ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Saturated Heat Capacities of Some Linear and Branched Alkylbenzenes between (332 and 401) K

View Author Information
Departamento Física Aplicada and Departamento Ingeniería Química, Universidad de Valladolid, 47005 Valladolid, Spain, and Departement des Sciences de Base, École National d'Agriculture, Université de Meknès, Meknès, Maroc
Cite this: J. Chem. Eng. Data 2006, 51, 1, 123–126
Publication Date (Web):November 1, 2005
https://doi.org/10.1021/je050273f
Copyright © 2006 American Chemical Society

    Article Views

    194

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The saturated heat capacities of some linear alkylbenzenes (ethylbenzene, propylbenzene, butylbenzene, hexylbenzene, 1-phenylheptane, and 1-phenylhexadecane) and branched alkylbenzenes (m-xylene, cumene, (1-methylpropyl)benzene, (1,1-dimethylethyl)benzene, and (2-methylpropyl)benzene) in the temperature range from (332.15 to 401.15) K have been measured. A Calvet calorimeter C80D from Setaram (France) with batch cells modified from the standard vessels of Setaram, along with the “step by step method”, has been used to perform the measurements. The estimated uncertainty of the saturated heat capacities was better than 0.5 % for the substances with higher purity and of the order of 1 % for the others. In the literature there exists csat(T) data for some of the liquids studied. Agreement with our measurements is within the range of the experimental uncertainties.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Departamento Fisica Aplicada, Universidad de Valladolid.

     Université de Meknès.

    §

     Departamento Ingeniería Química, Universidad de Valladolid.

    *

     Corresponding author. E-mail:  [email protected]. Fax:  +34 983 42 31 36.

    Cited By

    This article is cited by 18 publications.

    1. Ismail M.M. Rahman, M. Ashraf Uddin, Farida Yeasmin, M. Maruf Hasan, Faisal Hossain, Koichi Iwakabe. Viscometric, spectroscopic, and computational analyses of molecular interactions in binary mixtures of mesitylene with Heptan-1-ol and benzyl alcohol. Journal of Molecular Liquids 2023, 391 , 123224. https://doi.org/10.1016/j.molliq.2023.123224
    2. Edward Zorębski, Paweł Gancarz, Krzysztof Cwynar. Isobaric heat capacities of eleven ionic liquids containing imidazolium, pyrrolidinium, pyridinium, sulfonium, and ammonium cations with cyano-based and trifluoromethanesulfonyl-based type anions. Experimental and prediction. The Journal of Chemical Thermodynamics 2023, 185 , 107116. https://doi.org/10.1016/j.jct.2023.107116
    3. Krzysztof Cwynar, Justyna Dziadosz, Łukasz Scheller, Edward Zorębski, Rafał Jędrysiak, Anna Kolanowska, Anna Blacha, Sławomir Boncel, Marzena Dzida. On isobaric heat capacity of ionanofluids with carbon nanotubes – An experimental study. Journal of Molecular Liquids 2023, 387 , 122535. https://doi.org/10.1016/j.molliq.2023.122535
    4. Poonam Jangra Darolia, Sunita Malik, Sapana Garg, V.K. Sharma. Molar heat capacities and excess molar heat capacities of mixtures containing ionic liquids and cyclic amides. Chemical Data Collections 2022, 41 , 100939. https://doi.org/10.1016/j.cdc.2022.100939
    5. Alexander P. Shchamialiou, Vladimir S. Samuilov, Nadejda V. Holubeva, Aleh G. Paddubski, Dana Drăgoescu, Florinela Sîrbu. Thermodynamic Properties of Binary Liquid Mixtures of Cyclohexane + n-Propylbenzene and Cyclohexane + Cumene at Different Temperatures and Pressures. International Journal of Thermophysics 2022, 43 (5) https://doi.org/10.1007/s10765-022-02984-4
    6. Boris A. Grigoriev, Anatoly A. Gerasimov, Igor S. Alexandrov, Boris V. Nemzer. Modern fundamental equations of state for the most important hydrocarbons of oil, gas condensates, and associated gases. 2022, 397-537. https://doi.org/10.1016/B978-0-323-95217-0.00005-1
    7. M. Ashraf Uddin, Suman Barua, Sabera T. Nishi, Jayanti Karmaker, M. Jafar Ahmed, Shaila Sharmin, Sharmin Akther, Shahanara Begum, A.F.M. Sanaullah, M.K.M. Ziaul Hyder, Faisal Hossain, Koichi Iwakabe, Ismail M.M. Rahman. Viscometric studies of molecular interactions in binary mixtures of ethylbenzene with (C4 to C8) Alkan-1-ols. Journal of Molecular Liquids 2021, 337 , 116457. https://doi.org/10.1016/j.molliq.2021.116457
    8. Sunita Malik, Poonam Jangra Darolia, Sapana Garg, V.K. Sharma. Densities, speeds of sound and molar heat capacities of multicomponent liquid mixtures containing 1-methylpiperidine, pyrrolidin-2-one and cycloalkanones at varying temperatures. The Journal of Chemical Thermodynamics 2021, 156 , 106389. https://doi.org/10.1016/j.jct.2021.106389
    9. M. Ashraf Uddin, A.F.M. Sanaullah, Farida Yeasmin, M. Habibullah, Koichi Iwakabe, Ismail M.M. Rahman. Temperature-induced variations in the thermophysical properties of the binary mixtures of heptan-1-ol with cumene, or mesitylene: An experimental and theoretical approach. Journal of Molecular Liquids 2020, 297 , 111900. https://doi.org/10.1016/j.molliq.2019.111900
    10. Talgat S. Khasanshin, Vladimir S. Samuilov, Alexander P. Shchamialiou, Dana Drăgoescu, Florinela Sîrbu. Thermodynamic properties of cumene, tert-butylbenzene, and n-hexadecane under elevated pressures. The Journal of Chemical Thermodynamics 2019, 134 , 96-105. https://doi.org/10.1016/j.jct.2019.03.005
    11. Florinela Sirbu, Dana Dragoescu, Alexandr Shchamialiou, Talgat Khasanshin. Densities, speeds of sound, refractive indices, viscosities and their related thermodynamic properties for n-hexadecane + two aromatic hydrocarbons binary mixtures at temperatures from 298.15 K to 318.15 K. The Journal of Chemical Thermodynamics 2019, 128 , 383-393. https://doi.org/10.1016/j.jct.2018.08.036
    12. Joseph W. Hogge, Neil F. Giles, Thomas A. Knotts, Richard L. Rowley, W. Vincent Wilding. The Riedel vapor pressure correlation and multi-property optimization. Fluid Phase Equilibria 2016, 429 , 149-165. https://doi.org/10.1016/j.fluid.2016.08.032
    13. Boris Grigor’ev, Igor Alexandrov, Anatoly Gerasimov. Generalized equation of state for the cyclic hydrocarbons over a temperature range from the triple point to 700 K with pressures up to 100 MPa. Fluid Phase Equilibria 2016, 418 , 15-36. https://doi.org/10.1016/j.fluid.2015.07.046
    14. Yong Zhou, Jiangtao Wu, Eric W. Lemmon. Thermodynamic Properties of o -Xylene, m -Xylene, p -Xylene, and Ethylbenzene. Journal of Physical and Chemical Reference Data 2012, 41 (2) , 023103-023103-26. https://doi.org/10.1063/1.3703506
    15. Angel Mulero, María I. Parra, Francisco L. Román, Santiago Velasco. General correlation model for some physical properties of saturated pure fluids. The Journal of Chemical Thermodynamics 2010, 42 (7) , 938-946. https://doi.org/10.1016/j.jct.2010.03.014
    16. Milan Zábranský, Zdenka Kolská, Vlastimil Růžička, Eugene S. Domalski. Heat Capacity of Liquids: Critical Review and Recommended Values. Supplement II. Journal of Physical and Chemical Reference Data 2010, 39 (1) https://doi.org/10.1063/1.3182831
    17. Robert D. Chirico, William V. Steele. Thermodynamic properties of tert-butylbenzene and 1,4-di-tert-butylbenzene. The Journal of Chemical Thermodynamics 2009, 41 (3) , 392-401. https://doi.org/10.1016/j.jct.2008.10.008
    18. Michal Fulem, Mildred Becerra, M.D. Anwarul Hasan, Bei Zhao, John M. Shaw. Phase behaviour of Maya crude oil based on calorimetry and rheometry. Fluid Phase Equilibria 2008, 272 (1-2) , 32-41. https://doi.org/10.1016/j.fluid.2008.06.005

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect