ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Solubilities of Gases in the Ionic Liquid 1-n-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide

View Author Information
Physical and Chemical Properties Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305-3328
Cite this: J. Chem. Eng. Data 2006, 51, 3, 892–897
Publication Date (Web):April 6, 2006
https://doi.org/10.1021/je050357o
Copyright © Not subject to U.S. Copyright. Published 2006 American Chemical Society

    Article Views

    2141

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Solubility data of carbon dioxide, propane, propene, butane, and 1-butene in the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim][Tf2N]) are presented as a function of pressure at temperatures between 280 K and 340 K. The equilibrium pressure at a given temperature and the amount of gas dissolved into the ionic liquid phase were measured with an experimental technique based on a saturation method at constant volume by use of an apparatus equipped with a cylindrical equilibrium view cell. All measured solubilities were between 0.1 and 0.5 mole fraction gas in ionic liquid. 1-Butene had the highest solubility, followed by butane, propene, and then propane. Carbon dioxide and propane are similarly the least soluble in the [bmim][Tf2N]. Alkene gases were more soluble than alkane gases. From the experimental solubility data, the Henry's constants of each gas in the ionic liquid were estimated as a function of temperature.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Present address:  Dept of Chemical Engineering, Hannam University, 133 Ojung-dong, Daedeok-gu, Daejeon 306-791, Korea.

    *

     Corresponding author. Tel:  (303)497-5786. E-mail:  stephanie.outcalt@ boulder.nist.gov.

    Cited By

    This article is cited by 160 publications.

    1. Ethan A. Finberg, Tessie L. May, Mark B. Shiflett. Multicomponent Refrigerant Separation Using Extractive Distillation with Ionic Liquids. Industrial & Engineering Chemistry Research 2022, 61 (27) , 9795-9812. https://doi.org/10.1021/acs.iecr.2c00937
    2. Kimberly R. Bourland, Oscar Morales-Collazo, Joan F. Brennecke. Inverse Gas Chromatography as a Screening Technique for Henry’s Law Constants of Gases in Ionic Liquids. Journal of Chemical & Engineering Data 2022, 67 (2) , 385-392. https://doi.org/10.1021/acs.jced.1c00838
    3. Yichuan Wang, Yangyang Xin, Fei Gao, Siqi Jiang, Mengchen Li, Shuai Zhang, Yufeng Hu, Zhichang Liu. Solubility of Isobutane in H2SO4 by the COSMO-RS Model and Mechanisms for Additives to Enhance the H2SO4 Performance. Industrial & Engineering Chemistry Research 2022, 61 (3) , 1503-1513. https://doi.org/10.1021/acs.iecr.1c04202
    4. Yuxiu Sun, Zhengqing Zhang, Lei Tian, Hongliang Huang, Chenxu Geng, Xiangyu Guo, Zhihua Qiao, Chongli Zhong. Confined Ionic Liquid-Built Gas Transfer Pathways for Efficient Propylene/Propane Separation. ACS Applied Materials & Interfaces 2021, 13 (41) , 49050-49057. https://doi.org/10.1021/acsami.1c15108
    5. Yuqiu Chen, Xinyan Liu, John M. Woodley, Georgios M. Kontogeorgis. Gas Solubility in Ionic Liquids: UNIFAC-IL Model Extension. Industrial & Engineering Chemistry Research 2020, 59 (38) , 16805-16821. https://doi.org/10.1021/acs.iecr.0c02769
    6. Yifan Jiang, Mohsen Taheri, Gangqiang Yu, Jiqin Zhu, Zhigang Lei. Experiments, Modeling, and Simulation of CO2 Dehydration by Ionic Liquid, Triethylene Glycol, and Their Binary Mixtures. Industrial & Engineering Chemistry Research 2019, 58 (34) , 15588-15597. https://doi.org/10.1021/acs.iecr.9b02540
    7. Abobakr Khidir Ziyada, Cecilia Devi Wilfred. Effect of Cation Modification on the Physicochemical Properties and CO2 Solubility: Nonfluorinated Phosphonium-Based Ionic Liquids Incorporating a Dioctylsulfosuccinate Anion. Journal of Chemical & Engineering Data 2018, 63 (10) , 3672-3683. https://doi.org/10.1021/acs.jced.8b00109
    8. Khalil Parvaneh and Alireza Shariati . Quasi-Chemical PC-SAFT: An Extended Perturbed Chain-Statistical Associating Fluid Theory for Lattice-Fluid Mixtures. The Journal of Physical Chemistry B 2017, 121 (35) , 8338-8347. https://doi.org/10.1021/acs.jpcb.7b05483
    9. Mohd Azlan Kassim, Nor Asrina Sairi, Rozita Yusoff, Yatimah Alias, and Mohamed Kheireddine Aroua . Evaluation of 1-Butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide–Alkanolamine Sulfolane-Based System as Solvent for Absorption of Carbon Dioxide. Industrial & Engineering Chemistry Research 2016, 55 (29) , 7992-8001. https://doi.org/10.1021/acs.iecr.5b04376
    10. Tian Tian, Xiaoling Hu, Ping Guan, and Yimei Tang . Investigation of Surface and Solubility Properties of N-Vinylimidazolium Tetrahalogenidoferrate(III) Magnetic Ionic Liquids Using Density Functional Theory. Journal of Chemical & Engineering Data 2016, 61 (2) , 721-730. https://doi.org/10.1021/acs.jced.5b00395
    11. Gregorio García, Mert Atilhan, and Santiago Aparicio . Interfacial Properties of Double Salt Ionic Liquids: A Molecular Dynamics Study. The Journal of Physical Chemistry C 2015, 119 (51) , 28405-28416. https://doi.org/10.1021/acs.jpcc.5b09070
    12. Nouman Rafique Mirza, Nathan J. Nicholas, Yue Wu, Kathryn A. Mumford, Sandra E. Kentish, and Geoffrey W. Stevens . Experiments and Thermodynamic Modeling of the Solubility of Carbon Dioxide in Three Different Deep Eutectic Solvents (DESs). Journal of Chemical & Engineering Data 2015, 60 (11) , 3246-3252. https://doi.org/10.1021/acs.jced.5b00492
    13. Samir Budhathoki, Jindal K. Shah, and Edward J. Maginn . Molecular Simulation Study of the Solubility, Diffusivity and Permselectivity of Pure and Binary Mixtures of CO2 and CH4 in the Ionic Liquid 1-n-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Industrial & Engineering Chemistry Research 2015, 54 (35) , 8821-8828. https://doi.org/10.1021/acs.iecr.5b02500
    14. Joel Sánchez-Badillo, Marco Gallo, Sandra Alvarado, and Daniel Glossman-Mitnik . Solvation Thermodynamic Properties of Hydrogen Sulfide in [C4mim][PF6], [C4mim][BF4], and [C4mim][Cl] Ionic Liquids, Determined by Molecular Simulations. The Journal of Physical Chemistry B 2015, 119 (33) , 10727-10737. https://doi.org/10.1021/acs.jpcb.5b06525
    15. Marco Klähn and Abirami Seduraman . What Determines CO2 Solubility in Ionic Liquids? A Molecular Simulation Study. The Journal of Physical Chemistry B 2015, 119 (31) , 10066-10078. https://doi.org/10.1021/acs.jpcb.5b03674
    16. Yuan Zhang, Tao Zhang, Panxue Gan, Hongxia Li, Ming Zhang, Keting Jin, and Shengwei Tang . Solubility of Isobutane in Ionic Liquids [BMIm][PF6], [BMIm][BF4], and [BMIm][Tf2N]. Journal of Chemical & Engineering Data 2015, 60 (6) , 1706-1714. https://doi.org/10.1021/je501083d
    17. Zhigang Lei, Chengna Dai, and Biaohua Chen . Gas Solubility in Ionic Liquids. Chemical Reviews 2014, 114 (2) , 1289-1326. https://doi.org/10.1021/cr300497a
    18. Xiangyang Liu, Waheed Afzal, Guangren Yu, Maogang He, and John M. Prausnitz . High Solubilities of Small Hydrocarbons in Trihexyl Tetradecylphosphonium Bis(2,4,4-trimethylpentyl) Phosphinate. The Journal of Physical Chemistry B 2013, 117 (36) , 10534-10539. https://doi.org/10.1021/jp403460a
    19. Marcos Fallanza, Alfredo Ortiz, Daniel Gorri, and Inmaculada Ortiz . Propylene and Propane Solubility in Imidazolium, Pyridinium, and Tetralkylammonium Based Ionic Liquids Containing a Silver Salt. Journal of Chemical & Engineering Data 2013, 58 (8) , 2147-2153. https://doi.org/10.1021/je301368x
    20. Santiago Aparicio and Mert Atilhan . On the Properties of CO2 and Flue Gas at the Piperazinium-Based Ionic Liquids Interface: A Molecular Dynamics Study. The Journal of Physical Chemistry C 2013, 117 (29) , 15061-15074. https://doi.org/10.1021/jp400941p
    21. Ricardo Macías-Salinas, José Adrián Chávez-Velasco, Marco A. Aquino-Olivos, José Luis Mendoza de la Cruz, and Jesus C. Sánchez-Ochoa . Accurate Modeling of CO2 Solubility in Ionic Liquids Using a Cubic EoS. Industrial & Engineering Chemistry Research 2013, 52 (22) , 7593-7601. https://doi.org/10.1021/ie400106g
    22. Maria Gonzalez-Miquel, Jose Palomar, and Francisco Rodriguez . Selection of Ionic Liquids for Enhancing the Gas Solubility of Volatile Organic Compounds. The Journal of Physical Chemistry B 2013, 117 (1) , 296-306. https://doi.org/10.1021/jp310499p
    23. Zhigang Lei, Xiaoxi Qi, Jiqin Zhu, Qunsheng Li, and Biaohua Chen . Solubility of CO2 in Acetone, 1-Butyl-3-methylimidazolium Tetrafluoroborate, and Their Mixtures. Journal of Chemical & Engineering Data 2012, 57 (12) , 3458-3466. https://doi.org/10.1021/je300611q
    24. Zhigang Lei, Jingli Han, Benfeng Zhang, Qunsheng Li, Jiqin Zhu, and Biaohua Chen . Solubility of CO2 in Binary Mixtures of Room-Temperature Ionic Liquids at High Pressures. Journal of Chemical & Engineering Data 2012, 57 (8) , 2153-2159. https://doi.org/10.1021/je300016q
    25. Eric D. Hazelbaker, Samir Budhathoki, Aakanksha Katihar, Jindal K. Shah, Edward J. Maginn, and Sergey Vasenkov . Combined Application of High-Field Diffusion NMR and Molecular Dynamics Simulations To Study Dynamics in a Mixture of Carbon Dioxide and an Imidazolium-Based Ionic Liquid. The Journal of Physical Chemistry B 2012, 116 (30) , 9141-9151. https://doi.org/10.1021/jp304528d
    26. Malyanah Mohd Taib and Thanapalan Murugesan . Density, Refractive Index, and Excess Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate with Water and Monoethanolamine. Journal of Chemical & Engineering Data 2012, 57 (1) , 120-126. https://doi.org/10.1021/je2007204
    27. Malyanah Mohd Taib and Thanapalan Murugesan. Densities and Excess Molar Volumes of Binary Mixtures of Bis(2-hydroxyethyl)ammonium Acetate + Water and Monoethanolamine + Bis(2-hydroxyethyl)ammonium Acetate at Temperatures from (303.15 to 353.15) K. Journal of Chemical & Engineering Data 2010, 55 (12) , 5910-5913. https://doi.org/10.1021/je1008125
    28. Ferdi Karadas, Mert Atilhan, and Santiago Aparicio . Review on the Use of Ionic Liquids (ILs) as Alternative Fluids for CO2 Capture and Natural Gas Sweetening. Energy & Fuels 2010, 24 (11) , 5817-5828. https://doi.org/10.1021/ef1011337
    29. Mark B. Shiflett, David W. Drew, Robert A. Cantini, and A. Yokozeki . Carbon Dioxide Capture Using Ionic Liquid 1-Butyl-3-methylimidazolium Acetate. Energy & Fuels 2010, 24 (10) , 5781-5789. https://doi.org/10.1021/ef100868a
    30. Wei Shi, Dan C. Sorescu, David R. Luebke, Murphy J. Keller and Shan Wickramanayake. Molecular Simulations and Experimental Studies of Solubility and Diffusivity for Pure and Mixed Gases of H2, CO2, and Ar Absorbed in the Ionic Liquid 1-n-Hexyl-3-methylimidazolium Bis(Trifluoromethylsulfonyl)amide ([hmim][Tf2N]). The Journal of Physical Chemistry B 2010, 114 (19) , 6531-6541. https://doi.org/10.1021/jp101897b
    31. Pedro J. Carvalho and João A. P. Coutinho. On the Nonideality of CO2 Solutions in Ionic Liquids and Other Low Volatile Solvents. The Journal of Physical Chemistry Letters 2010, 1 (4) , 774-780. https://doi.org/10.1021/jz100009c
    32. Daniela Kerlé, Ralf Ludwig, Alfons Geiger and Dietmar Paschek. Temperature Dependence of the Solubility of Carbon Dioxide in Imidazolium-Based Ionic Liquids. The Journal of Physical Chemistry B 2009, 113 (38) , 12727-12735. https://doi.org/10.1021/jp9055285
