Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Surface Tensions and Densities of Oxalic, Malonic, Succinic, Maleic, Malic, and cis-Pinonic Acids
My Activity

Figure 1Loading Img
    Article

    Surface Tensions and Densities of Oxalic, Malonic, Succinic, Maleic, Malic, and cis-Pinonic Acids
    Click to copy article linkArticle link copied!

    View Author Information
    Finnish Meteorological Institute, Erik Palménin Aukio 1, P.O. Box 503, FI-00101 Helsinki, Finland, and Department of Physical Sciences, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
    Other Access Options

    Journal of Chemical & Engineering Data

    Cite this: J. Chem. Eng. Data 2006, 51, 1, 255–260
    Click to copy citationCitation copied!
    https://doi.org/10.1021/je050366x
    Published December 6, 2005
    Copyright © 2006 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    The surface tensions and densities of aqueous solutions of oxalic, malonic, succinic, maleic, malic, and cis-pinonic acids were measured as a function of the acid mole fraction at 25 °C. These organic acids are typically found in atmospheric aerosols. The surface tensions were measured using the Wilhelmy plate method and were measured also as a function of temperature. The measurable mole fractions were limited by the solubilities of the acids at room temperature. All the acids lower the surface tension of pure water. cis-Pinonic acid lowers the surface tension most effectively. The measured surface tensions were fitted with equations covering the acid mole fraction range from zero to one and assuming a theoretical surface tension of pure, supercooled acids at room temperature. The measured densities were also fitted in a similar way. These equations can be used in model calculations of formation and growth of atmospheric particles.

    Copyright © 2006 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     Corresponding author. E-mail:  [email protected].

     Finnish Meteorological Institute.

     University of Helsinki.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 78 publications.

    1. Manuella El Haber, Violaine Gérard, Judith Kleinheins, Corinne Ferronato, Barbara Nozière. Measuring the Surface Tension of Atmospheric Particles and Relevant Mixtures to Better Understand Key Atmospheric Processes. Chemical Reviews 2024, 124 (19) , 10924-10963. https://doi.org/10.1021/acs.chemrev.4c00173
    2. Cynthia Wong, Jessica E. Pazienza, Scott D. Rychnovsky, Sergey A. Nizkorodov. Formation of Chromophores from cis-Pinonaldehyde Aged in Highly Acidic Conditions. Journal of the American Chemical Society 2024, 146 (17) , 11702-11710. https://doi.org/10.1021/jacs.3c14177
    3. Afzal Hussain, Syed Sarim Imam, Mohammad A. Altamimi, Mudassar Shahid, Osamah Abdulrahman Alnemer. Optimized Green Nanoemulsions to Remove Pharmaceutical Enoxacin from Contaminated Bulk Aqueous Solution. ACS Omega 2023, 8 (12) , 11100-11117. https://doi.org/10.1021/acsomega.2c07942
    4. Alessandro Cazonatto Galvão, Angela Lusa Lodi Savoldi, Pedro Felipe Arce, Weber da Silva Robazza. Viscosity of Binary Aqueous Solutions Involving Malonic, Maleic, Malic, Tartaric, and Citric Acids in the Temperature Range between 303 and 363 K: Experimental Data and Modeling. Journal of Chemical & Engineering Data 2022, 67 (9) , 2052-2058. https://doi.org/10.1021/acs.jced.2c00041
    5. Shihao Liu, Cari S. Dutcher. Concentration Depth Profile-Based Multilayer Sorption Surface Tension Model for Aqueous Solutions. The Journal of Physical Chemistry A 2021, 125 (7) , 1577-1588. https://doi.org/10.1021/acs.jpca.0c10232
    6. Isidro Cachadiña, Ángel Mulero. A New Corresponding-States Model for the Correlation and Prediction of the Surface Tension of Organic Acids. Industrial & Engineering Chemistry Research 2020, 59 (17) , 8496-8505. https://doi.org/10.1021/acs.iecr.0c00832
    7. Mohsin Ali Raza, Paul D. Hallett, Xiangyang Liu, Maogang He, Waheed Afzal. Surface Tension of Aqueous Solutions of Small-Chain Amino and Organic Acids. Journal of Chemical & Engineering Data 2019, 64 (12) , 5049-5056. https://doi.org/10.1021/acs.jced.9b00026
    8. Nicole A. Combe and D. James Donaldson . Water Evaporation from Acoustically Levitated Aqueous Solution Droplets. The Journal of Physical Chemistry A 2017, 121 (38) , 7197-7204. https://doi.org/10.1021/acs.jpca.7b08050
    9. William G. Tsui, Yi Rao, Hai-Lung Dai, and V. Faye McNeill . Modeling Photosensitized Secondary Organic Aerosol Formation in Laboratory and Ambient Aerosols. Environmental Science & Technology 2017, 51 (13) , 7496-7501. https://doi.org/10.1021/acs.est.7b01416
    10. Hallie C. Boyer, Bryan R. Bzdek, Jonathan P. Reid, and Cari S. Dutcher . Statistical Thermodynamic Model for Surface Tension of Organic and Inorganic Aqueous Mixtures. The Journal of Physical Chemistry A 2017, 121 (1) , 198-205. https://doi.org/10.1021/acs.jpca.6b10057
    11. Hallie C. Boyer and Cari S. Dutcher . Statistical Thermodynamic Model for Surface Tension of Aqueous Organic Acids with Consideration of Partial Dissociation. The Journal of Physical Chemistry A 2016, 120 (25) , 4368-4375. https://doi.org/10.1021/acs.jpca.6b01469
    12. Shinichi Enami and Yosuke Sakamoto . OH-Radical Oxidation of Surface-Active cis-Pinonic Acid at the Air–Water Interface. The Journal of Physical Chemistry A 2016, 120 (20) , 3578-3587. https://doi.org/10.1021/acs.jpca.6b01261
    13. Olga Laskina, Holly S. Morris, Joshua R. Grandquist, Zhen Qin, Elizabeth A. Stone, Alexei V. Tivanski, and Vicki H. Grassian . Size Matters in the Water Uptake and Hygroscopic Growth of Atmospherically Relevant Multicomponent Aerosol Particles. The Journal of Physical Chemistry A 2015, 119 (19) , 4489-4497. https://doi.org/10.1021/jp510268p
    14. Nicholas A. Valley, Patrick G. Blower, Suzannah R. Wood, Kathryn L. Plath, Laura E. McWilliams, and Geraldine L. Richmond . Doubling Down: Delving into the Details of Diacid Adsorption at Aqueous Surfaces. The Journal of Physical Chemistry A 2014, 118 (26) , 4778-4789. https://doi.org/10.1021/jp501498h
    15. Hanna Lignell, Scott A. Epstein, Margaret R. Marvin, Dorit Shemesh, Benny Gerber, and Sergey Nizkorodov . Experimental and Theoretical Study of Aqueous cis-Pinonic Acid Photolysis. The Journal of Physical Chemistry A 2013, 117 (48) , 12930-12945. https://doi.org/10.1021/jp4093018
    16. Taina Yli-Juuti, Alessandro A. Zardini, Axel C. Eriksson, Anne Maria K. Hansen, Joakim H. Pagels, Erik Swietlicki, Birgitta Svenningsson, Marianne Glasius, Douglas R. Worsnop, Ilona Riipinen, and Merete Bilde . Volatility of Organic Aerosol: Evaporation of Ammonium Sulfate/Succinic Acid Aqueous Solution Droplets. Environmental Science & Technology 2013, 47 (21) , 12123-12130. https://doi.org/10.1021/es401233c
    17. Patrick G. Blower, Stephanie T. Ota, Nicholas A. Valley, Suzannah R. Wood, and Geraldine L. Richmond . Sink or Surf: Atmospheric Implications for Succinic Acid at Aqueous Surfaces. The Journal of Physical Chemistry A 2013, 117 (33) , 7887-7903. https://doi.org/10.1021/jp405067y
    18. Patrick G. Blower, Eric Shamay, Loni Kringle, Stephanie T. Ota, and Geraldine L. Richmond . Surface Behavior of Malonic Acid Adsorption at the Air/Water Interface. The Journal of Physical Chemistry A 2013, 117 (12) , 2529-2542. https://doi.org/10.1021/jp310851j
    19. Sayaka Hayase, Akihiro Yabushita, and Masahiro Kawasaki , Shinichi Enami, Michael R. Hoffmann, and Agustín J. Colussi . Weak Acids Enhance Halogen Activation on Atmospheric Water’s Surfaces. The Journal of Physical Chemistry A 2011, 115 (19) , 4935-4940. https://doi.org/10.1021/jp2021775
    20. Alexander Apelblat and Emanuel Manzurola. Cryoscopic and Volumetric Studies in the Maleic Acid + Water System. Journal of Chemical & Engineering Data 2009, 54 (2) , 333-337. https://doi.org/10.1021/je800357c
    21. Tomi Raatikainen, Ari Laaksonen, Antti-Pekka Hyvärinen, Joonas Vanhanen, Kaisa Hautio, Heikki Lihavainen, Yrjö Viisanen and Ismo Napari. Surface Tensions of Multicomponent Aqueous Electrolyte Solutions: Predictive Models Based on Binary Limits. The Journal of Physical Chemistry C 2008, 112 (28) , 10428-10434. https://doi.org/10.1021/jp7117136
    22. Ilona Riipinen,, Ismo K. Koponen,, Göran P. Frank,, Antti-Pekka Hyvärinen,, Joonas Vanhanen,, Heikki Lihavainen,, Kari E. J. Lehtinen,, Merete Bilde, and, Markku Kulmala. Adipic and Malonic Acid Aqueous Solutions:  Surface Tensions and Saturation Vapor Pressures. The Journal of Physical Chemistry A 2007, 111 (50) , 12995-13002. https://doi.org/10.1021/jp073731v
    23. Ismo K. Koponen,, Ilona Riipinen,, Anca Hienola,, Markku Kulmala, and, Merete Bilde. Thermodynamic Properties of Malonic, Succinic, and Glutaric Acids:  Evaporation Rates and Saturation Vapor Pressures. Environmental Science & Technology 2007, 41 (11) , 3926-3933. https://doi.org/10.1021/es0611240
    24. Mohsin A. Raza, Paul D. Hallett, Waheed Afzal. Plant Biomass Seed and Root Mucilage: Extraction and Properties. 2024, 141-158. https://doi.org/10.1002/9783527839032.ch6
    25. Yuta Tanaka, Shoji Ishizaka. Optical manipulation and fusion of aqueous droplets containing inorganic and organic solutes in air using the dual-beam laser trapping technique. Analytical Sciences 2024, 40 (1) , 123-132. https://doi.org/10.1007/s44211-023-00439-w
    26. Manuella El Haber, Corinne Ferronato, Anne Giroir-Fendler, Ludovic Fine, Barbara Nozière. Salting out, non-ideality and synergism enhance surfactant efficiency in atmospheric aerosols. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-48040-5
    27. Judith Kleinheins, Nadia Shardt, Manuella El Haber, Corinne Ferronato, Barbara Nozière, Thomas Peter, Claudia Marcolli. Surface tension models for binary aqueous solutions: a review and intercomparison. Physical Chemistry Chemical Physics 2023, 25 (16) , 11055-11074. https://doi.org/10.1039/D3CP00322A
    28. Ryan Schmedding, Andreas Zuend. A thermodynamic framework for bulk–surface partitioning in finite-volume mixed organic–inorganic aerosol particles and cloud droplets. Atmospheric Chemistry and Physics 2023, 23 (13) , 7741-7765. https://doi.org/10.5194/acp-23-7741-2023
    29. Sampo Vepsäläinen, Silvia M. Calderón, Nønne L. Prisle. Comparison of six approaches to predicting droplet activation of surface active aerosol – Part 2: Strong surfactants. Atmospheric Chemistry and Physics 2023, 23 (23) , 15149-15164. https://doi.org/10.5194/acp-23-15149-2023
    30. Pablo López-Porfiri, Patricia Gorgojo, María González-Miquel. Solubility study and thermodynamic modelling of succinic acid and fumaric acid in bio-based solvents. Journal of Molecular Liquids 2023, 369 , 120836. https://doi.org/10.1016/j.molliq.2022.120836
    31. Nønne L. Prisle, Tomi Raatikainen, Riikka Sorjamaa, Birgitta Svenningsson, Ari Laaksonen, Merete Bilde. Surfactant partitioning in cloud droplet activation: a study of C8, C10, C12 and C14 normal fatty acid sodium salts. Tellus B: Chemical and Physical Meteorology 2022, 60 (3) , 416. https://doi.org/10.1111/j.1600-0889.2008.00352.x
    32. Matthias Karl, Caroline Leck, Allan Gross, Liisa Pirjola. A study of new particle formation in the marine boundary layer over the central Arctic Ocean using a flexible multicomponent aerosol dynamic model. Tellus B: Chemical and Physical Meteorology 2022, 64 (1) , 17158. https://doi.org/10.3402/tellusb.v64i0.17158
    33. Matthias Karl, Liisa Pirjola, Tiia Grönholm, Mona Kurppa, Srinivasan Anand, Xiaole Zhang, Andreas Held, Rolf Sander, Miikka Dal Maso, David Topping, Shuai Jiang, Leena Kangas, Jaakko Kukkonen. Description and evaluation of the community aerosol dynamics model MAFOR v2.0. Geoscientific Model Development 2022, 15 (9) , 3969-4026. https://doi.org/10.5194/gmd-15-3969-2022
    34. Sampo Vepsäläinen, Silvia M. Calderón, Jussi Malila, Nønne L. Prisle. Comparison of six approaches to predicting droplet activation of surface active aerosol – Part 1: moderately surface active organics​​​​​​​. Atmospheric Chemistry and Physics 2022, 22 (4) , 2669-2687. https://doi.org/10.5194/acp-22-2669-2022
    35. Mariano Pierantozzi, Ángel Mulero, Isidro Cachadiña. Surface Tension of Liquid Organic Acids: An Artificial Neural Network Model. Molecules 2021, 26 (6) , 1636. https://doi.org/10.3390/molecules26061636
    36. Nønne L. Prisle. A predictive thermodynamic framework of cloud droplet activation for chemically unresolved aerosol mixtures, including surface tension, non-ideality, and bulk–surface partitioning. Atmospheric Chemistry and Physics 2021, 21 (21) , 16387-16411. https://doi.org/10.5194/acp-21-16387-2021
    37. Mária Lbadaoui-Darvas, Satoshi Takahama, Athanasios Nenes. Molecular-scale description of interfacial mass transfer in phase-separated aqueous secondary organic aerosol. Atmospheric Chemistry and Physics 2021, 21 (23) , 17687-17714. https://doi.org/10.5194/acp-21-17687-2021
    38. Chenpei Li, Kai Wang, Yueshe Wang, Yukun Chen, Chao Zhang. A kinetic model of gas-particle mass transfer in aerosol: Application to phase state in aerosol. Powder Technology 2020, 375 , 453-462. https://doi.org/10.1016/j.powtec.2020.07.062
    39. Teemu Paljakka, Kaisa Rissanen, Anni Vanhatalo, Yann Salmon, Tuula Jyske, Nønne L. Prisle, Riikka Linnakoski, Jack J. Lin, Tapio Laakso, Risto Kasanen, Jaana Bäck, Teemu Hölttä. Is Decreased Xylem Sap Surface Tension Associated With Embolism and Loss of Xylem Hydraulic Conductivity in Pathogen-Infected Norway Spruce Saplings?. Frontiers in Plant Science 2020, 11 https://doi.org/10.3389/fpls.2020.01090
    40. Muhammad Bilal, Masatoshi Sakairi. Fast Fabrication of Localized Porous Alumina Patterns with 3D Printed Microdroplet Cell. Journal of The Electrochemical Society 2020, 167 (8) , 081501. https://doi.org/10.1149/1945-7111/ab8877
    41. A. V. Gordeev, A. F. Seliverstov, B. G. Ershov. Solubility of Ozone in Aqueous Solutions of Oxalic Acid and Potassium and Sodium Nitrates: Determination of the Anion-Specific Parameter for the Oxalate Ion in a Model for the Solubility of Gases in Electrolyte Solutions. Theoretical Foundations of Chemical Engineering 2019, 53 (6) , 1067-1077. https://doi.org/10.1134/S0040579519050282
    42. Katerina S. Karadima, Vlasis G. Mavrantzas, Spyros N. Pandis. Insights into the morphology of multicomponent organic and inorganic aerosols from molecular dynamics simulations. Atmospheric Chemistry and Physics 2019, 19 (8) , 5571-5587. https://doi.org/10.5194/acp-19-5571-2019
    43. Siyang Li, Xiaotong Jiang, Marie Roveretto, Christian George, Ling Liu, Wei Jiang, Qingzhu Zhang, Wenxing Wang, Maofa Ge, Lin Du. Photochemical aging of atmospherically reactive organic compounds involving brown carbon at the air–aqueous interface. Atmospheric Chemistry and Physics 2019, 19 (15) , 9887-9902. https://doi.org/10.5194/acp-19-9887-2019
    44. J. Malila, N. L. Prisle. A Monolayer Partitioning Scheme for Droplets of Surfactant Solutions. Journal of Advances in Modeling Earth Systems 2018, 10 (12) , 3233-3251. https://doi.org/10.1029/2018MS001456
    45. Jack J. Lin, Jussi Malila, Nønne L. Prisle. Cloud droplet activation of organic–salt mixtures predicted from two model treatments of the droplet surface. Environmental Science: Processes & Impacts 2018, 20 (11) , 1611-1629. https://doi.org/10.1039/C8EM00345A
    46. Shinichi Enami, A. J. Colussi. Efficient scavenging of Criegee intermediates on water by surface-active cis-pinonic acid. Physical Chemistry Chemical Physics 2017, 19 (26) , 17044-17051. https://doi.org/10.1039/C7CP03869K
    47. Alexander Apelblat, Emanuel Manzurola. Volumetric properties of aqueous solutions of malonic acid. The Journal of Chemical Thermodynamics 2016, 102 , 63-67. https://doi.org/10.1016/j.jct.2016.06.023
    48. A. Mulero, I. Cachadiña, E. L. Sanjuán. Recommended Correlations for the Surface Tension of Aliphatic, Carboxylic, and Polyfunctional Organic Acids. Journal of Physical and Chemical Reference Data 2016, 45 (3) https://doi.org/10.1063/1.4959989
    49. Alexander Apelblat. A new two-parameter equation for correlation and prediction of densities as a function of concentration and temperature in binary aqueous solutions. Journal of Molecular Liquids 2016, 219 , 313-331. https://doi.org/10.1016/j.molliq.2016.03.023
    50. Jae Young Lee, Lynn M. Hildemann. Surface tensions of solutions containing dicarboxylic acid mixtures. Atmospheric Environment 2014, 89 , 260-267. https://doi.org/10.1016/j.atmosenv.2014.02.049
    51. Kate M. Cerully, James R. Hite, Molly McLaughlin, Athanasios Nenes. Toward the Determination of Joint Volatility-Hygroscopicity Distributions: Development and Response Characterization for Single-Component Aerosol. Aerosol Science and Technology 2014, 48 (3) , 296-312. https://doi.org/10.1080/02786826.2013.870326
    52. Chunhua Deng, Sarah D. Brooks, German Vidaurre, Daniel C. O. Thornton. Using Raman Microspectroscopy to Determine Chemical Composition and Mixing State of Airborne Marine Aerosols over the Pacific Ocean. Aerosol Science and Technology 2014, 48 (2) , 193-206. https://doi.org/10.1080/02786826.2013.867297
    53. Josephina Werner, Jan Julin, Maryam Dalirian, Nønne L. Prisle, Gunnar Öhrwall, Ingmar Persson, Olle Björneholm, Ilona Riipinen. Succinic acid in aqueous solution: connecting microscopic surface composition and macroscopic surface tension. Phys. Chem. Chem. Phys. 2014, 16 (39) , 21486-21495. https://doi.org/10.1039/C4CP02776K
    54. Jae Young Lee, Lynn M. Hildemann. Surface tension of solutions containing dicarboxylic acids with ammonium sulfate, d-glucose, or humic acid. Journal of Aerosol Science 2013, 64 , 94-102. https://doi.org/10.1016/j.jaerosci.2013.06.004
    55. V. Faye McNeill, Neha Sareen, Allison N. Schwier. Surface-Active Organics in Atmospheric Aerosols. 2013, 201-259. https://doi.org/10.1007/128_2012_404
    56. A. N. Schwier, G. A. Viglione, Z. Li, V. Faye McNeill. Modeling the surface tension of complex, reactive organic–inorganic mixtures. Atmospheric Chemistry and Physics 2013, 13 (21) , 10721-10732. https://doi.org/10.5194/acp-13-10721-2013
    57. L. Renbaum-Wolff, J. W. Grayson, A. K. Bertram. Technical Note: New methodology for measuring viscosities in small volumes characteristic of environmental chamber particle samples. Atmospheric Chemistry and Physics 2013, 13 (2) , 791-802. https://doi.org/10.5194/acp-13-791-2013
    58. Christine Baduel, Barbara Nozière, Jean-Luc Jaffrezo. Summer/winter variability of the surfactants in aerosols from Grenoble, France. Atmospheric Environment 2012, 47 , 413-420. https://doi.org/10.1016/j.atmosenv.2011.10.040
    59. J. Zábori, M. Matisāns, R. Krejci, E. D. Nilsson, J. Ström. Artificial primary marine aerosol production: a laboratory study with varying water temperature, salinity, and succinic acid concentration. Atmospheric Chemistry and Physics 2012, 12 (22) , 10709-10724. https://doi.org/10.5194/acp-12-10709-2012
    60. Gwyn A. Beattie. Water Relations in the Interaction of Foliar Bacterial Pathogens with Plants. Annual Review of Phytopathology 2011, 49 (1) , 533-555. https://doi.org/10.1146/annurev-phyto-073009-114436
    61. Yu Fan, Han Xiao, Gang Shi, Haiyan Liu, Ying Qian, Tinghai Wang, Guangbi Gong, Xiaojun Bao. Citric acid-assisted hydrothermal method for preparing NiW/USY–Al2O3 ultradeep hydrodesulfurization catalysts. Journal of Catalysis 2011, 279 (1) , 27-35. https://doi.org/10.1016/j.jcat.2010.12.014
    62. . References. 2010, 1367-1440. https://doi.org/10.1201/EBK1439802458-3
    63. . References. 2010, 1367-1440. https://doi.org/10.1201/EBK1439802458-b
    64. Sanjeevan J. Kharat. Ultrasonic Velocity and Density Studies of Solutions of Maleic Acid and Tartaric Acid in Water at T = (298.15 and 308.15) K. International Journal of Thermophysics 2010, 31 (3) , 585-594. https://doi.org/10.1007/s10765-010-0736-6
    65. E. Aumann, L.M. Hildemann, A. Tabazadeh. Measuring and modeling the composition and temperature-dependence of surface tension for organic solutions. Atmospheric Environment 2010, 44 (3) , 329-337. https://doi.org/10.1016/j.atmosenv.2009.10.033
    66. Gehui Wang, Kimitaka Kawamura, Nobuhiko Umemoto, Mingjie Xie, Shuyuan Hu, Zifa Wang. Water‐soluble organic compounds in PM 2.5 and size‐segregated aerosols over Mount Tai in North China Plain. Journal of Geophysical Research: Atmospheres 2009, 114 (D19) https://doi.org/10.1029/2008JD011390
    67. A. I. Hienola, H. Vehkamäki, I. Riipinen, M. Kulmala. Homogeneous vs. heterogeneous nucleation in water-dicarboxylic acid systems. Atmospheric Chemistry and Physics 2009, 9 (6) , 1873-1881. https://doi.org/10.5194/acp-9-1873-2009
    68. S. M. King, T. Rosenoern, J. E. Shilling, Q. Chen, S. T. Martin. Increased cloud activation potential of secondary organic aerosol for atmospheric mass loadings. Atmospheric Chemistry and Physics 2009, 9 (9) , 2959-2971. https://doi.org/10.5194/acp-9-2959-2009
    69. Hao Wang, Yu Fan, Gang Shi, Haiyan Liu, Xiaojun Bao. Preparation of hydrotreating catalysts via an oxalic acid-assisted hydrothermal deposition method. Journal of Catalysis 2008, 260 (1) , 119-127. https://doi.org/10.1016/j.jcat.2008.09.010
    70. Sekh Mahiuddin, Babak Minofar, Jayanta M Borah, Manash R Das, Pavel Jungwirth. Propensities of oxalic, citric, succinic, and maleic acids for the aqueous solution/vapour interface: Surface tension measurements and molecular dynamics simulations. Chemical Physics Letters 2008, 462 (4-6) , 217-221. https://doi.org/10.1016/j.cplett.2008.07.085
    71. Ch. Wohlfarth. Surface tension of the mixture (1) water; (2) oxalic acid. 2008, 269-270. https://doi.org/10.1007/978-3-540-75508-1_200
    72. Ch. Wohlfarth. Surface tension of the mixture (1) water; (2) malonic acid. 2008, 285-286. https://doi.org/10.1007/978-3-540-75508-1_208
    73. Ch. Wohlfarth. Surface tension of the mixture (1) water; (2) maleic acid. 2008, 311-312. https://doi.org/10.1007/978-3-540-75508-1_220
    74. Ch. Wohlfarth. Surface tension of the mixture (1) water; (2) succinic acid. 2008, 313-314. https://doi.org/10.1007/978-3-540-75508-1_221
    75. Ch. Wohlfarth. Surface tension of the mixture (1) water; (2) malic acid. 2008, 315-316. https://doi.org/10.1007/978-3-540-75508-1_222
    76. Ch. Wohlfarth. Surface tension of the mixture (1) water; (2) cis-pinonic acid. 2008, 369-370. https://doi.org/10.1007/978-3-540-75508-1_256
    77. J. Vanhanen, A.-P. Hyvärinen, T. Anttila, T. Raatikainen, Y. Viisanen, H. Lihavainen. Ternary solution of sodium chloride, succinic acid and water; surface tension and its influence on cloud droplet activation. Atmospheric Chemistry and Physics 2008, 8 (16) , 4595-4604. https://doi.org/10.5194/acp-8-4595-2008
    78. T. Anttila, V.-M. Kerminen. On the contribution of Aitken mode particles to cloud droplet populations at continental background areas – a parametric sensitivity study. Atmospheric Chemistry and Physics 2007, 7 (17) , 4625-4637. https://doi.org/10.5194/acp-7-4625-2007

    Journal of Chemical & Engineering Data

    Cite this: J. Chem. Eng. Data 2006, 51, 1, 255–260
    Click to copy citationCitation copied!
    https://doi.org/10.1021/je050366x
    Published December 6, 2005
    Copyright © 2006 American Chemical Society

    Article Views

    1508

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.