , 4501-4510.
    6. Hui Wang, Qinbo Wang, Zhenhua Xiong, and Chuxiong Chen . Liquid–Liquid Equilibria for the Ternary System Water + Benzyl Alcohol + Methylbenzene at (303.2 to 343.2) K. Journal of Chemical & Engineering Data 2014, 59 (6) , 2045-2053.
    7. Alexander Böhme, Albrecht Paschke, Pavel Vrbka, Vladimír Dohnal and Gerrit Schüürmann . Determination of Temperature-Dependent Henry’s Law Constant of Four Oxygenated Solutes in Water Using Headspace Solid-Phase Microextraction Technique. Journal of Chemical & Engineering Data 2008, 53 (12) , 2873-2877.
    8. Timothy C. Frank,, Felipe A. Donate,, Andrei S. Merenov,, Grant A. Von Wald,, Barbara J. Alstad,, Christian W. Green, and, Thomas C. Thyne. Separation of Glycol Ethers and Similar LCST-Type Hydrogen-Bonding Organics from Aqueous Solution Using Distillation or Liquid−Liquid Extraction. Industrial & Engineering Chemistry Research 2007, 46 (11) , 3774-3786.
    9. Christina Mintz,, Michael Clark,, William E. Acree, Jr., and, Michael H. Abraham. Enthalpy of Solvation Correlations for Gaseous Solutes Dissolved in Water and in 1-Octanol Based on the Abraham Model. Journal of Chemical Information and Modeling 2007, 47 (1) , 115-121.
    10. Andrey V. Plyasunov,, Natalia V. Plyasunova, and, Everett L. Shock. Group Contribution Values for the Thermodynamic Functions of Hydration at 298.15 K, 0.1 MPa. 3. Aliphatic Monoethers, Diethers, and Polyethers. Journal of Chemical & Engineering Data 2006, 51 (1) , 276-290.
    11. Edgar Ivan Sanchez Medina, Steffen Linke, Martin Stoll, Kai Sundmacher. Gibbs–Helmholtz graph neural network: capturing the temperature dependency of activity coefficients at infinite dilution. Digital Discovery 2023, 2 (3) , 781-798.
    12. Bennett D. Marshall, J.R. Johnson. Dry glass reference perturbation theory predictions of the pervaporation separation of solvent mixtures using PIM-1 membranes. Journal of Membrane Science 2023, 672 , 121420.
    13. Thomas Brouwer, Sascha R.A. Kersten, Gerrald Bargeman, Boelo Schuur. trends in solvent impact on infinite dilution activity coefficients of solutes reviewed and visualized using an algorithm to support selection of solvents for greener fluid separations. Separation and Purification Technology 2021, 272 , 118727.
    14. Bennett D. Marshall, Constantinos P. Bokis. Revisiting the treatment of cross-association interactions in oxygenate mixtures with the polar PC-SAFT equation of state. Fluid Phase Equilibria 2021, 529 , 112867.
    15. Angelique Vandemoortele, Philippe M. Heynderickx, Ludivine Leloup, Bruno De Meulenaer. Kinetic modeling of malondialdehyde reactivity in oil to simulate actual malondialdehyde formation upon lipid oxidation. Food Research International 2021, 140 , 110063.
    16. Michael H. Abraham, William E. Acree. The correlation and prediction of the temperature variation of infinite dilution activity coefficients of compounds in water. Fluid Phase Equilibria 2018, 455 , 1-5.
    17. Dana Fenclová, Aleš Blahut, Pavel Vrbka, Vladimír Dohnal, Alexander Böhme. Temperature dependence of limiting activity coefficients, Henry's law constants, and related infinite dilution properties of C4–C6 isomeric n-alkyl ethanoates/ethyl n-alkanoates in water. Measurement, critical compilation, correlation, and recommended data. Fluid Phase Equilibria 2014, 375 , 347-359.
    18. Julián A. Ortiz-Corrales, Javier I. Carrero-Mantilla. Calculation of Henry's law constants for some volatile organic compounds dissolved in aqueous Na2SO4 and NaCl solutions using the LIFAC activity coefficient model. Fluid Phase Equilibria 2014, 376 , 96-104.
    19. Patrícia C. Belting, Jürgen Rarey, Jürgen Gmehling, Roberta Ceriani, Osvaldo Chiavone-Filho, Antonio J.A. Meirelles. Measurements of activity coefficients at infinite dilution in vegetable oils and capric acid using the dilutor technique. Fluid Phase Equilibria 2014, 361 , 215-222.
    20. Sarah A. Brockbank, Jenna L. Russon, Neil F. Giles, Richard L. Rowley, W. Vincent Wilding. Critically Evaluated Database of Environmental Properties: The Importance of Thermodynamic Relationships, Chemical Family Trends, and Prediction Methods. International Journal of Thermophysics 2013, 34 (11) , 2027-2045.
    21. Carolina Bermúdez-Salguero, Alfredo Amigo, Jesús Gracia-Fadrique. Activity coefficients from Gibbs adsorption equation. Fluid Phase Equilibria 2012, 330 , 17-23.
    22. Rolando Barrera Zapata, Aída Luz Villa, Consuelo Montes de Correa. Measurement of activity coefficients at infinite dilution for acetonitrile, water, limonene, limonene epoxide and their binary pairs. Fluid Phase Equilibria 2009, 275 (1) , 46-51.
    23. Josef Sedlbauer. Modeling Approaches to Hydration Properties of Aqueous Nonelectrolytes at Elevated Temperatures and Pressures. Collection of Czechoslovak Chemical Communications 2008, 73 (3) , 322-343.
    24. Daniel Ondo, Vladimír Dohnal. Temperature dependence of limiting activity coefficients and Henry’s law constants of cyclic and open-chain ethers in water. Fluid Phase Equilibria 2007, 262 (1-2) , 121-136.
    25. Pilar Brocos, Ángel Piñeiro, Alfredo Amigo, Jesús Gracia-Fadrique. A proposal for the estimation of binary mixture activity coefficients from surface tension measurements throughout the entire concentration range. Fluid Phase Equilibria 2007, 260 (2) , 343-353.
    26. Michael H. Abraham, Adam Ibrahim, William E. Acree. Partition of compounds from gas to water and from gas to physiological saline at 310K: Linear free energy relationships. Fluid Phase Equilibria 2007, 251 (2) , 93-109.
    27. Matías Jobbágy, Alberto E. Regazzoni. Partition of non-ionic organics in hybrid-hydrotalcite/water systems. Chemical Physics Letters 2006, 433 (1-3) , 62-66.
    28. Vladimír Dohnal, Dana Fenclová, Pavel Vrbka. Temperature Dependences of Limiting Activity Coefficients, Henry’s Law Constants, and Derivative Infinite Dilution Properties of Lower (C1–C5) 1-Alkanols in Water. Critical Compilation, Correlation, and Recommended Data. Journal of Physical and Chemical Reference Data 2006, 35 (4) , 1621-1651.
    29. Satoshi Endo, Torsten C. Schmidt. Partitioning properties of linear and branched ethers: Determination of linear solvation energy relationship (LSER) descriptors. Fluid Phase Equilibria 2006, 246 (1-2) , 143-152.
    30. Piia Haimi, Petri Uusi-Kyyny, Juha-Pekka Pokki, Juhani Aittamaa, Kari I. Keskinen. Infinite dilution activity coefficient measurements by inert gas stripping method. Fluid Phase Equilibria 2006, 243 (1-2) , 126-132.
    31. Pavel Vrbka, Dana Fenclová, Václav Laštovka, Vladimír Dohnal. Measurement of infinite dilution activity coefficients of 1-alkanols (C1–C5) in water as a function of temperature (273–373 K). Fluid Phase Equilibria 2005, 237 (1-2) , 123-129.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Your Mendeley pairing has expired. Please reconnect