    33. Norfaizah Ab Manan, Christopher Hardacre, Johan Jacquemin, David W. Rooney and Tristan G. A. Youngs. Evaluation of Gas Solubility Prediction in Ionic Liquids using COSMOthermX. Journal of Chemical & Engineering Data 2009, 54 (7) , 2005-2022. https://doi.org/10.1021/je800857x
    34. Sona Raeissi and Cor J. Peters . Carbon Dioxide Solubility in the Homologous 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Family. Journal of Chemical & Engineering Data 2009, 54 (2) , 382-386. https://doi.org/10.1021/je800433r
    35. Mark B. Shiflett and A. Yokozeki . Phase Behavior of Carbon Dioxide in Ionic Liquids: [emim][Acetate], [emim][Trifluoroacetate], and [emim][Acetate] + [emim][Trifluoroacetate] Mixtures. Journal of Chemical & Engineering Data 2009, 54 (1) , 108-114. https://doi.org/10.1021/je800701j
    36. A. Yokozeki, Mark B. Shiflett, Christopher P. Junk, Liane M. Grieco and Thomas Foo . Physical and Chemical Absorptions of Carbon Dioxide in Room-Temperature Ionic Liquids. The Journal of Physical Chemistry B 2008, 112 (51) , 16654-16663. https://doi.org/10.1021/jp805784u
    37. Jordi S. Andreu and Lourdes F. Vega. Modeling the Solubility Behavior of CO2, H2, and Xe in [Cn-mim][Tf2N] Ionic Liquids. The Journal of Physical Chemistry B 2008, 112 (48) , 15398-15406. https://doi.org/10.1021/jp807484g
    38. Allan N. Soriano, Bonifacio T. Doma, Jr. and Meng-Hui Li . Solubility of Carbon Dioxide in 1-Ethyl-3-methylimidazolium Tetrafluoroborate. Journal of Chemical & Engineering Data 2008, 53 (11) , 2550-2555. https://doi.org/10.1021/je8003657
    39. José O. Valderrama, Alfonso Reátegui and Wilson W. Sanga . Thermodynamic Consistency Test of Vapor−Liquid Equilibrium Data for Mixtures Containing Ionic Liquids. Industrial & Engineering Chemistry Research 2008, 47 (21) , 8416-8422. https://doi.org/10.1021/ie800763x
    40. Lei Yu, Xiaoxia Jin and Xiangqun Zeng. Methane Interactions with Polyaniline/Butylmethylimidazolium Camphorsulfonate Ionic Liquid Composite. Langmuir 2008, 24 (20) , 11631-11636. https://doi.org/10.1021/la8018327
    41. Trevor K. Carlisle, Jason E. Bara, Christopher J. Gabriel, Richard D. Noble and Douglas L. Gin . Interpretation of CO2 Solubility and Selectivity in Nitrile-Functionalized Room-Temperature Ionic Liquids Using a Group Contribution Approach. Industrial & Engineering Chemistry Research 2008, 47 (18) , 7005-7012. https://doi.org/10.1021/ie8001217
    42. Louw J. Florusse, Sona Raeissi and Cor J. Peters . High-Pressure Phase Behavior of Ethane with 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. Journal of Chemical & Engineering Data 2008, 53 (6) , 1283-1285. https://doi.org/10.1021/je700691m
    43. Alan R. Katritzky, Minati Kuanar, Iva B. Stoyanova-Slavova, Svetoslav H. Slavov, Dimitar A. Dobchev, Mati Karelson and William E. Acree, Jr. . Quantitative Structure–Property Relationship Studies on Ostwald Solubility and Partition Coefficients of Organic Solutes in Ionic Liquids. Journal of Chemical & Engineering Data 2008, 53 (5) , 1085-1092. https://doi.org/10.1021/je700607b
    44. Leonardo J. A. Siqueira, Rômulo A. Ando, Fernanda F. C. Bazito, Roberto M. Torresi, Paulo S. Santos and Mauro C. C. Ribeiro . Shielding of Ionic Interactions by Sulfur Dioxide in an Ionic Liquid. The Journal of Physical Chemistry B 2008, 112 (20) , 6430-6435. https://doi.org/10.1021/jp800665y
    45. Marco Haumann and, Anders Riisager. Hydroformylation in Room Temperature Ionic Liquids (RTILs):  Catalyst and Process Developments. Chemical Reviews 2008, 108 (4) , 1474-1497. https://doi.org/10.1021/cr078374z
    46. Sergey M. Borisov, Magdalena Ch. Waldhier, Ingo Klimant and Otto S. Wolfbeis. Optical Carbon Dioxide Sensors Based on Silicone-Encapsulated Room-Temperature Ionic Liquids. Chemistry of Materials 2007, 19 (25) , 6187-6194. https://doi.org/10.1021/cm7019312
    47. Guido Busca. Acid Catalysts in Industrial Hydrocarbon Chemistry. Chemical Reviews 2007, 107 (11) , 5366-5410. https://doi.org/10.1021/cr068042e
    48. Juan Zhang,, Qinghua Zhang,, Botao Qiao, and, Youquan Deng. Solubilities of the Gaseous and Liquid Solutes and Their Thermodynamics of Solubilization in the Novel Room-Temperature Ionic Liquids at Infinite Dilution by Gas Chromatography. Journal of Chemical & Engineering Data 2007, 52 (6) , 2277-2283. https://doi.org/10.1021/je700297c
    49. Laura Sprunger,, Michael Clark,, William E. AcreeJr., and, Michael H. Abraham. Characterization of Room-Temperature Ionic Liquids by the Abraham Model with Cation-Specific and Anion-Specific Equation Coefficients. Journal of Chemical Information and Modeling 2007, 47 (3) , 1123-1129. https://doi.org/10.1021/ci7000428
    50. Toshihiro Akashige, Adlai B. Katzenberg, Daniel M. Frey, Debdyuti Mukherjee, César A. Urbina Blanco, Brian Chen, Yoshiyuki Okamoto, Miguel A. Modestino. Electrochemically modulated separation of olefin–paraffin gas mixtures in membrane electrode assemblies. Energy Advances 2024, 3 (4) , 790-799. https://doi.org/10.1039/D3YA00508A
    51. Yuya Hiraga, Ikuo Ushiki.. Prediction of ionic liquid solubilities in supercritical CO2 + co-solvent systems using Peng–Robinson equation of state with accurate critical temperature. Journal of Molecular Liquids 2024, 398 , 124324. https://doi.org/10.1016/j.molliq.2024.124324
    52. Behnaz Basirat, Fariborz Shaahmadi, Seyed Sorosh Mirfasihi, Abolfazl Jomekian, Bahamin Bazooyar. Intelligent solubility estimation of gaseous hydrocarbons in ionic liquids. Petroleum 2024, 10 (1) , 109-123. https://doi.org/10.1016/j.petlm.2023.09.002
    53. Syed Shoaib Hassan Zaidi, Rajkumar Kore, Mark B. Shiflett, Xianglin Li. Effects of operating temperature on Li-O2 battery with ionic liquid-based binary electrolyte. Electrochimica Acta 2024, 473 , 143494. https://doi.org/10.1016/j.electacta.2023.143494
    54. Markus Schörner, Andreas Schönweiz, Stefanie Vignesh, Liudmila Mokrushina, Matthias Thommes, Robert Franke, Marco Haumann. Tuning catalyst performance in the SILP-catalyzed gas-phase hydroformylation of but-1-ene by choice of the ionic liquid. Journal of Ionic Liquids 2023, 3 (2) , 100061. https://doi.org/10.1016/j.jil.2023.100061
    55. Linan Ji, Shashi Kant Shukla, Zhida Zuo, Xiaohua Lu, Xiaoyan Ji, Changsong Wang. An overview of the progress of new working pairs in absorption heat pumps. Energy Reports 2023, 9 , 703-729. https://doi.org/10.1016/j.egyr.2022.11.143
    56. Pedro J. Carvalho, Bruna F. Soares, Ricardo T. Pais, Isabel M. Marrucho. Ionic Liquids in Air Treatment: VOCs and Other Pollutants. 2023, 45-84. https://doi.org/10.1039/BK9781839169625-00045
    57. Manas Mahato, Yoichi Murakami, Sudhir Kumar Das. Recent advances and applications of ionic liquids-based photonic materials. Applied Materials Today 2023, 32 , 101808. https://doi.org/10.1016/j.apmt.2023.101808
    58. Xiao Xu, Gilles Van Eygen, Cristhian Molina-Fernández, Daria Nikolaeva, Ysaline Depasse, Sara Chergaoui, Yusak Hartanto, Bart Van der Bruggen, João A.P. Coutinho, Anita Buekenhoudt, Patricia Luis. Evaluation of task-specific ionic liquids applied in pervaporation membranes: Experimental and COSMO-RS studies. Journal of Membrane Science 2023, 670 , 121350. https://doi.org/10.1016/j.memsci.2023.121350
    59. Indrajit Das, K. Rama Swami, Ramesh L. Gardas. Ionic liquids: a tool for CO2 capture and reduced emission. 2023, 327-350. https://doi.org/10.1016/B978-0-323-99921-2.00008-2
    60. Anthoula Plakia, Vassilis Koulocheris, Vasiliki Louli, Epaminondas Voutsas. Vapor-liquid equilibrium of acid gases with imidazolium-based ionic liquids using the UMR-PRU model. Chemical Thermodynamics and Thermal Analysis 2022, 8 , 100097. https://doi.org/10.1016/j.ctta.2022.100097
    61. Yang Lei, Zhaoyang Yu, Zhiqiang Wei, Xinyan Liu, Hao Luo, Yuqiu Chen, Xiaodong Liang, Georgios M. Kontogeorgis. Energy-efficient separation of propylene/propane by introducing a tailor-made ionic liquid solvent. Fuel 2022, 326 , 124930. https://doi.org/10.1016/j.fuel.2022.124930
    62. Peyvand Valeh-e-Sheyda, Pouria Heidarian, Abbas Rezvani. A novel molecular structure-based model for prediction of CO2 equilibrium absorption in blended imidazolium-based ionic liquids. Journal of Molecular Liquids 2022, 360 , 119420. https://doi.org/10.1016/j.molliq.2022.119420
    63. Tushar Patil, Swapnil Dharaskar, Manishkumar Sinha, Surendra Sasikumar Jampa. Effectiveness of ionic liquid-supported membranes for carbon dioxide capture: a review. Environmental Science and Pollution Research 2022, 29 (24) , 35723-35745. https://doi.org/10.1007/s11356-022-19586-0
    64. E.P. Kovalev, A.S. Shalygin, A.A. Shubin, I.V. Kozhevnikov, S.A. Prikhod'ko, N.Yu. Adonin, S.G. Kazarian, O.N. Martyanov. Interactions of C2H6 and C2H4 with the homologous series [CnMIM][BF4] ionic liquids at high pressure studied by in situ ATR-FTIR spectroscopy. Journal of Molecular Liquids 2022, 348 , 118082. https://doi.org/10.1016/j.molliq.2021.118082
    65. Xili Cui, Xiaobing Wang, Liyuan Chen, Huabin Xing. Ionic Liquids for Light Hydrocarbon Separation. 2022, 1-12. https://doi.org/10.1007/978-981-10-6739-6_141-1
    66. Xili Cui, Xiaobing Wang, Liyuan Chen, Huabin Xing. Ionic Liquids for Light Hydrocarbon Separation. 2022, 702-713. https://doi.org/10.1007/978-981-33-4221-7_141
    67. Amir Mokhtari, Hamidreza Bagheri, Mahdieh Ghazvini, Sattar Ghader. New mathematical modeling of temperature-based properties of ionic liquids mixture: Comparison between semi-empirical equation and equation of state. Chemical Engineering Research and Design 2022, 177 , 331-353. https://doi.org/10.1016/j.cherd.2021.10.039
    68. Maria E. Atlaskina, Artem A. Atlaskin, Olga V. Kazarina, Anton N. Petukhov, Dmitriy M. Zarubin, Alexander V. Nyuchev, Andrey V. Vorotyntsev, Ilya V. Vorotyntsev. Synthesis and Comprehensive Study of Quaternary-Ammonium-Based Sorbents for Natural Gas Sweetening. Environments 2021, 8 (12) , 134. https://doi.org/10.3390/environments8120134
    69. Shumous S. Sayar, Thamer J. Mohammed, Abdul Mun’em Abbas Karim. Ionic Liquid Solvents as Advanced Treatment Method for CO 2 Control: A Review Research. IOP Conference Series: Earth and Environmental Science 2021, 779 (1) , 012115. https://doi.org/10.1088/1755-1315/779/1/012115
    70. Nesrine Amiri, Hassiba Benyounes, Zoubida Lounis, Weifeng Shen. Design of absorption process for CO2 capture using cyano based anion ionic liquid. Chemical Engineering Research and Design 2021, 169 , 239-249. https://doi.org/10.1016/j.cherd.2021.03.014
    71. Kaouther Kerboua, Oualid Hamdaoui, Abdulaziz Alghyamah. Acoustic cavitation events and solvation power of ionic liquid in a novel hybrid technique: A concept proposal toward a green pathway for cellulose decomposition. Ultrasonics Sonochemistry 2021, 73 , 105469. https://doi.org/10.1016/j.ultsonch.2021.105469
    72. Iwona Cichowska-Kopczyńska, Robert Aranowski. Effectiveness of toluene separation from gas phase using supported ammonium ionic liquid membrane. Chemical Engineering Science 2020, 219 , 115605. https://doi.org/10.1016/j.ces.2020.115605
    73. Peyman Pakzad, Masoud Mofarahi, Meisam Ansarpour, Morteza Afkhamipour, Chang-Ha Lee. CO2 absorption by common solvents. 2020, 51-87. https://doi.org/10.1016/B978-0-12-819657-1.00003-7
    74. Leila Moura, Mark Gilmore, Samantha K. Callear, Tristan G. A. Youngs, John D. Holbrey. Solution structure of propane and propene dissolved in the ionic liquid 1-butyl-3-methylimidazolium bis {(trifluoromethyl)sulfonyl}imide from neutron diffraction with H/D substitution and empirical potential structure refinement modelling. Molecular Physics 2019, 117 (22) , 3364-3375. https://doi.org/10.1080/00268976.2019.1649495
    75. Utkarsh Kapoor, Atiya Banerjee, Jindal K. Shah. Evaluation of the predictive capability of ionic liquid force fields for CH4, CO2, NH3, and SO2 phase equilibria. Fluid Phase Equilibria 2019, 492 , 161-173. https://doi.org/10.1016/j.fluid.2019.03.013
    76. Yuqi Huang, Yuanbin Zhang, Huabin Xing. Separation of light hydrocarbons with ionic liquids: A review. Chinese Journal of Chemical Engineering 2019, 27 (6) , 1374-1382. https://doi.org/10.1016/j.cjche.2019.01.012
    77. Lara Costa Barbosa, Ofélia de Q. Fernandes Araújo, José Luiz de Medeiros. Carbon capture and adjustment of water and hydrocarbon dew-points via absorption with ionic liquid [Bmim][NTf2] in offshore processing of CO2-rich natural gas. Journal of Natural Gas Science and Engineering 2019, 66 , 26-41. https://doi.org/10.1016/j.jngse.2019.03.014
    78. Takashi Makino, Mitsuhiro Kanakubo. Absorption of n-butane in imidazolium and phosphonium ionic liquids and application to separation of hydrocarbon gases. Separation and Purification Technology 2019, 214 , 139-147. https://doi.org/10.1016/j.seppur.2018.04.032
    79. Cemile Bardak, Ahmet Atac, Fehmi Bardak. Effect of the external electric field on the electronic structure, spectroscopic features, NLO properties, and interionic interactions in ionic liquids: A DFT approach. Journal of Molecular Liquids 2019, 273 , 314-325. https://doi.org/10.1016/j.molliq.2018.10.043
    80. Yingying Zhang, Xiaoyan Ji, Xiaohua Lu. Choline-based deep eutectic solvents for CO2 separation: Review and thermodynamic analysis. Renewable and Sustainable Energy Reviews 2018, 97 , 436-455. https://doi.org/10.1016/j.rser.2018.08.007
    81. Iwona Cichowska-Kopczyńska, Monika Joskowska, Bartosz Debski, Robert Aranowski, Jan Hupka. Separation of toluene from gas phase using supported imidazolium ionic liquid membrane. Journal of Membrane Science 2018, 566 , 367-373. https://doi.org/10.1016/j.memsci.2018.08.058
    82. Xiangyang Liu, Siqi Liu, Lihang Bai, Tao Wang, Maogang He. Absorption and separation of CO2/C3H8 and C3H6/C3H8 by ionic liquid: Effect of molar volume. Journal of Natural Gas Science and Engineering 2018, 58 , 266-274. https://doi.org/10.1016/j.jngse.2018.07.018
    83. Yuichiro Hirota, Yusuke Yamamoto, Takuto Nakai, Shohei Hayami, Norikazu Nishiyama. Application of silylated ionic liquid-derived organosilica membranes to simultaneous separation of methanol and H2O from H2 and CO2 at high temperature. Journal of Membrane Science 2018, 563 , 345-350. https://doi.org/10.1016/j.memsci.2018.06.002
    84. Jingli Han, Chengna Dai, Gangqiang Yu, Zhigang Lei. Parameterization of COSMO-RS model for ionic liquids. Green Energy & Environment 2018, 3 (3) , 247-265. https://doi.org/10.1016/j.gee.2018.01.001
    85. Azar Akbari, Mohammad Reza Rahimpour. Prediction of the solubility of carbon dioxide in imidazolium based ionic liquids using the modified scaled particle theory. Journal of Molecular Liquids 2018, 255 , 135-147. https://doi.org/10.1016/j.molliq.2018.01.085
    86. Amir Khakpay, Paul Scovazzo. Reverse-selective behavior of room temperature ionic liquid based membranes for natural gas processing. Journal of Membrane Science 2018, 545 , 204-212. https://doi.org/10.1016/j.memsci.2017.09.068
    87. Quan Yang, Luke E. K. Achenie. Exploration of bulk and interface behavior of gas molecules and 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid using equilibrium and nonequilibrium molecular dynamics simulation and quantum chemical calculation. Physical Chemistry Chemical Physics 2018, 20 (15) , 10121-10131. https://doi.org/10.1039/C7CP07714A
    88. Mohammad M. Ghiasi, Amir H. Mohammadi. Application of decision tree learning in modelling CO 2 equilibrium absorption in ionic liquids. Journal of Molecular Liquids 2017, 242 , 594-605. https://doi.org/10.1016/j.molliq.2017.05.016
    89. Edward W. Graef, Rujuta D. Munje, Shalini Prasad. A Robust Electrochemical CO 2 Sensor Utilizing Room Temperature Ionic Liquids. IEEE Transactions on Nanotechnology 2017, 16 (5) , 826-831. https://doi.org/10.1109/TNANO.2017.2672599
    90. Tausif Altamash, Mustafa S. Nasser, Yousef Elhamarnah, Musaab Magzoub, Ruh Ullah, Baraa Anaya, Santiago Aparicio, Mert Atilhan. Gas Solubility and Rheological Behavior of Natural Deep Eutectic Solvents (NADES) via Combined Experimental and Molecular Simulation Techniques. ChemistrySelect 2017, 2 (24) , 7278-7295. https://doi.org/10.1002/slct.201701223
    91. Alireza Baghban, Amir H. Mohammadi, Mohammad Soodbakhsh Taleghani. Rigorous modeling of CO 2 equilibrium absorption in ionic liquids. International Journal of Greenhouse Gas Control 2017, 58 , 19-41. https://doi.org/10.1016/j.ijggc.2016.12.009
    92. Zohreh Bazargani, Fatemeh Sabzi. Thermodynamic modeling of CO2 absorption in 1-butyl-3-methylimidazolium-based ionic liquids. Journal of Molecular Liquids 2016, 223 , 235-242. https://doi.org/10.1016/j.molliq.2016.08.045
    93. Yuya Hiraga, Yoshiyuki Sato, Richard L. Smith. Measurement of infinite dilution partition coefficients of isomeric benzene derivatives in [bmim][Tf2N]-CO2 biphasic system and correlation with the ePC-SAFT equation of state. Fluid Phase Equilibria 2016, 420 , 36-43. https://doi.org/10.1016/j.fluid.2015.10.042
    94. Xiangyang Liu, Nan Lv, Lihang Bai, Maogang He. Solubilities of propane and cyclopropane in 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate. International Journal of Refrigeration 2016, 67 , 69-76. https://doi.org/10.1016/j.ijrefrig.2016.03.017
    95. Yuichiro Hirota, Yohei Maeda, Norikazu Nishiyama, Takashi Furusawa, Akira Ito. Separation of C 6 H 6 and C 6 H 12 from H 2 using ionic liquid/PVDF composite membrane. AIChE Journal 2016, 62 (3) , 624-628. https://doi.org/10.1002/aic.15127
    96. Selva Pereda, Sona Raeissi, Alfonsina E. Andreatta, Susana B. Bottini, Maaike Kroon, Cor J. Peters. Modeling gas solubilities in imidazolium based ionic liquids with the [Tf 2 N] anion using the GC-EoS. Fluid Phase Equilibria 2016, 409 , 408-416. https://doi.org/10.1016/j.fluid.2015.10.037
    97. Yingying Zhang, Xiaoyan Ji, Yujiao Xie, Xiaohua Lu. Screening of conventional ionic liquids for carbon dioxide capture and separation. Applied Energy 2016, 162 , 1160-1170. https://doi.org/10.1016/j.apenergy.2015.03.071
    98. P. J. Carvalho, K. A. Kurnia, J. A. P. Coutinho. Dispelling some myths about the CO 2 solubility in ionic liquids. Physical Chemistry Chemical Physics 2016, 18 (22) , 14757-14771. https://doi.org/10.1039/C6CP01896C
    99. D. N. Gorbunov, A. V. Volkov, Yu. S. Kardasheva, A. L. Maksimov, E. A. Karakhanov. Hydroformylation in petroleum chemistry and organic synthesis: Implementation of the process and solving the problem of recycling homogeneous catalysts (Review). Petroleum Chemistry 2015, 55 (8) , 587-603. https://doi.org/10.1134/S0965544115080046
    100. Maria Teresa Mota Martinez, Maaike C. Kroon, Cor J. Peters. Modeling the complex phase behavior of methane, ethane and propane in an ionic liquid up to 11MPa – A comparison between the PR EoS and the GC EoS. The Journal of Supercritical Fluids 2015, 101 , 63-71. https://doi.org/10.1016/j.supflu.2015.02.030
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect