ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Thermodynamic Properties of Mixtures Containing Ionic Liquids. 9. Activity Coefficients at Infinite Dilution of Hydrocarbons, Alcohols, Esters, and Aldehydes in Trimethyl-butylammonium Bis(trifluoromethylsulfonyl) Imide Using Gas−Liquid Chromatography and Static Method

View Author Information
Department of Physcal Chemistry, University of Rostock, Hermannstrasse 14, D-18055 Rostock, Germany
Cite this: J. Chem. Eng. Data 2006, 51, 2, 648–655
Publication Date (Web):January 11, 2006
https://doi.org/10.1021/je050440b
Copyright © 2006 American Chemical Society

    Article Views

    1108

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Activity coefficients at infinite dilution of solutes such as alkanes, alkenes, and alkylbenzenes as well as of the linear and branched C1−C6 alcohols, esters, and aldehydes in the ionic liquids trimethyl-butylammonium bis(trifluoromethylsulfonyl) imide [Me3BuN][NTf2] have been determined by gas chromatography using the ionic liquids as stationary phase. The measurements were carried out at different temperatures between 302 K and 393 K. From the temperature dependence of the limiting activity coefficients, partial molar excess enthalpies at infinite dilution of the solutes in the ionic liquids have been derived. Vapor−liquid equilibria (VLE) of binary mixtures containing methanol, ethanol, and propan-1-ol in [Me3BuN][NTf2] were studied by using a static method. VLE measurements were carried out covering the whole concentration range at four different temperatures between 298.15 K and 313.15 K. Activity coefficients γi of solutes in the ionic liquid and their osmotic coefficients φi in the [Me3BuN][NTf2] have been determined from the VLE data and are described formally by using the NRTL equation. and for methanol, ethanol, and propan-1-ol in [Me3BuN][NTf2] are derived from the both the GC and the static method.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author. Tel.:  +49-381-498-6500. Fax:  +49-381-498-6502. E-mail:  [email protected].

     On the leave from Department “Heat and Refrigeration Techniques”, Azerbaijan Technical University, H. Javid Avn. 25, AZ1073 Baku, Azerbaijan.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Two tables. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 86 publications.

    1. Marta Królikowska, Michał Skonieczny, Kamil Paduszyński. Physicochemical and Thermodynamic Investigation of Ethanolic Solution of Phosphonium-Based Ionic Liquids─Measurements, Correlations, and Application to Absorption Cycles. Journal of Chemical & Engineering Data 2023, 68 (12) , 3377-3397. https://doi.org/10.1021/acs.jced.3c00537
    2. Zhi-Xiang Wang, Wei-Han Ge, Wen-Hao Li, Zi-Zhong Hao, Liu Zhang, De-Kun Ji, Yu-Feng Yi, Long Huang, Ming-Lan Ge. Infinite Dilution Activity Coefficients and Gas–Liquid Partition Coefficients of Organic Compounds in Ionic Liquid 1-Butyl-2,3-dimethylimidazolium Thiocyanate: Measurements and LFER Calculations. Journal of Chemical & Engineering Data 2023, 68 (7) , 1599-1609. https://doi.org/10.1021/acs.jced.3c00153
    3. Pratik Dhakal, Anthony R. Weise, Martin C. Fritsch, Cassandra M. O’Dell, Andrew S. Paluch. Expanding the Solubility Parameter Method MOSCED to Pyridinium-, Quinolinium-, Pyrrolidinium-, Piperidinium-, Bicyclic-, Morpholinium-, Ammonium-, Phosphonium-, and Sulfonium-Based Ionic Liquids. ACS Omega 2020, 5 (8) , 3863-3877. https://doi.org/10.1021/acsomega.9b03087
    4. Cheng Zhang. Determination of Activity Coefficients at Infinite Dilution of Organic Solutes in the Ionic Liquid 1-(2-Hydroxyethyl)-3-methylimidazolium Nonafluoro-1-butanesulfonate Using Gas–Liquid Chromatography. Journal of Chemical & Engineering Data 2018, 63 (6) , 2056-2064. https://doi.org/10.1021/acs.jced.8b00080
    5. Jonathan Cetti, David Eike, Federico M. Ferrero Vallana, H. Q. Nimal Gunaratne, Lynette A. M. Holland, Alberto V. Puga, Kenneth R. Seddon, and Oreste Todini . Modeling the Vapor–Liquid Equilibria of Ionic Liquids Containing Perfume Raw Materials. Journal of Chemical & Engineering Data 2017, 62 (9) , 2787-2798. https://doi.org/10.1021/acs.jced.7b00116
    6. Chengna Dai, Zhigang Lei, and Biaohua Chen . Predictive Thermodynamic Models for Ionic Liquid–SO2 Systems. Industrial & Engineering Chemistry Research 2015, 54 (43) , 10910-10917. https://doi.org/10.1021/acs.iecr.5b02710
    7. Chang-Hao Li, Kai-Xuan Gao, Yu-Ning Meng, Xian-Kun Wu, Feng Zhang, and Zhi-Xiang Wang . Solution Thermodynamics of Imidazolium-Based Ionic Liquids and Volatile Organic Compounds: Benzene and Acetone. Journal of Chemical & Engineering Data 2015, 60 (6) , 1600-1607. https://doi.org/10.1021/je500986b
    8. Javid Safarov, Ismail Kul, Misirkhan Talibov, Astan Shahverdiyev, and Egon Hassel . Vapor Pressures and Activity Coefficients of Methanol in Binary Mixtures with 1-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. Journal of Chemical & Engineering Data 2015, 60 (6) , 1648-1663. https://doi.org/10.1021/je501033z
    9. Sergey P. Verevkin, Aleksandra Yu. Sazonova, Alla K. Frolkova, Dzmitry H. Zaitsau, Igor V. Prikhodko, and Christoph Held . Separation Performance of BioRenewable Deep Eutectic Solvents. Industrial & Engineering Chemistry Research 2015, 54 (13) , 3498-3504. https://doi.org/10.1021/acs.iecr.5b00357
    10. Marjorie Massel, Anne-Laure Revelli, Ethan Paharik, Maribeth Rauh, Lesli O. Mark, and Joan F. Brennecke . Phase Equilibrium, Excess Enthalpies, and Densities of Binary Mixtures of Trimethylbutylammonium Bis(trifluoromethylsulfonyl)imide with Ethanol, 1-Propanol, and Dimethylformamide. Journal of Chemical & Engineering Data 2015, 60 (1) , 65-73. https://doi.org/10.1021/je500696p
    11. Matthias Seiler, Annett Kühn, Felix Ziegler, and Xinming Wang . Sustainable Cooling Strategies Using New Chemical System Solutions. Industrial & Engineering Chemistry Research 2013, 52 (47) , 16519-16546. https://doi.org/10.1021/ie401297u
    12. Zhigang Lei, Chengna Dai, Xing Liu, Li Xiao, and Biaohua Chen . Extension of the UNIFAC Model for Ionic Liquids. Industrial & Engineering Chemistry Research 2012, 51 (37) , 12135-12144. https://doi.org/10.1021/ie301159v
    13. Marta L. S. Batista, Catarina M. S. S. Neves, Pedro J. Carvalho, Rafiqul Gani, and João A. P. Coutinho . Chameleonic Behavior of Ionic Liquids and Its Impact on the Estimation of Solubility Parameters. The Journal of Physical Chemistry B 2011, 115 (44) , 12879-12888. https://doi.org/10.1021/jp207369g
    14. Kamil Paduszyński and Urszula Domańska . Limiting Activity Coefficients and Gas–Liquid Partition Coefficients of Various Solutes in Piperidinium Ionic Liquids: Measurements and LSER Calculations. The Journal of Physical Chemistry B 2011, 115 (25) , 8207-8215. https://doi.org/10.1021/jp202010w
    15. Jason P. Hallett and Tom Welton . Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2. Chemical Reviews 2011, 111 (5) , 3508-3576. https://doi.org/10.1021/cr1003248
    16. Li Yang, Stanley I. Sandler, Changjun Peng, Honglai Liu, and Ying Hu . Prediction of the Phase Behavior of Ionic Liquid Solutions. Industrial & Engineering Chemistry Research 2010, 49 (24) , 12596-12604. https://doi.org/10.1021/ie1013647
    17. Xiaochun Xu, Changjun Peng, Honglai Liu and Ying Hu. Modeling pVT Properties and Phase Equilibria for Systems Containing Ionic Liquids Using a New Lattice-Fluid Equation of State. Industrial & Engineering Chemistry Research 2009, 48 (24) , 11189-11201. https://doi.org/10.1021/ie9011722
    18. Zhigang Lei, Jiguo Zhang, Qunsheng Li and Biaohua Chen. UNIFAC Model for Ionic Liquids. Industrial & Engineering Chemistry Research 2009, 48 (5) , 2697-2704. https://doi.org/10.1021/ie801496e
    19. Chau-Chyun Chen, Luke D. Simoni, Joan F. Brennecke and Mark A. Stadtherr. Correlation and Prediction of Phase Behavior of Organic Compounds in Ionic Liquids Using the Nonrandom Two-Liquid Segment Activity Coefficient Model. Industrial & Engineering Chemistry Research 2008, 47 (18) , 7081-7093. https://doi.org/10.1021/ie800048d
    20. Ming-Lan Ge, Li-Sheng Wang, Jun-Sheng Wu and Qing Zhou. Activity Coefficients at Infinite Dilution of Organic Solutes in 1-Ethyl-3-methylimidazolium Tetrafluoroborate Using Gas−Liquid Chromatography. Journal of Chemical & Engineering Data 2008, 53 (8) , 1970-1974. https://doi.org/10.1021/je800218g
    21. Alan R. Katritzky, Minati Kuanar, Iva B. Stoyanova-Slavova, Svetoslav H. Slavov, Dimitar A. Dobchev, Mati Karelson and William E. Acree, Jr. . Quantitative Structure–Property Relationship Studies on Ostwald Solubility and Partition Coefficients of Organic Solutes in Ionic Liquids. Journal of Chemical & Engineering Data 2008, 53 (5) , 1085-1092. https://doi.org/10.1021/je700607b
    22. Zhigang Lei,, Biaohua Chen,, Chengyue Li, and, Hui Liu. Predictive Molecular Thermodynamic Models for Liquid Solvents, Solid Salts, Polymers, and Ionic Liquids. Chemical Reviews 2008, 108 (4) , 1419-1455. https://doi.org/10.1021/cr068441+
    23. Ming-Lan Ge and Li-Sheng Wang. Activity Coefficients at Infinite Dilution of Polar Solutes in 1-Butyl-3-methylimidazolium Trifluoromethanesulfonate Using Gas–Liquid Chromatography. Journal of Chemical & Engineering Data 2008, 53 (3) , 846-849. https://doi.org/10.1021/je700560s
    24. Jianyong Yang,, Changjun Peng,, Honglai Liu, and, Ying Hu. Calculation of Vapor−Liquid and Liquid−Liquid Phase Equilibria for Systems Containing Ionic Liquids Using a Lattice Model. Industrial & Engineering Chemistry Research 2006, 45 (20) , 6811-6817. https://doi.org/10.1021/ie060515k
    25. Michał Skonieczny, Marta Królikowska. The study of excess enthalpy for {ionic liquid + ethanol} binary systems as new working fluids in absorption refrigeration technology. The Journal of Chemical Thermodynamics 2023, 187 , 107144. https://doi.org/10.1016/j.jct.2023.107144
    26. Rui-Zhen Ren, Liang-Fa Gong, Zi-Zhong Hao, Xiao-Ming Peng, Zhen-Yu Guo, Yu Chen, Xin-Cheng Wang, Ming-Lan Ge. Thermodynamics and activity coefficients at infinite dilution for organic compounds in ionic liquid 1-ethyl-2,3-dimethylimidazolium thiocyanate. Fluid Phase Equilibria 2023, 574 , 113908. https://doi.org/10.1016/j.fluid.2023.113908
    27. Liu Zhang, Tian Zhang, Yu-Xiao Wang, Bo Jiang, Yu-Tong Wu, Zhi-Xiang Wang, Ming-Lan Ge, Long-Huang, Yu-Hai Jiao. Thermodynamics and Activity Coefficients at Infinite Dilution for Organic Solutes in Trialkyl-Substituted Imidazolium-Based Ionic Liquid 1-Propyl-2,3-dimethylimidazolium Thiocyanate. Journal of Solution Chemistry 2023, 52 (2) , 147-165. https://doi.org/10.1007/s10953-022-01226-3
    28. Karl Marti Toots, Sulev Sild, Jaan Leis, William E. Acree, Uko Maran. Machine Learning Quantitative Structure–Property Relationships as a Function of Ionic Liquid Cations for the Gas-Ionic Liquid Partition Coefficient of Hydrocarbons. International Journal of Molecular Sciences 2022, 23 (14) , 7534. https://doi.org/10.3390/ijms23147534
    29. Amel Ayad, Fabrice Mutelet, Amina Negadi. Temperature-Dependent Linear Solvation Energy Relationship for the Determination of Gas-Liquid Partition Coefficients of Organic Compounds in Ionic Liquids. 2022https://doi.org/10.5772/intechopen.102733
    30. Thomas Brouwer, Sascha R.A. Kersten, Gerrald Bargeman, Boelo Schuur. trends in solvent impact on infinite dilution activity coefficients of solutes reviewed and visualized using an algorithm to support selection of solvents for greener fluid separations. Separation and Purification Technology 2021, 272 , 118727. https://doi.org/10.1016/j.seppur.2021.118727
    31. Colin F. Poole, Sanka N. Atapattu. Determination of physicochemical properties of ionic liquids by gas chromatography. Journal of Chromatography A 2021, 1644 , 461964. https://doi.org/10.1016/j.chroma.2021.461964
    32. Dzmitry H. Zaitsau, Ralf Ludwig, Sergey P. Verevkin. Determination of the dispersion forces in the gas phase structures of ionic liquids using exclusively thermodynamic methods. Physical Chemistry Chemical Physics 2021, 23 (12) , 7398-7406. https://doi.org/10.1039/D0CP05439A
    33. Cheng Zhang, David Triger, Nicholas J. Ramer. Activity coefficients at infinite dilution for various organic solutes in the ionic liquid 1-(2-hydroxyethyl)-3-methylimidazolium hexafluorophosphate. The Journal of Chemical Thermodynamics 2020, 140 , 105867. https://doi.org/10.1016/j.jct.2019.07.009
    34. Fabrice Mutelet, Gary A. Baker, Sudhir Ravula, Ellen Qian, Lainey Wang, William E. Acree. Infinite dilution activity coefficients and gas-to-liquid partition coefficients of organic solutes dissolved in 1- sec -butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and in 1- tert -butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Physics and Chemistry of Liquids 2019, 57 (4) , 453-472. https://doi.org/10.1080/00319104.2018.1491045
    35. Wenhui Tu, Lu Bai, Shaojuan Zeng, Hongshuai Gao, Suojiang Zhang, Xiangping Zhang. An ionic fragments contribution-COSMO method to predict the surface charge density profiles of ionic liquids. Journal of Molecular Liquids 2019, 282 , 292-302. https://doi.org/10.1016/j.molliq.2019.03.004
    36. A. A. Gaile, A. V. Vereshchagin, V. N. Klement’ev. Refining of Diesel and Ship Fuels by Extraction and Combined Methods. Part 1. Use of Ionic Liquids as Extractants. Russian Journal of Applied Chemistry 2019, 92 (4) , 453-475. https://doi.org/10.1134/S1070427219040013
    37. U. Domańska, M. Karpińska. The use of ionic liquids for separation of binary hydrocarbons mixtures based on gamma infinity data measurements. The Journal of Chemical Thermodynamics 2018, 127 , 95-105. https://doi.org/10.1016/j.jct.2018.07.024
    38. Anne-Marie Bonsa, Jochen K. Lehmann, Andreas Heintz. Partial molar enthalpies of organic solutes in the ionic liquid [EMIM][EtSO4]. Journal of Molecular Liquids 2017, 226 , 96-99. https://doi.org/10.1016/j.molliq.2016.09.020
    39. M. Karpińska, M. Wlazło, D. Ramjugernath, P. Naidoo, U. Domańska. Assessment of certain ionic liquids for separation of binary mixtures based on gamma infinity data measurements. RSC Advances 2017, 7 (12) , 7092-7107. https://doi.org/10.1039/C6RA25208G
    40. Marek Królikowski, Marta Królikowska, Cezary Wiśniewski. Separation of aliphatic from aromatic hydrocarbons and sulphur compounds from fuel based on measurements of activity coefficients at infinite dilution for organic solutes and water in the ionic liquid N,N-diethyl-N-methyl-N-(2-methoxy-ethyl)ammonium bis(trifluoromethylsulfonyl)imide. The Journal of Chemical Thermodynamics 2016, 103 , 115-124. https://doi.org/10.1016/j.jct.2016.07.017
    41. Michal Wlazło, Monika Karpińska, Urszula Domańska. Thermodynamics and selectivity of separation based on activity coefficients at infinite dilution of various solutes in 1-allyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide ionic liquid. The Journal of Chemical Thermodynamics 2016, 102 , 39-47. https://doi.org/10.1016/j.jct.2016.06.028
    42. I.A. Sedov, B.N. Solomonov. Thermodynamic description of the solvophobic effect in ionic liquids. Fluid Phase Equilibria 2016, 425 , 9-14. https://doi.org/10.1016/j.fluid.2016.05.003
    43. Michal Wlazło, Monika Karpińska, Urszula Domańska. A 1-alkylcyanopyridinium-based ionic liquid in the separation processes. The Journal of Chemical Thermodynamics 2016, 97 , 253-260. https://doi.org/10.1016/j.jct.2016.01.017
    44. Suojiang Zhang, Qing Zhou, Xingmei Lu, Yuting Song, Xinxin Wang. Properties of trimethyl-butylammonium bis((trifluoromethyl)sulfonyl)imide mixtures. 2016, 1150-1166. https://doi.org/10.1007/978-94-017-7573-1_138
    45. Federico M. Ferrero Vallana, Ricardo P. Girling, H. Q. Nimal Gunaratne, Lynette A. M. Holland, Pauline M. Mcnamee, Kenneth R. Seddon, Jonathan R. Stonehouse, Oreste Todini. Ionic liquids as modulators of fragrance release in consumer goods. New Journal of Chemistry 2016, 40 (12) , 9958-9967. https://doi.org/10.1039/C6NJ01626J
    46. Ming-Lan Ge, Chun-Yang Lu, Xiao-Yan Liu, Xiang-Bo Li, Jin-Yuan Chen, Jie-Ming Xiong. Activity coefficients at infinite dilution of alkanes, alkenes, alkyl benzenes in dimethylphosphate based ionic liquids using gas–liquid chromatography. The Journal of Chemical Thermodynamics 2015, 91 , 279-285. https://doi.org/10.1016/j.jct.2015.07.046
    47. Wuqiang Long, Ping Yi, Ming Jia, Liyan Feng, Jingchen Cui. An enhanced multi-component vaporization model for high temperature and pressure conditions. International Journal of Heat and Mass Transfer 2015, 90 , 857-871. https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.038
    48. I. Bahadur, A. Pal, J. Gmehling, T. Hector, K. Tumba, S. Singh, E.E. Ebenso. (Vapour+liquid) equilibria, (VLE) excess molar enthalpies and infinite dilution activity coefficients of selected binary systems involving n-hexyl pyridinium bis(trifluoromethylsulphonyl)imide ionic liquid: Experimental and predictions using modified UNIFAC (Dortmund). The Journal of Chemical Thermodynamics 2015, 90 , 92-99. https://doi.org/10.1016/j.jct.2015.06.023
    49. Michał Wlazło, Andrzej Marciniak, Maciej Zawadzki, Barbara Dudkiewicz. Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 4-(3-hydroxypropyl)-4-methylmorpholinium bis(trifluoromethylsulfonyl)-amide. The Journal of Chemical Thermodynamics 2015, 86 , 154-161. https://doi.org/10.1016/j.jct.2015.02.024
    50. A. Vahid, E. J. Maginn. Monte Carlo simulation and SAFT modeling study of the solvation thermodynamics of dimethylformamide, dimethylsulfoxide, ethanol and 1-propanol in the ionic liquid trimethylbutylammonium bis(trifluoromethylsulfonyl)imide. Physical Chemistry Chemical Physics 2015, 17 (11) , 7449-7462. https://doi.org/10.1039/C4CP05961A
    51. Urszula Domańska, Paulina Papis, Jerzy Szydłowski. Thermodynamics and activity coefficients at infinite dilution for organic solutes, water and diols in the ionic liquid choline bis(trifluoromethylsulfonyl)imide. The Journal of Chemical Thermodynamics 2014, 77 , 63-70. https://doi.org/10.1016/j.jct.2014.04.024
    52. Takeshi Ueki. Stimuli-responsive polymers in ionic liquids. Polymer Journal 2014, 46 (10) , 646-655. https://doi.org/10.1038/pj.2014.37
    53. Zhigang Lei, Chengna Dai, Jiqin Zhu, Biaohua Chen. Extractive distillation with ionic liquids: A review. AIChE Journal 2014, 60 (9) , 3312-3329. https://doi.org/10.1002/aic.14537
    54. Łukasz Marcinkowski, Adam Kloskowski, Jacek Namieśnik. Measurement of activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-hexyl-1,4-diaza[2.2.2]bicyclooctanium bis(trifluoromethylsulfonyl)imide using gas–liquid chromatography. The Journal of Chemical Thermodynamics 2014, 71 , 84-90. https://doi.org/10.1016/j.jct.2013.10.026
    55. Wolfgang Arlt, Alexander Buchele. A Priori Selection of the Type of Ionic Liquid. 2014, 191-208. https://doi.org/10.1002/9783527654789.ch9
    56. Urszula Domańska, Marek Królikowski, William E. Acree, Gary A. Baker. Physicochemical properties and activity coefficients at infinite dilution for organic solutes and water in a novel bicyclic guanidinium superbase-derived protic ionic liquid. The Journal of Chemical Thermodynamics 2013, 58 , 62-69. https://doi.org/10.1016/j.jct.2012.09.033
    57. Prashant Reddy, M. Aslam Siddiqi, Burak Atakan, Michael Diedenhofen, Deresh Ramjugernath. Activity coefficients at infinite dilution of organic solutes in the ionic liquid PEG-5 cocomonium methylsulfate at T=(313.15, 323.15, 333.15, and 343.15)K: Experimental results and COSMO-RS predictions. The Journal of Chemical Thermodynamics 2013, 58 , 322-329. https://doi.org/10.1016/j.jct.2012.10.024
    58. Brock C. Roughton, Brianna Christian, John White, Kyle V. Camarda, Rafiqul Gani. Simultaneous design of ionic liquid entrainers and energy efficient azeotropic separation processes. Computers & Chemical Engineering 2012, 42 , 248-262. https://doi.org/10.1016/j.compchemeng.2012.02.021
    59. Zhigang Lei, Li Xiao, Chengna Dai, Biaohua Chen. Group contribution lattice fluid equation of state (GCLF EOS) for ionic liquids. Chemical Engineering Science 2012, 75 , 1-13. https://doi.org/10.1016/j.ces.2012.03.002
    60. Andrzej Marciniak, Michał Wlazło. Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 1-(2-methoxyethyl)-1-methylpiperidinium bis(trifluoromethylsulfonyl)-amide. The Journal of Chemical Thermodynamics 2012, 49 , 137-145. https://doi.org/10.1016/j.jct.2012.01.019
    61. Andrzej Marciniak. Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 1-(3-hydroxypropyl)pyridinium bis(trifluoromethylsulfonyl)-amide. The Journal of Chemical Thermodynamics 2011, 43 (10) , 1446-1452. https://doi.org/10.1016/j.jct.2011.04.018
    62. Prashant Reddy, Kaleng J. Chiyen, Nirmala Deenadayalu, Deresh Ramjugernath. Determination of activity coefficients at infinite dilution of water and organic solutes (polar and non-polar) in the Ammoeng 100 ionic liquid at T=(308.15, 313.5, 323.15, and 333.15)K. The Journal of Chemical Thermodynamics 2011, 43 (8) , 1178-1184. https://doi.org/10.1016/j.jct.2011.03.001
    63. Prashant Reddy, Nobuhle V. Gwala, Nirmala Deenadayalu, Deresh Ramjugernath. Activity coefficients at infinite dilution of organic solutes in the ionic liquid, methyl(trioctyl)ammonium thiosalicylate, [N1888][TS] by gas–liquid chromatography at T=(303.15, 313.15, and 323.15)K. The Journal of Chemical Thermodynamics 2011, 43 (5) , 754-758. https://doi.org/10.1016/j.jct.2010.12.020
    64. Urszula Domańska, Maciej Zawadzki, Marta Królikowska, M. Marc Tshibangu, Deresh Ramjugernath, Trevor M. Letcher. Measurements of activity coefficients at infinite dilution of organic compounds and water in isoquinolinium-based ionic liquid [C8iQuin][NTf2] using GLC. The Journal of Chemical Thermodynamics 2011, 43 (3) , 499-504. https://doi.org/10.1016/j.jct.2010.10.026
    65. Laura M. Grubbs, Shulin Ye, Mariam Saifullah, McCoy Cornelius McMillan-Wiggins, William E. Acree, Michael H. Abraham, Pamela Twu, Jared L. Anderson. Correlations for describing gas-to-ionic liquid partitioning at 323K based on ion-specific equation coefficient and group contribution versions of the Abraham model. Fluid Phase Equilibria 2011, 301 (2) , 257-266. https://doi.org/10.1016/j.fluid.2010.12.005
    66. Sergey P. Verevkin, Dzmitry H. Zaitsau, Bo Tong, Urs Welz-Biermann. New for old. Password to the thermodynamics of the protic ionic liquids. Physical Chemistry Chemical Physics 2011, 13 (28) , 12708. https://doi.org/10.1039/c1cp20679f
    67. Pei-Fang Yan, Qing-Shan Liu, Miao Yang, Xiu-Mei Liu, Zhi-Cheng Tan, Urs Welz-Biermann. Activity coefficients at infinite dilution of organic solutes in N-alkylpyridinium bis(trifluoromethylsulfonyl)imide ([CnPY][NTf2], n=2,4,5) using gas–liquid chromatography. The Journal of Chemical Thermodynamics 2010, 42 (12) , 1415-1422. https://doi.org/10.1016/j.jct.2010.06.009
    68. Urszula Domańska, Kamil Paduszyński. Measurements of activity coefficients at infinite dilution of organic solutes and water in 1-propyl-1-methylpiperidinium bis{(trifluoromethyl)sulfonyl}imide ionic liquid using g.l.c.. The Journal of Chemical Thermodynamics 2010, 42 (11) , 1361-1366. https://doi.org/10.1016/j.jct.2010.05.017
    69. Maaike C. Kroon, Cor J. Peters. Phase Behaviour of Ionic Liquid Systems. 2010, 368-393. https://doi.org/10.1039/9781849730983-00368
    70. M. I. Zaretskii, V. V. Rusak, E. M. Chartov. Extraction using γ-butyrolactone: A review. Coke and Chemistry 2010, 53 (10) , 386-389. https://doi.org/10.3103/S1068364X10100066
    71. Andrzej Marciniak. Influence of cation and anion structure of the ionic liquid on extraction processes based on activity coefficients at infinite dilution. A review. Fluid Phase Equilibria 2010, 294 (1-2) , 213-233. https://doi.org/10.1016/j.fluid.2009.12.025
    72. Lourdes F. Vega, Oriol Vilaseca, Fèlix Llovell, Jordi S. Andreu. Modeling ionic liquids and the solubility of gases in them: Recent advances and perspectives. Fluid Phase Equilibria 2010, 294 (1-2) , 15-30. https://doi.org/10.1016/j.fluid.2010.02.006
    73. Ping Sun, Daniel W. Armstrong. Ionic liquids in analytical chemistry. Analytica Chimica Acta 2010, 661 (1) , 1-16. https://doi.org/10.1016/j.aca.2009.12.007
    74. Urszula Domańska, Andrzej Marciniak. Activity coefficients at infinite dilution measurements for organic solutes and water in the 1-hexyloxymethyl-3-methyl-imidazolium and 1,3-dihexyloxymethyl-imidazolium bis(trifluoromethylsulfonyl)-imide ionic liquids—The cation influence. Fluid Phase Equilibria 2009, 286 (2) , 154-161. https://doi.org/10.1016/j.fluid.2009.08.017
    75. Urszula Domańska, Andrzej Marciniak. Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 4-methyl-N-butyl-pyridinium bis(trifluoromethylsulfonyl)-imide. The Journal of Chemical Thermodynamics 2009, 41 (12) , 1350-1355. https://doi.org/10.1016/j.jct.2009.06.011
    76. Hemayat Shekaari, Sedighehnaz S. Mousavi, Yagoub Mansoori. Thermophysical Properties of Ionic Liquid, 1-Pentyl-3-methylimidazolium Chloride in Water at Different Temperatures. International Journal of Thermophysics 2009, 30 (2) , 499-514. https://doi.org/10.1007/s10765-009-0566-6
    77. Robert D. Chirico, Vladimir Diky, Joseph W. Magee, Michael Frenkel, Kenneth N. Marsh. Thermodynamic and thermophysical properties of the reference ionic liquid: 1-Hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide (including mixtures). Part 2. Critical evaluation and recommended property values (IUPAC Technical Report). Pure and Applied Chemistry 2009, 81 (5) , 791-828. https://doi.org/10.1351/PAC-REP-08-09-22
    78. Svetlana A. Kozlova, Sergey P. Verevkin, Andreas Heintz, Tim Peppel, Martin Köckerling. Activity coefficients at infinite dilution of hydrocarbons, alkylbenzenes, and alcohols in the paramagnetic ionic liquid 1-butyl-3-methyl-imidazolium tetrachloridoferrate(III) using gas–liquid chromatography. The Journal of Chemical Thermodynamics 2009, 41 (3) , 330-333. https://doi.org/10.1016/j.jct.2008.09.004
    79. Bogusław Buszewski, Sylwia Studzińska. A Review of Ionic Liquids in Chromatographic and Electromigration Techniques. Chromatographia 2008, 68 (1-2) , 1-10. https://doi.org/10.1365/s10337-008-0662-y
    80. Mara G. Freire, Sónia P.M. Ventura, Luís M.N.B.F. Santos, Isabel M. Marrucho, João A.P. Coutinho. Evaluation of COSMO-RS for the prediction of LLE and VLE of water and ionic liquids binary systems. Fluid Phase Equilibria 2008, 268 (1-2) , 74-84. https://doi.org/10.1016/j.fluid.2008.04.009
    81. Laura M. Sprunger, Amy Proctor, William E. Acree, M.H. Abraham. LFER correlations for room temperature ionic liquids: Separation of equation coefficients into individual cation-specific and anion-specific contributions. Fluid Phase Equilibria 2008, 265 (1-2) , 104-111. https://doi.org/10.1016/j.fluid.2008.01.006
    82. Shahab A. Shamsi, Neil D. Danielson. Utility of ionic liquids in analytical separations. Journal of Separation Science 2007, 30 (11) , 1729-1750. https://doi.org/10.1002/jssc.200700136
    83. Mara G. Freire, Luís M.N.B.F. Santos, Isabel M. Marrucho, João A.P. Coutinho. Evaluation of COSMO-RS for the prediction of LLE and VLE of alcohols+ionic liquids. Fluid Phase Equilibria 2007, 255 (2) , 167-178. https://doi.org/10.1016/j.fluid.2007.04.020
    84. Andreas Heintz, Sergey P. Verevkin, Jochen K. Lehmann, Tatiana V. Vasiltsova, Daniel Ondo. Activity coefficients at infinite dilution and enthalpies of solution of methanol, 1-butanol, and 1-hexanol in 1-hexyl-3-methyl-imidazolium bis(trifluoromethyl-sulfonyl) imide. The Journal of Chemical Thermodynamics 2007, 39 (2) , 268-274. https://doi.org/10.1016/j.jct.2006.07.006
    85. E. Balantseva, J. K. Lehmann, Andreas Heintz. Enthalpies of Solution of Organic Solutes in the Ionic Liquids [Me 3 BuN][NTf 2 ] and [EMIM][EtSO 4 ]. Zeitschrift für Physikalische Chemie 2006, 220 (10) , 1499-1550. https://doi.org/10.1524/zpch.2006.220.10.1499
    86. Michael H. Abraham, William E. Acree, Jr.. Comparative analysis of solvation and selectivity in room temperature ionic liquids using the Abraham linear free energy relationship. Green Chemistry 2006, 8 (10) , 906. https://doi.org/10.1039/b606279b

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect