ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Thermodynamic Properties of Mixtures Containing Ionic Liquids. 8. Activity Coefficients at Infinite Dilution of Hydrocarbons, Alcohols, Esters, and Aldehydes in 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl) Imide Using Gas−Liquid Chromatography

View Author Information
Department of Physical Chemistry, University of Rostock, Hermannstrasse 14, D-18055 Rostock, Germany
Department of Physical Chemistry, Institute of Chemical Technology. Technicka 5, 16628 Prague 6, Czech Republic
Cite this: J. Chem. Eng. Data 2006, 51, 2, 434–437
Publication Date (Web):February 2, 2006
https://doi.org/10.1021/je0503554
Copyright © 2006 American Chemical Society

    Article Views

    1102

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Activity coefficients at infinite dilution of alkanes, alkenes, and alkylbenzenes as well as of the linear and branched C1−C6 alcohols, esters, and aldehydes in the ionic liquids 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide have been determined by gas chromatography using the ionic liquids as stationary phase. The measurements were carried out at different temperatures between 301 K and 396 K. From the temperature dependence of the limiting activity coefficients, partial molar excess enthalpies at infinite dilution of the solutes in the ionic liquids have been derived.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author. E-mail:  [email protected].

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Two tables showing critical constants and acentric factors of the solutes and experimental activity coefficients at infinity dilution. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 83 publications.

    1. Johannes Ingenmey, Jan Blasius, Gwydyon Marchelli, Alexander Riegel, Barbara Kirchner. A Cluster Approach for Activity Coefficients: General Theory and Implementation. Journal of Chemical & Engineering Data 2019, 64 (1) , 255-261. https://doi.org/10.1021/acs.jced.8b00779
    2. Gangqiang Yu, Chengna Dai, Zhigang Lei. Modified UNIFAC-Lei Model for Ionic Liquid–CH4 Systems. Industrial & Engineering Chemistry Research 2018, 57 (20) , 7064-7076. https://doi.org/10.1021/acs.iecr.8b00986
    3. Chang-Hao Li, Kai-Xuan Gao, Yu-Ning Meng, Xian-Kun Wu, Feng Zhang, and Zhi-Xiang Wang . Solution Thermodynamics of Imidazolium-Based Ionic Liquids and Volatile Organic Compounds: Benzene and Acetone. Journal of Chemical & Engineering Data 2015, 60 (6) , 1600-1607. https://doi.org/10.1021/je500986b
    4. Javid Safarov, Ismail Kul, Misirkhan Talibov, Astan Shahverdiyev, and Egon Hassel . Vapor Pressures and Activity Coefficients of Methanol in Binary Mixtures with 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. Journal of Chemical & Engineering Data 2015, 60 (6) , 1648-1663. https://doi.org/10.1021/je501033z
    5. Amalendu Pal, Harsh Kumar, Ritu Maan, and Harish Kumar Sharma . Solute–Solvent Interactions of Alkyl Acetoacetates in Aqueous {1-Butyl-3-methylimidazolium Chloride [bmim][Cl]} Ionic Liquid Solutions in the Temperature Interval (288.15–308.15) K. Journal of Chemical & Engineering Data 2014, 59 (8) , 2367-2376. https://doi.org/10.1021/je4009987
    6. Zhigang Lei, Chengna Dai, Xing Liu, Li Xiao, and Biaohua Chen . Extension of the UNIFAC Model for Ionic Liquids. Industrial & Engineering Chemistry Research 2012, 51 (37) , 12135-12144. https://doi.org/10.1021/ie301159v
    7. A. B. Pereiro, A. Rodriguez, M. Blesic, K. Shimizu, J. N. Canongia Lopes, and L. P. N. Rebelo . Mixtures of Pyridine and Nicotine with Pyridinium-Based Ionic Liquids. Journal of Chemical & Engineering Data 2011, 56 (12) , 4356-4363. https://doi.org/10.1021/je2001446
    8. Marta L. S. Batista, Catarina M. S. S. Neves, Pedro J. Carvalho, Rafiqul Gani, and João A. P. Coutinho . Chameleonic Behavior of Ionic Liquids and Its Impact on the Estimation of Solubility Parameters. The Journal of Physical Chemistry B 2011, 115 (44) , 12879-12888. https://doi.org/10.1021/jp207369g
    9. Jason P. Hallett and Tom Welton . Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2. Chemical Reviews 2011, 111 (5) , 3508-3576. https://doi.org/10.1021/cr1003248
    10. Gloria Foco, M. Dolores Bermejo, Aleksandra J. Kotlewska, Fred van Rantwijk, Cor J. Peters, and Susana B. Bottini . Activity Coefficients at Infinite Dilution in Methylimidazolium Nitrate Ionic Liquids. Journal of Chemical & Engineering Data 2011, 56 (3) , 517-520. https://doi.org/10.1021/je100998r
    11. Pei-Fang Yan, Miao Yang, Xiu-Mei Liu, Qing-Shan Liu, Zhi-Cheng Tan and Urs Welz-Biermann. Activity Coefficients at Infinite Dilution of Organic Solutes in 1-Ethyl-3-methylimidazolium Tris(pentafluoroethyl)trifluorophosphate [EMIM][FAP] Using Gas−Liquid Chromatography. Journal of Chemical & Engineering Data 2010, 55 (7) , 2444-2450. https://doi.org/10.1021/je9008443
    12. Zhigang Lei, Jiguo Zhang, Qunsheng Li and Biaohua Chen. UNIFAC Model for Ionic Liquids. Industrial & Engineering Chemistry Research 2009, 48 (5) , 2697-2704. https://doi.org/10.1021/ie801496e
    13. Tharanga Payagala, Ying Zhang, Eranda Wanigasekara, Ke Huang, Zachary S. Breitbach, Pritesh S. Sharma, Leonard M. Sidisky and Daniel W. Armstrong . Trigonal Tricationic Ionic Liquids: A Generation of Gas Chromatographic Stationary Phases. Analytical Chemistry 2009, 81 (1) , 160-173. https://doi.org/10.1021/ac8016949
    14. Chau-Chyun Chen, Luke D. Simoni, Joan F. Brennecke and Mark A. Stadtherr. Correlation and Prediction of Phase Behavior of Organic Compounds in Ionic Liquids Using the Nonrandom Two-Liquid Segment Activity Coefficient Model. Industrial & Engineering Chemistry Research 2008, 47 (18) , 7081-7093. https://doi.org/10.1021/ie800048d
    15. Yusuke Shimoyama, Takeshi Hirayama and Yoshio Iwai. Measurement of Infinite Dilution Activity Coefficients of Alcohols, Ketones, and Aromatic Hydrocarbons in 4-Methyl-N-butylpyridinium Tetrafluoroborate and 1-Butyl-3-methylimidazolium Hexafluorophosphate by Gas−Liquid Chromatography. Journal of Chemical & Engineering Data 2008, 53 (9) , 2106-2111. https://doi.org/10.1021/je800246v
    16. Yuri G. Dobryakov, Dirk Tuma and Gerd Maurer. Activity Coefficients at Infinite Dilution of Alkanols in the Ionic Liquids 1-Butyl-3-methylimidazolium Hexafluorophosphate, 1-Butyl-3-methylimidazolium Methyl Sulfate, and 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl) Amide Using the Dilutor Technique. Journal of Chemical & Engineering Data 2008, 53 (9) , 2154-2162. https://doi.org/10.1021/je800355e
    17. Ming-Lan Ge, Li-Sheng Wang, Jun-Sheng Wu and Qing Zhou. Activity Coefficients at Infinite Dilution of Organic Solutes in 1-Ethyl-3-methylimidazolium Tetrafluoroborate Using Gas−Liquid Chromatography. Journal of Chemical & Engineering Data 2008, 53 (8) , 1970-1974. https://doi.org/10.1021/je800218g
    18. Pritesh S. Sharma, Tharanga Payagala, Eranda Wanigasekara, Aruna B. Wijeratne, Junmin Huang and Daniel W. Armstrong. Trigonal Tricationic Ionic Liquids: Molecular Engineering of Trications to Control Physicochemical Properties. Chemistry of Materials 2008, 20 (13) , 4182-4184. https://doi.org/10.1021/cm800830v
    19. Alan R. Katritzky, Minati Kuanar, Iva B. Stoyanova-Slavova, Svetoslav H. Slavov, Dimitar A. Dobchev, Mati Karelson and William E. Acree, Jr. . Quantitative Structure–Property Relationship Studies on Ostwald Solubility and Partition Coefficients of Organic Solutes in Ionic Liquids. Journal of Chemical & Engineering Data 2008, 53 (5) , 1085-1092. https://doi.org/10.1021/je700607b
    20. Zhigang Lei,, Biaohua Chen,, Chengyue Li, and, Hui Liu. Predictive Molecular Thermodynamic Models for Liquid Solvents, Solid Salts, Polymers, and Ionic Liquids. Chemical Reviews 2008, 108 (4) , 1419-1455. https://doi.org/10.1021/cr068441+
    21. Marco Haumann and, Anders Riisager. Hydroformylation in Room Temperature Ionic Liquids (RTILs):  Catalyst and Process Developments. Chemical Reviews 2008, 108 (4) , 1474-1497. https://doi.org/10.1021/cr078374z
    22. Ming-Lan Ge and Li-Sheng Wang. Activity Coefficients at Infinite Dilution of Polar Solutes in 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate Using Gas–Liquid Chromatography. Journal of Chemical & Engineering Data 2008, 53 (3) , 846-849. https://doi.org/10.1021/je700560s
    23. Jianyong Yang,, Changjun Peng,, Honglai Liu, and, Ying Hu. Calculation of Vapor−Liquid and Liquid−Liquid Phase Equilibria for Systems Containing Ionic Liquids Using a Lattice Model. Industrial & Engineering Chemistry Research 2006, 45 (20) , 6811-6817. https://doi.org/10.1021/ie060515k
    24. Artashes A. Khachatrian, Boris N. Solomonov. The comparative analysis of solvation thermochemistry of organic non-electrolytes in ionic liquids and molecular solvents. Journal of Molecular Liquids 2022, 368 , 120765. https://doi.org/10.1016/j.molliq.2022.120765
    25. Karl Marti Toots, Sulev Sild, Jaan Leis, William E. Acree, Uko Maran. Machine Learning Quantitative Structure–Property Relationships as a Function of Ionic Liquid Cations for the Gas-Ionic Liquid Partition Coefficient of Hydrocarbons. International Journal of Molecular Sciences 2022, 23 (14) , 7534. https://doi.org/10.3390/ijms23147534
    26. Thomas Brouwer, Sascha R.A. Kersten, Gerrald Bargeman, Boelo Schuur. trends in solvent impact on infinite dilution activity coefficients of solutes reviewed and visualized using an algorithm to support selection of solvents for greener fluid separations. Separation and Purification Technology 2021, 272 , 118727. https://doi.org/10.1016/j.seppur.2021.118727
    27. Sergey P. Verevkin. Imidazolium Based Ionic Liquids: Unbiased Recovering of Vaporization Enthalpies from Infinite-Dilution Activity Coefficients. Molecules 2021, 26 (19) , 5873. https://doi.org/10.3390/molecules26195873
    28. Cheng Zhang, David Triger, Nicholas J. Ramer. Activity coefficients at infinite dilution for various organic solutes in the ionic liquid 1-(2-hydroxyethyl)-3-methylimidazolium hexafluorophosphate. The Journal of Chemical Thermodynamics 2020, 140 , 105867. https://doi.org/10.1016/j.jct.2019.07.009
    29. Yuqiu Chen, Evangelia Koumaditi, Rafiqul Gani, Georgios M. Kontogeorgis, John M. Woodley. Computer-aided design of ionic liquids for hybrid process schemes. Computers & Chemical Engineering 2019, 130 , 106556. https://doi.org/10.1016/j.compchemeng.2019.106556
    30. Pratik Dhakal, Jonathan A. Ouimet, Sydnee N. Roese, Andrew S. Paluch. MOSCED parameters for 1-n-alkyl-3-methylimidazolium-based ionic liquids: Application to limiting activity coefficients and intuitive entrainer selection for extractive distillation processes. Journal of Molecular Liquids 2019, 293 , 111552. https://doi.org/10.1016/j.molliq.2019.111552
    31. A. A. Gaile, A. V. Vereshchagin, V. N. Klement’ev. Refining of Diesel and Ship Fuels by Extraction and Combined Methods. Part 1. Use of Ionic Liquids as Extractants. Russian Journal of Applied Chemistry 2019, 92 (4) , 453-475. https://doi.org/10.1134/S1070427219040013
    32. Shiva Rezaei Motlagh, Razif Harun, Dayang Awang Biak, Siti Hussain, Wan Wan Ab Karim Ghani, Ramin Khezri, Cecilia Wilfred, Amal Elgharbawy. Screening of Suitable Ionic Liquids as Green Solvents for Extraction of Eicosapentaenoic Acid (EPA) from Microalgae Biomass Using COSMO-RS Model. Molecules 2019, 24 (4) , 713. https://doi.org/10.3390/molecules24040713
    33. Miao Zhang, Zhuang-Zhuang He, Rong-Xue Kang, Ming-Lan Ge. Thermodynamics and activity coefficients at infinite dilution for organic compounds in the ionic liquid 1-hexyl-3-methylimidazolium chloride. The Journal of Chemical Thermodynamics 2019, 128 , 187-194. https://doi.org/10.1016/j.jct.2018.08.028
    34. R. Schneider, R.P. Gerber, R. de P. Soares. Extension of the F-SAC model to ionic liquids. Fluid Phase Equilibria 2018, 477 , 87-97. https://doi.org/10.1016/j.fluid.2018.08.018
    35. Alessandro Mariani, Marco Campetella, Claudia Fasolato, Maddalena Daniele, Francesco Capitani, Luigi Bencivenni, Paolo Postorino, Stefano Lupi, Ruggero Caminiti, Lorenzo Gontrani. A joint experimental and computational study on ethylammonium nitrate-ethylene glycol 1:1 mixture. Structural, kinetic, dynamic and spectroscopic properties. Journal of Molecular Liquids 2017, 226 , 2-8. https://doi.org/10.1016/j.molliq.2016.08.043
    36. M. Karpińska, M. Wlazło, D. Ramjugernath, P. Naidoo, U. Domańska. Assessment of certain ionic liquids for separation of binary mixtures based on gamma infinity data measurements. RSC Advances 2017, 7 (12) , 7092-7107. https://doi.org/10.1039/C6RA25208G
    37. Marek Królikowski, Marta Królikowska, Cezary Wiśniewski. Separation of aliphatic from aromatic hydrocarbons and sulphur compounds from fuel based on measurements of activity coefficients at infinite dilution for organic solutes and water in the ionic liquid N,N-diethyl-N-methyl-N-(2-methoxy-ethyl)ammonium bis(trifluoromethylsulfonyl)imide. The Journal of Chemical Thermodynamics 2016, 103 , 115-124. https://doi.org/10.1016/j.jct.2016.07.017
    38. Michal Wlazło, Monika Karpińska, Urszula Domańska. Thermodynamics and selectivity of separation based on activity coefficients at infinite dilution of various solutes in 1-allyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide ionic liquid. The Journal of Chemical Thermodynamics 2016, 102 , 39-47. https://doi.org/10.1016/j.jct.2016.06.028
    39. Ming-Lan Ge, Qin Zhang, Sai-Nan Li, Yin-Juan Li, Xiu-Zhen Zhang, Zhao Mu. Thermodynamics and activity coefficients at infinite dilution for organic solutes in the ionic liquid 1-hexyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide. The Journal of Chemical Thermodynamics 2016, 102 , 303-309. https://doi.org/10.1016/j.jct.2016.07.021
    40. I.A. Sedov, B.N. Solomonov. Thermodynamic description of the solvophobic effect in ionic liquids. Fluid Phase Equilibria 2016, 425 , 9-14. https://doi.org/10.1016/j.fluid.2016.05.003
    41. Michal Wlazło, Monika Karpińska, Urszula Domańska. A 1-alkylcyanopyridinium-based ionic liquid in the separation processes. The Journal of Chemical Thermodynamics 2016, 97 , 253-260. https://doi.org/10.1016/j.jct.2016.01.017
    42. Selva Pereda, Sona Raeissi, Alfonsina E. Andreatta, Susana B. Bottini, Maaike Kroon, Cor J. Peters. Modeling gas solubilities in imidazolium based ionic liquids with the [Tf 2 N] anion using the GC-EoS. Fluid Phase Equilibria 2016, 409 , 408-416. https://doi.org/10.1016/j.fluid.2015.10.037
    43. Blane D. Green, Alexander J. Badini, Richard A. O'Brien, James H. Davis, Kevin N. West. Liquid–liquid equilibria of binary mixtures of a lipidic ionic liquid with hydrocarbons. Physical Chemistry Chemical Physics 2016, 18 (4) , 2459-2467. https://doi.org/10.1039/C5CP06101F
    44. Inês C. M. Vaz, Arijit Bhattacharjee, Marisa A. A. Rocha, João A. P. Coutinho, Margarida Bastos, Luís M. N. B. F. Santos. Alcohols as molecular probes in ionic liquids: evidence for nanostructuration. Physical Chemistry Chemical Physics 2016, 18 (28) , 19267-19275. https://doi.org/10.1039/C6CP03616C
    45. Michał Wlazło, Andrzej Marciniak, Maciej Zawadzki, Barbara Dudkiewicz. Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 4-(3-hydroxypropyl)-4-methylmorpholinium bis(trifluoromethylsulfonyl)-amide. The Journal of Chemical Thermodynamics 2015, 86 , 154-161. https://doi.org/10.1016/j.jct.2015.02.024
    46. Amalendu Pal, Harsh Kumar, Ritu Maan, Harish Kumar Sharma. Thermophysical properties of alkyl acetates in aqueous solutions of ionic liquid {1-butyl-3-methylimidazolium bromide [bmim][Br]} at different temperatures. Physics and Chemistry of Liquids 2015, 53 (3) , 390-402. https://doi.org/10.1080/00319104.2014.978498
    47. Michał Wlazło, Andrzej Marciniak, Trevor M. Letcher. Activity Coefficients at Infinite Dilution and Physicochemical Properties for Organic Solutes and Water in the Ionic Liquid 1-Ethyl-3-methylimidazolium trifluorotris(perfluoroethyl)phosphate. Journal of Solution Chemistry 2015, 44 (3-4) , 413-430. https://doi.org/10.1007/s10953-014-0274-0
    48. Zhigang Lei, Chengna Dai, Jiqin Zhu, Biaohua Chen. Extractive distillation with ionic liquids: A review. AIChE Journal 2014, 60 (9) , 3312-3329. https://doi.org/10.1002/aic.14537
    49. Torben Hector, Jürgen Gmehling. Present status of the modified UNIFAC model for the prediction of phase equilibria and excess enthalpies for systems with ionic liquids. Fluid Phase Equilibria 2014, 371 , 82-92. https://doi.org/10.1016/j.fluid.2014.03.006
    50. Łukasz Marcinkowski, Adam Kloskowski, Jacek Namieśnik. Measurement of activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-hexyl-1,4-diaza[2.2.2]bicyclooctanium bis(trifluoromethylsulfonyl)imide using gas–liquid chromatography. The Journal of Chemical Thermodynamics 2014, 71 , 84-90. https://doi.org/10.1016/j.jct.2013.10.026
    51. Amalendu Pal, Harsh Kumar, Ritu Maan, Harish Kumar Sharma. Solute–solvent interactions of alkyl acetoacetates in aqueous {1-butyl-3-methylimidazolium bromide [bmim][Br]}ionic liquid solutions in the temperature interval (288.15–308.15)K. Thermochimica Acta 2014, 577 , 79-86. https://doi.org/10.1016/j.tca.2013.12.015
    52. Zheng MA, Xiaoxia DONG, Yufeng Hu, Bosong ZHANG, Changying XU, Yansheng LIU. Effect of Ionic Liquids on Organic Reactions Based on Activity Coefficients at Infinite Dilution. Chinese Journal of Chemical Engineering 2013, 21 (12) , 1370-1375. https://doi.org/10.1016/S1004-9541(13)60640-0
    53. Amalendu Pal, Sheena Chaudhary. Ionic liquid induced alterations in the physicochemical properties of aqueous solutions of sodium dodecylsulfate (SDS). Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013, 430 , 58-64. https://doi.org/10.1016/j.colsurfa.2013.04.001
    54. Amalendu Pal, Sheena Chaudhary. Effect of hydrophilic ionic liquid on aggregation behavior of aqueous solutions of sodium dodecylsulfate (SDS). Fluid Phase Equilibria 2013, 352 , 42-46. https://doi.org/10.1016/j.fluid.2013.05.009
    55. Michał Wlazło, Andrzej Marciniak. Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 4-(2-methoxyethyl)-4-methylmorpholinium trifluorotris(perfluoroethyl)phosphate. The Journal of Chemical Thermodynamics 2012, 54 , 366-372. https://doi.org/10.1016/j.jct.2012.05.017
    56. Brock C. Roughton, Brianna Christian, John White, Kyle V. Camarda, Rafiqul Gani. Simultaneous design of ionic liquid entrainers and energy efficient azeotropic separation processes. Computers & Chemical Engineering 2012, 42 , 248-262. https://doi.org/10.1016/j.compchemeng.2012.02.021
    57. Zhigang Lei, Li Xiao, Chengna Dai, Biaohua Chen. Group contribution lattice fluid equation of state (GCLF EOS) for ionic liquids. Chemical Engineering Science 2012, 75 , 1-13. https://doi.org/10.1016/j.ces.2012.03.002
    58. Andrzej Marciniak, Michał Wlazło. Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 1-(2-methoxyethyl)-1-methylpiperidinium bis(trifluoromethylsulfonyl)-amide. The Journal of Chemical Thermodynamics 2012, 49 , 137-145. https://doi.org/10.1016/j.jct.2012.01.019
    59. Y. Deng, P. Husson, J. Jacquemin, T.G.A. Youngs, V.L. Kett, C. Hardacre, M.F. Costa Gomes. Volumetric properties and enthalpies of solution of alcohols CkH2k+1OH (k=1, 2, 6) in 1-methyl-3-alkylimidazolium bis(trifluoromethylsulfonyl)imide {[C1CnIm][NTf2] n=2, 4, 6, 8, 10} ionic liquids. The Journal of Chemical Thermodynamics 2011, 43 (11) , 1708-1718. https://doi.org/10.1016/j.jct.2011.05.033
    60. Laura M. Grubbs, Shulin Ye, Mariam Saifullah, McCoy Cornelius McMillan-Wiggins, William E. Acree, Michael H. Abraham, Pamela Twu, Jared L. Anderson. Correlations for describing gas-to-ionic liquid partitioning at 323K based on ion-specific equation coefficient and group contribution versions of the Abraham model. Fluid Phase Equilibria 2011, 301 (2) , 257-266. https://doi.org/10.1016/j.fluid.2010.12.005
    61. Faezeh Nami, Farzad Deyhimi. Prediction of activity coefficients at infinite dilution for organic solutes in ionic liquids by artificial neural network. The Journal of Chemical Thermodynamics 2011, 43 (1) , 22-27. https://doi.org/10.1016/j.jct.2010.07.011
    62. Audrey Denicourt-Nowicki, Bastien Léger, Alain Roucoux. N-Donor ligands based on bipyridine and ionic liquids: an efficient partnership to stabilize rhodium colloids. Focus on oxygen-containing compounds hydrogenation. Physical Chemistry Chemical Physics 2011, 13 (30) , 13510. https://doi.org/10.1039/c1cp20602h
    63. Pei-Fang Yan, Qing-Shan Liu, Miao Yang, Xiu-Mei Liu, Zhi-Cheng Tan, Urs Welz-Biermann. Activity coefficients at infinite dilution of organic solutes in N-alkylpyridinium bis(trifluoromethylsulfonyl)imide ([CnPY][NTf2], n=2,4,5) using gas–liquid chromatography. The Journal of Chemical Thermodynamics 2010, 42 (12) , 1415-1422. https://doi.org/10.1016/j.jct.2010.06.009
    64. Pei-Fang Yan, Miao Yang, Chang-Ping Li, Xiu-Mei Liu, Zhi-Cheng Tan, Urs Welz-Biermann. Gas-liquid chromatography measurements of activity coefficients at infinite dilution of hydrocarbons and alkanols in 1-alkyl-3-methylimidazolium bis(oxalato)borate. Fluid Phase Equilibria 2010, 298 (2) , 287-292. https://doi.org/10.1016/j.fluid.2010.08.016
    65. Maaike C. Kroon, Cor J. Peters. Phase Behaviour of Ionic Liquid Systems. 2010, 368-393. https://doi.org/10.1039/9781849730983-00368
    66. Süheyla Çehreli, Jürgen Gmehling. Phase equilibria for benzene–cyclohexene and activity coefficients at infinite dilution for the ternary systems with ionic liquids. Fluid Phase Equilibria 2010, 295 (1) , 125-129. https://doi.org/10.1016/j.fluid.2010.04.010
    67. Andrzej Marciniak. Influence of cation and anion structure of the ionic liquid on extraction processes based on activity coefficients at infinite dilution. A review. Fluid Phase Equilibria 2010, 294 (1-2) , 213-233. https://doi.org/10.1016/j.fluid.2009.12.025
    68. A.B. Pereiro, F.J. Deive, J.M.S.S. Esperança, A. Rodríguez. Alkylsulfate-based ionic liquids to separate azeotropic mixtures. Fluid Phase Equilibria 2010, 294 (1-2) , 49-53. https://doi.org/10.1016/j.fluid.2010.05.006
    69. Pei-Fang Yan, Miao Yang, Xiu-Mei Liu, Chang Wang, Zhi-Cheng Tan, Urs Welz-Biermann. Activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate [EMIM][TCB] using gas–liquid chromatography. The Journal of Chemical Thermodynamics 2010, 42 (6) , 817-822. https://doi.org/10.1016/j.jct.2010.02.006
    70. A.B. Pereiro, F.J. Deive, J.M.S.S. Esperança, A. Rodríguez. Alkylsulfate-based ionic liquids to separate azeotropic mixtures. Fluid Phase Equilibria 2010, 291 (1) , 13-17. https://doi.org/10.1016/j.fluid.2009.12.016
    71. Silke Nebig, Vincent Liebert, Jürgen Gmehling. Measurement and prediction of activity coefficients at infinite dilution (γ∞), vapor–liquid equilibria (VLE) and excess enthalpies (HE) of binary systems with 1,1-dialkyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide using mod. UNIFAC (Dortmund). Fluid Phase Equilibria 2009, 277 (1) , 61-67. https://doi.org/10.1016/j.fluid.2008.11.013
    72. Svetlana A. Kozlova, Sergey P. Verevkin, Andreas Heintz, Tim Peppel, Martin Köckerling. Activity coefficients at infinite dilution of hydrocarbons, alkylbenzenes, and alcohols in the paramagnetic ionic liquid 1-butyl-3-methyl-imidazolium tetrachloridoferrate(III) using gas–liquid chromatography. The Journal of Chemical Thermodynamics 2009, 41 (3) , 330-333. https://doi.org/10.1016/j.jct.2008.09.004
    73. Ana B. Pereiro, Ana Rodríguez. Azeotrope-breaking using [BMIM] [MeSO4] ionic liquid in an extraction column. Separation and Purification Technology 2008, 62 (3) , 733-738. https://doi.org/10.1016/j.seppur.2008.03.015
    74. Bogusław Buszewski, Sylwia Studzińska. A Review of Ionic Liquids in Chromatographic and Electromigration Techniques. Chromatographia 2008, 68 (1-2) , 1-10. https://doi.org/10.1365/s10337-008-0662-y
    75. Laura M. Sprunger, Amy Proctor, William E. Acree, M.H. Abraham. LFER correlations for room temperature ionic liquids: Separation of equation coefficients into individual cation-specific and anion-specific contributions. Fluid Phase Equilibria 2008, 265 (1-2) , 104-111. https://doi.org/10.1016/j.fluid.2008.01.006
    76. Annegret Stark. Ionic Liquid Structure-Induced Effects on Organic Reactions. 2008, 41-81. https://doi.org/10.1007/128_2008_43
    77. Ke Huang, Xinxin Han, Xiaotong Zhang, Daniel W. Armstrong. PEG-linked geminal dicationic ionic liquids as selective, high-stability gas chromatographic stationary phases. Analytical and Bioanalytical Chemistry 2007, 389 (7-8) , 2265-2275. https://doi.org/10.1007/s00216-007-1625-0
    78. Silke Nebig, Rainer Bölts, Jürgen Gmehling. Measurement of vapor–liquid equilibria (VLE) and excess enthalpies (HE) of binary systems with 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and prediction of these properties and γ∞ using modified UNIFAC (Dortmund). Fluid Phase Equilibria 2007, 258 (2) , 168-178. https://doi.org/10.1016/j.fluid.2007.06.001
    79. Ji-Qin Zhu, Jian Chen, Cheng-Yue Li, Wei-Yang Fei. Centrifugal extraction for separation of ethylbenzene and octane using 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid as extractant. Separation and Purification Technology 2007, 56 (2) , 237-240. https://doi.org/10.1016/j.seppur.2007.01.026
    80. Shahab A. Shamsi, Neil D. Danielson. Utility of ionic liquids in analytical separations. Journal of Separation Science 2007, 30 (11) , 1729-1750. https://doi.org/10.1002/jssc.200700136
    81. Yuanchao Pei, Jianji Wang, Kun Wu, Yang Zhao, Jing Fan. Equilibrium Partitioning of Phenols and Phenyl Amines between [BF 4 ] - Based Ionic Liquids and Aqueous Solution. Zeitschrift für Physikalische Chemie 2007, 221 (6) , 825-835. https://doi.org/10.1524/zpch.2007.221.6.825
    82. Andreas Heintz, Sergey P. Verevkin, Jochen K. Lehmann, Tatiana V. Vasiltsova, Daniel Ondo. Activity coefficients at infinite dilution and enthalpies of solution of methanol, 1-butanol, and 1-hexanol in 1-hexyl-3-methyl-imidazolium bis(trifluoromethyl-sulfonyl) imide. The Journal of Chemical Thermodynamics 2007, 39 (2) , 268-274. https://doi.org/10.1016/j.jct.2006.07.006
    83. Michael H. Abraham, William E. Acree, Jr.. Comparative analysis of solvation and selectivity in room temperature ionic liquids using the Abraham linear free energy relationship. Green Chemistry 2006, 8 (10) , 906. https://doi.org/10.1039/b606279b

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect