ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Critical Properties of Four HFE + HFC Binary Systems:  Trifluoromethoxymethane (HFE-143m) + Pentafluoroethane (HFC-125), + 1,1,1,2-Tetrafluoroethane (HFC-134a), + 1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea), and + 1,1,1,2,3,3-Hexafluoropropane (HFC-236ea)

View Author Information
College of Science & Technology, Nihon University, Kanda-Surugadai 1-8-14, Chiyoda-ku, Tokyo 101-8308, Japan, National Institute of Advanced Industrial Science and Technology, Nanotechnology Research Institute, Higashi 1-1-1, Tsukuba Central 5, Tsukuba, Ibaraki 305-8565, Japan, Daikin Industries, Ltd., Umeda-Center Building, 2-4-12, Nakazaki-Nishi, Kita-Ku, Osaka 530-8323, Japan and National Institute of Advanced Industrial Science and Technology, Research Center for Developing Fluorinated Greenhouse Gas Alternatives, Higashi 1-1-1, Tsukuba Central 5, Tsukuba, Ibaraki 305-8565, Japan
Cite this: J. Chem. Eng. Data 2004, 49, 6, 1615–1621
Publication Date (Web):October 22, 2004
https://doi.org/10.1021/je0499723
Copyright © 2004 American Chemical Society

    Article Views

    703

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (198 KB)

    Abstract

    Trifluoromethoxymethane (CF3OCH3, HFE-143m) is a promising alternative for dichlorodifluoromethane (CCl2F2, CFC-12) as a refrigerant. Because of its low flammability, it is expected to be used in binary mixtures with inflammable hydrofluorocarbons (HFCs). In this study, we measured the critical parameters of binary mixtures of HFE-143m with four HFCspentafluoroethane (CHF2CF3, HFC-125), 1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a), 1,1,1,2,3,3,3-heptafluoropropane (CF3CHFCF3, HFC-227ea), and 1,1,1,2,3,3-hexafluoropropane (CHF2CHFCF3, HFC-236ea). The uncertainties were ±10 mK in temperature, ±0.5 kPa in pressure, ±1 kg m-3 in density, and ±0.5% in composition (molar base). The HFCs were selected for the similarities of their normal boiling points. The experimental data were correlated with equations proposed by Higashi.

     Nihon University.

     National Institute of Advanced Industrial Science and Technology.

    §

     Daikin Industries, Ltd.

    *

     Corresponding author. E-mail:  [email protected]. Phone:  +81-298-61-4567 or +81-298-61-4819. Fax: +81-298-61-4567.

     National Institute of Advanced Industrial Science and Technology.

    Cited By

    This article is cited by 15 publications.

    1. Xiaoyu Yao, Xueqiang Dong, Yanxing Zhao, Jun Shen, Maoqiong Gong. Measurement of Critical Parameters for the Binary Mixture of R744 (Carbon Dioxide) + R1243zf (3,3,3-Trifluoropropene). Journal of Chemical & Engineering Data 2022, 67 (9) , 2128-2135. https://doi.org/10.1021/acs.jced.2c00098
    2. Jean-Noël Jaubert, Yohann Le Guennec, Andrés Piña-Martinez, Nicolas Ramirez-Velez, Silvia Lasala, Bastian Schmid, Ilias K. Nikolaidis, Ioannis G. Economou, Romain Privat. Benchmark Database Containing Binary-System-High-Quality-Certified Data for Cross-Comparing Thermodynamic Models and Assessing Their Accuracy. Industrial & Engineering Chemistry Research 2020, 59 (33) , 14981-15027. https://doi.org/10.1021/acs.iecr.0c01734
    3. Douglas Ambrose, Constantine Tsonopoulos, Eugene D. Nikitin, David W. Morton, and Kenneth N. Marsh . Vapor–Liquid Critical Properties of Elements and Compounds. 12. Review of Recent Data for Hydrocarbons and Non-hydrocarbons. Journal of Chemical & Engineering Data 2015, 60 (12) , 3444-3482. https://doi.org/10.1021/acs.jced.5b00571
    4. Masahiko Yasumoto,, Yuko Uchida,, Kenji Ochi,, Takeshi Furuya, and, Katsuto Otake. Critical Properties of Three Dimethyl Ether Binary Systems:  Dimethyl Ether (RE-170) + Propane (HC-290), Butane (HC-600), and 2-Methyl Propane (HC-600A). Journal of Chemical & Engineering Data 2005, 50 (2) , 596-602. https://doi.org/10.1021/je0496589
    5. Hiroyuki Matsuda, Toru Suga, Tomoya Tsuji, Katsumi Tochigi, Kiyofumi Kurihara, Alyssa K. Nelson, Clare McCabe. Vapor-liquid equilibria for binary systems carbon dioxide + 1,1,1,2,3,3-hexafluoro-3-(2,2,2-trifluoroethoxy)propane or 1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane at 303.15–323.15 K. Fluid Phase Equilibria 2020, 524 , 112814. https://doi.org/10.1016/j.fluid.2020.112814
    6. Chuanxiao Cheng, Fan Wang, Yongjia Tian, Xuehong Wu, Jili Zheng, Jun Zhang, Longwei Li, Penglin Yang, Jiafei Zhao. Review and prospects of hydrate cold storage technology. Renewable and Sustainable Energy Reviews 2020, 117 , 109492. https://doi.org/10.1016/j.rser.2019.109492
    7. Hamidreza Najafi, Babak Maghbooli, Mohammad Amin Sobati. Prediction of true critical pressure of multi-component mixtures: Extending fast estimation methods. Thermochimica Acta 2017, 655 , 155-168. https://doi.org/10.1016/j.tca.2017.06.017
    8. Hamidreza Najafi, Babak Maghbooli, Mohammad Amin Sobati. Prediction of true critical temperature of multi-component mixtures: Extending fast estimation methods. Fluid Phase Equilibria 2015, 392 , 104-126. https://doi.org/10.1016/j.fluid.2015.02.001
    9. Xiaolin Wang, Mike Dennis, Liangzhuo Hou. Clathrate hydrate technology for cold storage in air conditioning systems. Renewable and Sustainable Energy Reviews 2014, 36 , 34-51. https://doi.org/10.1016/j.rser.2014.04.032
    10. Xinfang Rui, Jiang Pan, Yugang Wang. An equation of state for the thermodynamic properties of 1,1,1,2,3,3-hexafluoropropane (R236ea). Fluid Phase Equilibria 2013, 341 , 78-85. https://doi.org/10.1016/j.fluid.2012.12.026
    11. Ralf Dohrn, Stephanie Peper, José M.S. Fonseca. High-pressure fluid-phase equilibria: Experimental methods and systems investigated (2000–2004). Fluid Phase Equilibria 2010, 288 (1-2) , 1-54. https://doi.org/10.1016/j.fluid.2009.08.008
    12. A. G. Nazmutdinov, E. V. Alekina, T. N. Nesterova. Concentration dependences of the critical temperatures of binary mixtures of nonaqueous components. Russian Journal of Physical Chemistry A 2008, 82 (11) , 1857-1862. https://doi.org/10.1134/S0036024408110125
    13. V. S. Sarkisova, A. G. Nazmutdinov, E. V. Alekina. The composition dependence of critical temperatures (liquid-vapor) of 1,3,5-trimethyladamantane—1,3-dimethyladamantane binary mixtures. Russian Journal of Physical Chemistry A 2008, 82 (6) , 1048-1050. https://doi.org/10.1134/S0036024408060356
    14. I. A. Nesterov, A. G. Nazmutdinov, V. S. Sarkisova, T. N. Nesterova, N. N. Vodenkova. Determination of critical temperatures for mixtures of alkylbenzenes. Petroleum Chemistry 2007, 47 (6) , 434-441. https://doi.org/10.1134/S0965544107060114
    15. Katsuto Otake, Yuko Uchida, Masahiko Yasumoto, Yasufu Yamada, Takeshi Furuya, Kenji Ochi. Critical Parameters Measurements of Four HFE + HFC Binary Systems:  Pentafluoromethoxyethane (HFE-245Mc) + Pentafluoroethane (HFC-125), + 1,1,1,2-Tetrafluoroethane (HFC-134a), + 1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea), and + 1,1,1,2,3,3-Hexafluoropropane (HFC-236ea). Journal of Chemical & Engineering Data 2004, 49 (6) , 1643-1647. https://doi.org/10.1021/je0499420

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect