ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Solubilities at High Dilution of Toluene, Ethylbenzene, 1,2,4-Trimethylbenzene, and Hexane in Di-2-ethylhexyl, Diisoheptyl, and Diisononyl Phthalates

View Author Information
Chemical Engineering Department, Faculté Polytechnique de Mons, Rue de l'Epargne, 56, 7000 Mons, Belgium, and Research Centre LGEI, Ecole des Mines d'Ales, 6 Avenue de Clavières, 30319 Alès Cedex, France
Cite this: J. Chem. Eng. Data 2006, 51, 4, 1212–1215
Publication Date (Web):May 24, 2006
https://doi.org/10.1021/je050529h
Copyright © 2006 American Chemical Society

    Article Views

    359

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Henry's constants of toluene, ethylbenzene (EtB), 1,2,4-trimethylbenzene (TMB), and hexane in di-2-ethylhexyl phthalate (DEHP), diisoheptyl phthalate (DIHP), and diisononyl phthalate (DINP) were determined experimentally applying a dynamic method, at temperatures ranging from (293.15 to 373.15) K and at 1 atm. The logarithms of Henry's constants were fitted as linear functions of the inverse of absolute temperature (thanks to equations similar to the van't Hoff equation). These equilibrium data were predicted with a mean relative deviation of 11 % by the modified UNIFAC thermodynamic model of solution.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author. E-mail:  [email protected].

     Faculté Polytechnique de Mons.

     Ecole des Mines d'Ales.

    Cited By

    This article is cited by 35 publications.

    1. Sema Akay, Yu Yang, Berkant Kayan. Investigation on the Solubility of the Antidepressant Drug Escitalopram in Subcritical Water. Journal of Chemical & Engineering Data 2021, 66 (6) , 2550-2560. https://doi.org/10.1021/acs.jced.1c00148
    2. Mahmoud El-Badry, Nazrul Haq, Gihan Fetih, and Faiyaz Shakeel . Measurement and Correlation of Tadalafil Solubility in Five Pure Solvents at (298.15 to 333.15) K. Journal of Chemical & Engineering Data 2014, 59 (3) , 839-843. https://doi.org/10.1021/je400982r
    3. Cong-Liang Zhang and Yan Wang. Determination and Correlation for Solubilities of Ofloxacin, Norfloxacin, Lomefloxacin, Ciprofloxacin, Pefloxacin, and Pipemidic Acid in 1-Octanol from (293.15 to 333.15) K. Journal of Chemical & Engineering Data 2010, 55 (9) , 4033-4035. https://doi.org/10.1021/je100116u
    4. Zhi-Bo Mao, Ting-Liang Luo, Tie-Bing Cui, Yu Wang and Guo-Ji Liu. Solubilities of 3-Pentadecylphenol in Ethanol, 1-Butanol, Toluene, Acetone, Tetrachloromethane, and Ethyl Acetate. Journal of Chemical & Engineering Data 2010, 55 (1) , 543-546. https://doi.org/10.1021/je900346t
    5. Cong-Liang Zhang, Shun-Yi Li and Yan Wang. Solubilities of Sulfamethazine, Sulfadimethoxine, Sulfamethoxydiazine, Sulfamonomethoxine, Sulfamethoxazole, and Sulfaquinoxaline in 1-Octanol from (298.15 to 333.15) K. Journal of Chemical & Engineering Data 2009, 54 (3) , 1131-1134. https://doi.org/10.1021/je800867a
    6. Cong-Liang Zhang and Yan Wang. Aqueous Solubilities for Ofloxacin, Norfloxacin, Lomefloxacin, Ciprofloxacin, Pefloxacin, and Pipemidic Acid from (293.15 to 323.15) K. Journal of Chemical & Engineering Data 2008, 53 (6) , 1295-1297. https://doi.org/10.1021/je7007044
    7. Cong-Liang Zhang,, Fu-An Wang, and, Yan Wang. Solubilities of Sulfadiazine, Sulfamethazine, Sulfadimethoxine, Sulfamethoxydiazine, Sulfamonomethoxine, Sulfamethoxazole, and Sulfachloropyrazine in Water from (298.15 to 333.15) K. Journal of Chemical & Engineering Data 2007, 52 (5) , 1563-1566. https://doi.org/10.1021/je0603978
    8. Xuezhen Wang, Jinxuan Zhang, Xianshe Feng. Membranes impregnated with bis(2-ethylhexyl) phthalate for enhanced VOC/N2 separation. Journal of Membrane Science 2024, 696 , 122530. https://doi.org/10.1016/j.memsci.2024.122530
    9. Paula Alejandra Lamprea Pineda, Joren Bruneel, Kristof Demeestere, Lisa Deraedt, Tex Goetschalckx, Herman Van Langenhove, Christophe Walgraeve. Absorption of hydrophobic volatile organic compounds in renewable vegetable oils and esterified fatty acids: Determination of gas-liquid partitioning coefficients as a function of temperature. Chemical Engineering Journal 2024, 479 , 147531. https://doi.org/10.1016/j.cej.2023.147531
    10. Sema Akay, Serpil Öztürk, Dimitrios Kalderis, Berkant Kayan. Degradation, solubility and chromatographic studies of Ibuprofen under high temperature water conditions. Chemosphere 2021, 277 , 130307. https://doi.org/10.1016/j.chemosphere.2021.130307
    11. Margaux Lhuissier, Annabelle Couvert, Abdoulaye Kane, Abdeltif Amrane, Jean-Luc Audic, Pierre-François Biard. Volatile organic compounds absorption in a structured packing fed with waste oils: Experimental and modeling assessments. Chemical Engineering Science 2021, 238 , 116598. https://doi.org/10.1016/j.ces.2021.116598
    12. Sema Akay, Berkant Kayan. Aqueous solubility and chromatographic studies of antifungal drug-fluconazole at high temperature conditions. Journal of Molecular Liquids 2021, 328 , 115438. https://doi.org/10.1016/j.molliq.2021.115438
    13. Margaux Lhuissier, Annabelle Couvert, Abdoulaye Kane, Abdeltif Amrane, Jean-Luc Audic, Pierre-François Biard. Experimental evaluation and modeling of the hydrodynamics in structured packing operated with viscous waste oils. Chemical Engineering Research and Design 2020, 162 , 273-283. https://doi.org/10.1016/j.cherd.2020.07.031
    14. Alfredo-Santiago Rodriguez Castillo, Pierre-François Biard, Solène Guihéneuf, Ludovic Paquin, Abdeltif Amrane, Annabelle Couvert. Assessment of VOC absorption in hydrophobic ionic liquids: Measurement of partition and diffusion coefficients and simulation of a packed column. Chemical Engineering Journal 2019, 360 , 1416-1426. https://doi.org/10.1016/j.cej.2018.10.146
    15. Pierre-François Biard, Annabelle Couvert, Sylvain Giraudet. Volatile organic compounds absorption in packed column: theoretical assessment of water, DEHA and PDMS 50 as absorbents. Journal of Industrial and Engineering Chemistry 2018, 59 , 70-78. https://doi.org/10.1016/j.jiec.2017.10.008
    16. Wanren Chen, Hua Li. Dissolution Enthalpy and Entropy of Thiourea in Ethanol at 292–320 K. Russian Journal of Physical Chemistry A 2017, 91 (13) , 2508-2511. https://doi.org/10.1134/S0036024417130246
    17. C.-L. Zhang, S.-J. Cui. Thermodynamics of sulfamethoxazole dissolution in organic solvents at 293.15–323.15 K. Russian Journal of Physical Chemistry A 2017, 91 (6) , 1051-1055. https://doi.org/10.1134/S0036024417060334
    18. C.-L. Zhang, S.-J. Cui, Y. Wang. Thermodynamics of the solubility of sulfamethoxydiazine in organic solvents in the range 293.15–323.15 K. Russian Journal of Physical Chemistry A 2017, 91 (1) , 80-83. https://doi.org/10.1134/S0036024417010332
    19. S. Scelfo, R. Pirone, N. Russo. Thermodynamics of cis,cis-muconic acid solubility in various polar solvents at low temperature range. Journal of Molecular Liquids 2016, 222 , 823-827. https://doi.org/10.1016/j.molliq.2016.07.129
    20. Pierre-François Biard, Aurélie Coudon, Annabelle Couvert, Sylvain Giraudet. A simple and timesaving method for the mass-transfer assessment of solvents used in physical absorption. Chemical Engineering Journal 2016, 290 , 302-311. https://doi.org/10.1016/j.cej.2016.01.046
    21. Hua Li, Wanren Chen. Thermodynamics of dissolution of thiourea in triethylene glycol. Russian Journal of Physical Chemistry A 2016, 90 (3) , 584-585. https://doi.org/10.1134/S003602441603016X
    22. Xingli Jiao, Xiaoshuang Chen, Hua Li. Thermodynamics of thiourea dissolution in methanol–water mixtures. Russian Journal of Physical Chemistry A 2016, 90 (2) , 356-359. https://doi.org/10.1134/S0036024416020357
    23. Hua Li, Xiaoshuang Chen. Solubility of KF in four organic solvents and thermodynamic dissolution functions. Russian Journal of Physical Chemistry A 2014, 88 (7) , 1265-1268. https://doi.org/10.1134/S003602441407019X
    24. Sira Suren, Niti Sunsandee, Magdalena Stolcova, Milan Hronec, Natchanun Leepipatpiboon, Ura Pancharoen, Soorathep Kheawhom. Measurement on the solubility of adipic acid in various solvents at high temperature and its thermodynamics parameters. Fluid Phase Equilibria 2013, 360 , 332-337. https://doi.org/10.1016/j.fluid.2013.10.003
    25. Niti Sunsandee, Milan Hronec, Magdaléna Štolcová, Natchanun Leepipatpiboon, Ura Pancharoen. Thermodynamics of the solubility of 4-acetylbenzoic acid in different solvents from 303.15 to 473.15K. Journal of Molecular Liquids 2013, 180 , 252-259. https://doi.org/10.1016/j.molliq.2013.01.023
    26. Xiaoshuang Chen, Hua Li, Juan Liu. The dissolution enthalpy and entropy of KF in Aprotic polar solvents. Russian Journal of Physical Chemistry A 2012, 86 (13) , 1943-1946. https://doi.org/10.1134/S0036024412130250
    27. C. -L. Zhang, S. -J. Cui, Y. Wang. The enthalpies and entropies of pefloxacin dissolution in methanol, ethanol, 1-Propanol, 2-Propanol, acetone, and chloroform at 293.15–323.15 K. Russian Journal of Physical Chemistry A 2012, 86 (13) , 1953-1956. https://doi.org/10.1134/S0036024412130286
    28. Guillaume Darracq, Annabelle Couvert, Catherine Couriol, Abdeltif Amrane, Pierre Le Cloirec. Removal of Hydrophobic Volatile Organic Compounds in an Integrated Process Coupling Absorption and Biodegradation—Selection of an Organic Liquid Phase. Water, Air, & Soil Pollution 2012, 223 (8) , 4969-4997. https://doi.org/10.1007/s11270-012-1251-0
    29. A. Erto, A. Lancia. Solubility of benzene in copolymer aqueous solutions for the design of gas absorption unit operations. Chemical Engineering Journal 2012, 187 , 166-171. https://doi.org/10.1016/j.cej.2012.01.116
    30. Cong-Liang Zhang, Guan-Lei Qiao, Yan Wang. Thermodynamics of the solubility of lomefloxacin in methanol, ethanol, 1-propanol, 2-propanol, acetone, and chloroform from 293.15 to 323.15K. Fluid Phase Equilibria 2012, 320 , 56-59. https://doi.org/10.1016/j.fluid.2012.02.011
    31. Cong-Liang Zhang, Fang Zhao, Yan Wang. Thermodynamics of the solubility of sulfamethazine in methanol, ethanol, 1-propanol, acetone, and chloroform from 293.15 to 333.15K. Journal of Molecular Liquids 2011, 159 (2) , 170-172. https://doi.org/10.1016/j.molliq.2011.01.004
    32. Cong-Liang Zhang, Fang Zhao, Yan Wang. Thermodynamics of the solubility of ciprofloxacin in methanol, ethanol, 1-propanol, acetone, and chloroform from 293.15 to 333.15K. Journal of Molecular Liquids 2010, 156 (2-3) , 191-193. https://doi.org/10.1016/j.molliq.2010.06.004
    33. Cong‐Liang Zhang, Bao‐Ying Li, Yan Wang. Solubilities of norfloxacin in ethanol, 1‐propanol, acetone, and chloroform from 294.15 to 318.15 K. The Canadian Journal of Chemical Engineering 2010, 88 (1) , 63-66. https://doi.org/10.1002/cjce.20247
    34. D. Bourgois, J. Vanderschuren, D. Thomas. Study of mass transfer of VOCs into viscous solvents in a pilot-scale cables-bundle scrubber. Chemical Engineering Journal 2009, 145 (3) , 446-452. https://doi.org/10.1016/j.cej.2008.04.038
    35. D. Bourgois, J. Vanderschuren, D. Thomas. Determination of liquid diffusivities of VOC (paraffins and aromatic hydrocarbons) in phthalates. Chemical Engineering and Processing: Process Intensification 2008, 47 (8) , 1357-1364. https://doi.org/10.1016/j.cep.2007.05.006

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect