ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Solubility of H2 in the Ionic Liquid [hmim][Tf2N]

View Author Information
Chair of Applied Thermodynamics, University of Kaiserslautern, P.O. Box 3049, D-67653 Kaiserslautern, Germany
Cite this: J. Chem. Eng. Data 2006, 51, 4, 1364–1367
Publication Date (Web):June 8, 2006
https://doi.org/10.1021/je060087p
Copyright © 2006 American Chemical Society

    Article Views

    1194

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    New experimental results are presented for the solubility of hydrogen in the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([hmim][Tf2N]) for temperatures from (293 to 413) K and pressures up to about 10 MPa. The extended Henry's law is applied to correlate the solubility pressures. The solubility of H2 in [hmim][Tf2N] is low and increases toward higher temperatures. For example, at T ≈ 293 K (413 K) and p ≈ 9 MPa, only about 0.106 mol (0.170 mol) of the gas is dissolved in 1 kg of the ionic liquid.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author. Tel.:  +49 631 205 2410. Fax:  +49 631 205 3835. E-mail:  [email protected].

    Cited By

    This article is cited by 74 publications.

    1. Alejandro Rivera-Pousa, Raúl Lois-Cuns, Martín Otero-Lema, Hadrián Montes-Campos, Trinidad Méndez-Morales, Luis Miguel Varela. Size Matters: A Computational Study of Hydrogen Absorption in Ionic Liquids. Journal of Chemical Information and Modeling 2024, 64 (1) , 164-177. https://doi.org/10.1021/acs.jcim.3c01688
    2. Tobias Klein, Maximilian Piszko, Maren Lang, Julian Mehler, Peter S. Schulz, Michael H. Rausch, Cédric Giraudet, Thomas M. Koller, Andreas P. Fröba. Diffusivities in Binary Mixtures of [AMIM][NTf2] Ionic Liquids with the Dissolved Gases H2, He, N2, CO, CO2, or Kr Close to Infinite Dilution. Journal of Chemical & Engineering Data 2020, 65 (8) , 4116-4129. https://doi.org/10.1021/acs.jced.0c00430
    3. Constanza Miguel Sanchez, Tangqiumei Song, Joan F. Brennecke, Benny D. Freeman. Hydrogen Stable Supported Ionic Liquid Membranes with Silver Carriers: Propylene and Propane Permeability and Solubility. Industrial & Engineering Chemistry Research 2020, 59 (12) , 5362-5370. https://doi.org/10.1021/acs.iecr.9b04886
    4. Fei Liu, Qiaoyun Liu, Aiqin Wang, and Tao Zhang . Direct Catalytic Hydrogenolysis of Kraft Lignin to Phenols in Choline-Derived Ionic Liquids. ACS Sustainable Chemistry & Engineering 2016, 4 (7) , 3850-3856. https://doi.org/10.1021/acssuschemeng.6b00620
    5. Ramesh Singh, Eliseo Marin-Rimoldi, and Edward J. Maginn . A Monte Carlo Simulation Study To Predict the Solubility of Carbon Dioxide, Hydrogen, and Their Mixture in the Ionic Liquids 1-Alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([Cnmim+][Tf2N–], n = 4, 6). Industrial & Engineering Chemistry Research 2015, 54 (16) , 4385-4395. https://doi.org/10.1021/ie503086z
    6. Zhigang Lei, Chengna Dai, and Biaohua Chen . Gas Solubility in Ionic Liquids. Chemical Reviews 2014, 114 (2) , 1289-1326. https://doi.org/10.1021/cr300497a
    7. Omar M. Basha, Murphy J. Keller, David R. Luebke, Kevin P. Resnik, and Badie I. Morsi . Development of a Conceptual Process for Selective CO2 Capture from Fuel Gas Streams Using [hmim][Tf2N] Ionic Liquid as a Physical Solvent. Energy & Fuels 2013, 27 (7) , 3905-3917. https://doi.org/10.1021/ef400650w
    8. Mahinder Ramdin, Theo W. de Loos, and Thijs J.H. Vlugt . State-of-the-Art of CO2 Capture with Ionic Liquids. Industrial & Engineering Chemistry Research 2012, 51 (24) , 8149-8177. https://doi.org/10.1021/ie3003705
    9. Michael Jödecke, Álvaro Pérez-Salado Kamps, and Gerd Maurer . An Experimental Investigation of the Solubility of CO2 in (N,N-Dimethylmethanamide + Water). Journal of Chemical & Engineering Data 2012, 57 (4) , 1249-1266. https://doi.org/10.1021/je300105q
    10. Wei Shi, Christina R. Myers, David R. Luebke, Janice A. Steckel, and Dan C. Sorescu . Theoretical and Experimental Studies of CO2 and H2 Separation Using the 1-Ethyl-3-methylimidazolium Acetate ([emim][CH3COO]) Ionic Liquid. The Journal of Physical Chemistry B 2012, 116 (1) , 283-295. https://doi.org/10.1021/jp205830d
    11. L. J. Florusse, S. Raeissi, and C. J. Peters . An IUPAC Task Group Study: The Solubility of Carbon Monoxide in [hmim][Tf2N] at High Pressures. Journal of Chemical & Engineering Data 2011, 56 (12) , 4797-4799. https://doi.org/10.1021/je200764g
    12. Maria Gonzalez-Miquel, Jose Palomar, Salama Omar, and Francisco Rodriguez . CO2/N2 Selectivity Prediction in Supported Ionic Liquid Membranes (SILMs) by COSMO-RS. Industrial & Engineering Chemistry Research 2011, 50 (9) , 5739-5748. https://doi.org/10.1021/ie102450x
    13. S. Raeissi, L. J. Florusse, and C. J. Peters . Hydrogen Solubilities in the IUPAC Ionic Liquid 1-Hexyl-3-methylimidazolium Bis(Trifluoromethylsulfonyl)Imide. Journal of Chemical & Engineering Data 2011, 56 (4) , 1105-1107. https://doi.org/10.1021/je101060k
    14. Wei Shi, Dan C. Sorescu, David R. Luebke, Murphy J. Keller and Shan Wickramanayake. Molecular Simulations and Experimental Studies of Solubility and Diffusivity for Pure and Mixed Gases of H2, CO2, and Ar Absorbed in the Ionic Liquid 1-n-Hexyl-3-methylimidazolium Bis(Trifluoromethylsulfonyl)amide ([hmim][Tf2N]). The Journal of Physical Chemistry B 2010, 114 (19) , 6531-6541. https://doi.org/10.1021/jp101897b
    15. María Dolores Bermejo, David Méndez and Ángel Martín. Application of a Group Contribution Equation of State for the Thermodynamic Modeling of Gas + Ionic Liquid Mixtures. Industrial & Engineering Chemistry Research 2010, 49 (10) , 4966-4973. https://doi.org/10.1021/ie901989f
    16. Jacek Kumełan, Álvaro Pérez-Salado Kamps and Gerd Maurer. Solubility of CO2 in Aqueous Solutions of Methionine and in Aqueous Solutions of (K2CO3 and Methionine). Industrial & Engineering Chemistry Research 2010, 49 (8) , 3910-3918. https://doi.org/10.1021/ie902032n
    17. Yoshiro Yasaka, Chihiro Wakai, Nobuyuki Matubayasi and Masaru Nakahara. Controlling the Equilibrium of Formic Acid with Hydrogen and Carbon Dioxide Using Ionic Liquid. The Journal of Physical Chemistry A 2010, 114 (10) , 3510-3515. https://doi.org/10.1021/jp908174s
    18. Jacek Kumełan, Dirk Tuma, Álvaro Pérez-Salado Kamps and Gerd Maurer. Solubility of the Single Gases Carbon Dioxide and Hydrogen in the Ionic Liquid [bmpy][Tf2N]. Journal of Chemical & Engineering Data 2010, 55 (1) , 165-172. https://doi.org/10.1021/je900298e
    19. Norfaizah Ab Manan, Christopher Hardacre, Johan Jacquemin, David W. Rooney and Tristan G. A. Youngs. Evaluation of Gas Solubility Prediction in Ionic Liquids using COSMOthermX. Journal of Chemical & Engineering Data 2009, 54 (7) , 2005-2022. https://doi.org/10.1021/je800857x
    20. María Paula Longinotti, Jorge L. Alvarez and M. Laura Japas. Advantages of Ion-based Mole Fractions for Describing Phase Equilibria in Ionic Liquids: Application to Gas Solubility. The Journal of Physical Chemistry B 2009, 113 (11) , 3461-3468. https://doi.org/10.1021/jp809651e
    21. Jacek Kumełan, Álvaro Pérez-Salado Kamps, Dirk Tuma and Gerd Maurer. Solubility of the Single Gases Carbon Monoxide and Oxygen in the Ionic Liquid [hmim][Tf2N]. Journal of Chemical & Engineering Data 2009, 54 (3) , 966-971. https://doi.org/10.1021/je8007556
    22. Jacek Kumełan, Dirk Tuma, Sergey P. Verevkin and Gerd Maurer. Solubility of Hydrogen in the Cyclic Alkylene Ester 1,2-Butylene Carbonate. Journal of Chemical & Engineering Data 2008, 53 (12) , 2844-2850. https://doi.org/10.1021/je800583r
    23. Jordi S. Andreu and Lourdes F. Vega. Modeling the Solubility Behavior of CO2, H2, and Xe in [Cn-mim][Tf2N] Ionic Liquids. The Journal of Physical Chemistry B 2008, 112 (48) , 15398-15406. https://doi.org/10.1021/jp807484g
    24. Lei Yu, Xiaoxia Jin and Xiangqun Zeng. Methane Interactions with Polyaniline/Butylmethylimidazolium Camphorsulfonate Ionic Liquid Composite. Langmuir 2008, 24 (20) , 11631-11636. https://doi.org/10.1021/la8018327
    25. Alan R. Katritzky, Minati Kuanar, Iva B. Stoyanova-Slavova, Svetoslav H. Slavov, Dimitar A. Dobchev, Mati Karelson and William E. Acree, Jr. . Quantitative Structure–Property Relationship Studies on Ostwald Solubility and Partition Coefficients of Organic Solutes in Ionic Liquids. Journal of Chemical & Engineering Data 2008, 53 (5) , 1085-1092. https://doi.org/10.1021/je700607b
    26. Marco Haumann and, Anders Riisager. Hydroformylation in Room Temperature Ionic Liquids (RTILs):  Catalyst and Process Developments. Chemical Reviews 2008, 108 (4) , 1474-1497. https://doi.org/10.1021/cr078374z
    27. Jacek Kumełan,, Álvaro Pérez-Salado Kamps,, Dirk Tuma,, Akimichi Yokozeki,, Mark B. Shiflett, and, Gerd Maurer. Solubility of Tetrafluoromethane in the Ionic Liquid [hmim][Tf2N]. The Journal of Physical Chemistry B 2008, 112 (10) , 3040-3047. https://doi.org/10.1021/jp076737t
    28. Jacek Kumełan , Álvaro Pérez-Salado Kamps , Dirk Tuma , and Gerd Maurer . Solubility of CO2 in the Ionic Liquids [bmim][CH3SO4] and [bmim][PF6]. Journal of Chemical & Engineering Data 2006, 51 (5) , 1802-1807. https://doi.org/10.1021/je060190e
    29. Claudio A. Faúndez, Luis A. Forero, José O. Valderrama. Use of Thermodynamically Consistent Phase Equilibrium Data to Obtain a Generalized Padé-Type Model for the Henry’s Constants of Gases in Ionic Liquids. Processes 2024, 12 (2) , 343. https://doi.org/10.3390/pr12020343
    30. Markus Schörner, Andreas Schönweiz, Stefanie Vignesh, Liudmila Mokrushina, Matthias Thommes, Robert Franke, Marco Haumann. Tuning catalyst performance in the SILP-catalyzed gas-phase hydroformylation of but-1-ene by choice of the ionic liquid. Journal of Ionic Liquids 2023, 3 (2) , 100061. https://doi.org/10.1016/j.jil.2023.100061
    31. Reza Nakhaei-Kohani, Saeid Atashrouz, Maryam Pourmahdi, Fahimeh Hadavimoghaddam, Karam Jabbour, Abdolhossein Hemmati-Sarapardeh, Ahmad Mohaddespour. Hydrogen solubility in ionic liquids: Application of a structure-based deep learning approach and equations of state. International Journal of Hydrogen Energy 2023, 48 (80) , 31234-31253. https://doi.org/10.1016/j.ijhydene.2023.04.018
    32. Aliyu Adebayo Sulaimon, Luqman Adam Azman, Syed Ali Qasim Zohair, Bamikole Joshua Adeyemi, Azmi B Shariff, Wan Zaireen Nisa Yahya. Predicting the Hydrogen Storage Potential of Ionic Liquids Using the Data Analytics Techniques. 2023https://doi.org/10.2118/217176-MS
    33. Wamda Faisal Elmobarak, Fares Almomani, Muhammad Tawalbeh, Amani Al-Othman, Remston Martis, Kashif Rasool. Current status of CO2 capture with ionic liquids: Development and progress. Fuel 2023, 344 , 128102. https://doi.org/10.1016/j.fuel.2023.128102
    34. Kailas Wasewar. Carbon Dioxide Capture by Ionic Liquids. 2021, 147-194. https://doi.org/10.1007/978-981-16-0638-0_8
    35. Haixin Guo, Shida Tomoka, Richard Lee Smith. Catalytic hydrogenation of levulinic acid in ionic liquid mixtures using hydrogen gas in high-pressure CO2. The Journal of Supercritical Fluids 2020, 164 , 104891. https://doi.org/10.1016/j.supflu.2020.104891
    36. Xinyan Liu, Yuqiu Chen, Shaojuan Zeng, Xiangping Zhang, Suojiang Zhang, Xiaodong Liang, Rafiqul Gani, Georgios M. Kontogeorgis. Structure optimization of tailored ionic liquids and process simulation for shale gas separation. AIChE Journal 2020, 66 (2) https://doi.org/10.1002/aic.16794
    37. Mark B. Shiflett, Joe W. Magee, Dirk Tuma. Important Developments in the History of Ionic Liquids from Academic Curiosity to Commercial Processes and Products. 2020, 3-29. https://doi.org/10.1007/978-3-030-35245-5_1
    38. Mahsa Aghaie, Nima Rezaei, Sohrab Zendehboudi. Assessment of carbon dioxide solubility in ionic liquid/toluene/water systems by extended PR and PC-SAFT EOSs: Carbon capture implication. Journal of Molecular Liquids 2019, 275 , 323-337. https://doi.org/10.1016/j.molliq.2018.11.038
    39. Azadeh Kordi, Fatemeh Sabzi. Thermodynamic modeling of hydrogen solubility in a series of ionic liquids. International Journal of Hydrogen Energy 2018, 43 (39) , 18296-18305. https://doi.org/10.1016/j.ijhydene.2018.08.055
    40. Muhammad Usman, Magne Hillestad, Liyuan Deng. Assessment of a membrane contactor process for pre-combustion CO2 capture by modelling and integrated process simulation. International Journal of Greenhouse Gas Control 2018, 71 , 95-103. https://doi.org/10.1016/j.ijggc.2018.02.012
    41. Yuya Hiraga, Alif Duereh, Richard L. Smith. Aspects of solvent polarity and solvent properties in developing efficient systems for processing biomass with ionic liquid mixtures and supercritical CO2. The Journal of Supercritical Fluids 2018, 134 , 12-20. https://doi.org/10.1016/j.supflu.2017.12.022
    42. José O. Valderrama, Claudio A. Faúndez, Joaquín F. Díaz-Valdés. Equation of state dependency of thermodynamic consistency methods. Application to solubility data of gases in ionic liquids. Fluid Phase Equilibria 2017, 449 , 76-82. https://doi.org/10.1016/j.fluid.2017.06.013
    43. Md Shamim Howlader, William Todd French, Sara A. Shields‐Menard, Marta Amirsadeghi, Magan Green, Neeraj Rai. Microbial cell disruption for improving lipid recovery using pressurized CO 2 : Role of CO 2 solubility in cell suspension, sugar broth, and spent media. Biotechnology Progress 2017, 33 (3) , 737-748. https://doi.org/10.1002/btpr.2471
    44. Azita Ahosseini, Wei Ren, Laurence R. Weatherley, Aaron M. Scurto. Viscosity and self-diffusivity of ionic liquids with compressed hydrofluorocarbons: 1-Hexyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)amide and 1,1,1,2-tetrafluoroethane. Fluid Phase Equilibria 2017, 437 , 34-42. https://doi.org/10.1016/j.fluid.2016.11.022
    45. Ramesh Singh. A Monte Carlo simulation study to predict the solubility of H 2 S in ionic liquids with 1-butyl-3-methylimidazolium ([C 4 mim + ]) cation and tetrafluoroborate ([BF 4 − ]), hexaflorophosphate ([PF 6 − ]) and bis(trifluoromethanesulfonyl)amide ([Tf 2 N − ]) anions. Molecular Simulation 2017, 43 (4) , 291-297. https://doi.org/10.1080/08927022.2016.1269260
    46. Daniela Kerlé, Majid Namayandeh Jorabchi, Ralf Ludwig, Sebastian Wohlrab, Dietmar Paschek. A simple guiding principle for the temperature dependence of the solubility of light gases in imidazolium-based ionic liquids derived from molecular simulations. Physical Chemistry Chemical Physics 2017, 19 (3) , 1770-1780. https://doi.org/10.1039/C6CP06792A
    47. Selva Pereda, Sona Raeissi, Alfonsina E. Andreatta, Susana B. Bottini, Maaike Kroon, Cor J. Peters. Modeling gas solubilities in imidazolium based ionic liquids with the [Tf 2 N] anion using the GC-EoS. Fluid Phase Equilibria 2016, 409 , 408-416. https://doi.org/10.1016/j.fluid.2015.10.037
    48. James X. Mao, Janice A. Steckel, Fangyong Yan, Nilesh Dhumal, Hyung Kim, Krishnan Damodaran. Understanding the mechanism of CO 2 capture by 1,3 di-substituted imidazolium acetate based ionic liquids. Physical Chemistry Chemical Physics 2016, 18 (3) , 1911-1917. https://doi.org/10.1039/C5CP05713B
    49. Yuya Hiraga, Yoshiyuki Sato, Richard L. Smith. Development of a simple method for predicting CO2 enhancement of H2 gas solubility in ionic liquids. The Journal of Supercritical Fluids 2015, 96 , 162-170. https://doi.org/10.1016/j.supflu.2014.09.010
    50. Zhigang Lei, Chengna Dai, Qian Yang, Jiqin Zhu, Biaohua Chen. UNIFAC model for ionic liquid‐CO (H 2 ) systems: An experimental and modeling study on gas solubility. AIChE Journal 2014, 60 (12) , 4222-4231. https://doi.org/10.1002/aic.14606
    51. Roberto Rinaldi. Solvents and Solvent Effects in Biomass Conversion. 2014, 74-98. https://doi.org/10.1039/9781782620099-00074
    52. Luís M.C. Pereira, Mariana B. Oliveira, Felix Llovell, Lourdes F. Vega, João A.P. Coutinho. Assessing the N2O/CO2 high pressure separation using ionic liquids with the soft-SAFT EoS. The Journal of Supercritical Fluids 2014, 92 , 231-241. https://doi.org/10.1016/j.supflu.2014.06.005
    53. M. Türk, René Metzner. Solubility of Supercritical Fluids in Ionic Liquids. Chemie Ingenieur Technik 2014, 86 (5) , 630-639. https://doi.org/10.1002/cite.201300161
    54. Xiaoyan Ji, Christoph Held, Gabriele Sadowski. Modeling imidazolium-based ionic liquids with ePC-SAFT. Part II. Application to H2S and synthesis-gas components. Fluid Phase Equilibria 2014, 363 , 59-65. https://doi.org/10.1016/j.fluid.2013.11.019
    55. Luís M.C. Pereira, Mariana B. Oliveira, Ana M.A. Dias, Felix Llovell, Lourdes F. Vega, Pedro J. Carvalho, João A.P. Coutinho. High pressure separation of greenhouse gases from air with 1-ethyl-3-methylimidazolium methyl-phosphonate. International Journal of Greenhouse Gas Control 2013, 19 , 299-309. https://doi.org/10.1016/j.ijggc.2013.09.007
    56. Mark B. Shiflett, Akimichi Yokozeki. Phase Behaviour of Gases in Ionic Liquids. 2012, 349-386. https://doi.org/10.1002/9781118434987.ch11
    57. Abhinandan Banerjee, Robin Theron, Robert W. J. Scott. Highly Stable Noble‐Metal Nanoparticles in Tetraalkylphosphonium Ionic Liquids for in situ Catalysis. ChemSusChem 2012, 5 (1) , 109-116. https://doi.org/10.1002/cssc.201100413
    58. Jacek Kumełan, Dirk Tuma, Gerd Maurer. Simultaneous solubility of carbon dioxide and hydrogen in the ionic liquid [hmim][Tf2N]: Experimental results and correlation. Fluid Phase Equilibria 2011, 311 , 9-16. https://doi.org/10.1016/j.fluid.2011.08.013
    59. José M.S. Fonseca, Ralf Dohrn, Stephanie Peper. High-pressure fluid-phase equilibria: Experimental methods and systems investigated (2005–2008). Fluid Phase Equilibria 2011, 300 (1-2) , 1-69. https://doi.org/10.1016/j.fluid.2010.09.017
    60. Yu-Feng Hu, Zhi-Chang Liu, Chun-Ming Xu, Xian-Ming Zhang. The molecular characteristics dominating the solubility of gases in ionic liquids. Chemical Society Reviews 2011, 40 (7) , 3802. https://doi.org/10.1039/c0cs00006j
    61. Maaike C. Kroon, Cor J. Peters. Phase Behaviour of Ionic Liquid Systems. 2010, 368-393. https://doi.org/10.1039/9781849730983-00368
    62. S. Raeissi, C.J. Peters. High pressure phase behaviour of methane in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Fluid Phase Equilibria 2010, 294 (1-2) , 67-71. https://doi.org/10.1016/j.fluid.2010.03.021
    63. . Ionic Liquids as Designer Solvents. 2009, 41-64. https://doi.org/10.1039/BK9781847551610-00041
    64. Wei Ren, Aaron M. Scurto. Phase equilibria of imidazolium ionic liquids and the refrigerant gas, 1,1,1,2-tetrafluoroethane (R-134a). Fluid Phase Equilibria 2009, 286 (1) , 1-7. https://doi.org/10.1016/j.fluid.2009.07.007
    65. Jens Abildskov, Martin D. Ellegaard, John P. O’Connell. Correlation of phase equilibria and liquid densities for gases with ionic liquids. Fluid Phase Equilibria 2009, 286 (1) , 95-106. https://doi.org/10.1016/j.fluid.2009.08.001
    66. Kenneth N. Marsh, Joan F. Brennecke, Robert D. Chirico, Michael Frenkel, Andreas Heintz, Joseph W. Magee, Cor J. Peters, Luis Paulo N. Rebelo, Kenneth R. Seddon. Thermodynamic and thermophysical properties of the reference ionic liquid: 1-Hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide (including mixtures). Part 1. Experimental methods and results (IUPAC Technical Report). Pure and Applied Chemistry 2009, 81 (5) , 781-790. https://doi.org/10.1351/PAC-REP-08-09-21
    67. Robert D. Chirico, Vladimir Diky, Joseph W. Magee, Michael Frenkel, Kenneth N. Marsh. Thermodynamic and thermophysical properties of the reference ionic liquid: 1-Hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide (including mixtures). Part 2. Critical evaluation and recommended property values (IUPAC Technical Report). Pure and Applied Chemistry 2009, 81 (5) , 791-828. https://doi.org/10.1351/PAC-REP-08-09-22
    68. Wei Ren, Aaron M. Scurto. Global phase behavior of imidazolium ionic liquids and compressed 1,1,1,2‐tetrafluoroethane (R‐134a). AIChE Journal 2009, 55 (2) , 486-493. https://doi.org/10.1002/aic.11657
    69. Jacek Kumełan, Dirk Tuma, Gerd Maurer. Partial molar volumes of selected gases in some ionic liquids. Fluid Phase Equilibria 2009, 275 (2) , 132-144. https://doi.org/10.1016/j.fluid.2008.09.024
    70. Christina Myers, Henry Pennline, David Luebke, Jeffery Ilconich, JaNeille K. Dixon, Edward J. Maginn, Joan F. Brennecke. High temperature separation of carbon dioxide/hydrogen mixtures using facilitated supported ionic liquid membranes. Journal of Membrane Science 2008, 322 (1) , 28-31. https://doi.org/10.1016/j.memsci.2008.04.062
    71. Hermann Weingärtner. Zum Verständnis ionischer Flüssigkeiten auf molekularer Ebene: Fakten, Probleme und Kontroversen. Angewandte Chemie 2008, 120 (4) , 664-682. https://doi.org/10.1002/ange.200604951
    72. Hermann Weingärtner. Understanding Ionic Liquids at the Molecular Level: Facts, Problems, and Controversies. Angewandte Chemie International Edition 2008, 47 (4) , 654-670. https://doi.org/10.1002/anie.200604951
    73. Johan Jacquemin, Pascale Husson, Vladimir Majer, Agilio A.H. Padua, Margarida F. Costa Gomes. Thermophysical properties, low pressure solubilities and thermodynamics of solvation of carbon dioxide and hydrogen in two ionic liquids based on the alkylsulfate anion. Green Chemistry 2008, 10 (9) , 944. https://doi.org/10.1039/b802761g
    74. Jacek Kumełan, Álvaro Pérez-Salado Kamps, Dirk Tuma, Gerd Maurer. Solubility of the single gases H2 and CO in the ionic liquid [bmim][CH3SO4]. Fluid Phase Equilibria 2007, 260 (1) , 3-8. https://doi.org/10.1016/j.fluid.2006.06.010

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect