ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Infinite Dilution Binary Diffusion Coefficients for Six Sugars at 0.1 MPa and Temperatures from (273.2 to 353.2) K

View Author Information
Department of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
Cite this: J. Chem. Eng. Data 2007, 52, 1, 40–43
Publication Date (Web):December 15, 2006
https://doi.org/10.1021/je0601816
Copyright © 2007 American Chemical Society

    Article Views

    652

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (46 KB)
    Supporting Info (1)»

    Abstract

    Infinite dilution binary diffusion coefficients D12 for arabinose, xylose, glucose, mannose, galactose, and sucrose in water were measured over the temperature range from (273.2 to 353.2) K at 0.1 MPa with the Taylor dispersion method. The values of D12/T were well correlated with water viscosity for each solute with average absolute deviation AAD < 1.7 %. The accuracies for various predictive correlations were also examined.

    *

     Corresponding author. Tel:  +81 3 3817 1914, Fax:  +81 3 3817 1895. E-mail:  [email protected].

    Supporting Information


    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 46 publications.

    1. Shaohua Zhang, Zhongyi Jiang, Jiafu Shi, Xueyan Wang, Pingping Han, and Weilun Qian . An Efficient, Recyclable, and Stable Immobilized Biocatalyst Based on Bioinspired Microcapsules-in-Hydrogel Scaffolds. ACS Applied Materials & Interfaces 2016, 8 (38) , 25152-25161. https://doi.org/10.1021/acsami.6b09483
    2. Tatsuya Umecky, Kozue Ehara, Shigeyoshi Omori, Tomoyuki Kuga, Kazuko Yui, and Toshitaka Funazukuri . Binary Diffusion Coefficients of Aqueous Phenylalanine, Tyrosine Isomers, and Aminobutyric Acids at Infinitesimal Concentration and Temperatures from (293.2 to 333.2) K. Journal of Chemical & Engineering Data 2013, 58 (7) , 1909-1917. https://doi.org/10.1021/je3012698
    3. Kazuko Yui, Naoto Yamazaki, and Toshitaka Funazukuri . Infinite Dilution Binary Diffusion Coefficients for Compounds Derived from Biomass in Water at 0.1 MPa and Temperatures from (298.2 to 353.2) K. Journal of Chemical & Engineering Data 2013, 58 (1) , 183-186. https://doi.org/10.1021/je301060a
    4. Pablo Blanco, Hartmut Kriegs, Bastian Arlt and Simone Wiegand. Thermal Diffusion of Oligosaccharide Solutions: The Role of Chain Length and Structure. The Journal of Physical Chemistry B 2010, 114 (33) , 10740-10747. https://doi.org/10.1021/jp104534m
    5. Pablo Blanco and Simone Wiegand. Study of the Soret Effect in Monosaccharide Solutions. The Journal of Physical Chemistry B 2010, 114 (8) , 2807-2813. https://doi.org/10.1021/jp910331a
    6. I-Hsiang Lin and Chung-Sung Tan. Diffusion of Benzonitrile in CO2-Expanded Ethanol. Journal of Chemical & Engineering Data 2008, 53 (8) , 1886-1891. https://doi.org/10.1021/je800211x
    7. Emilija Rakić, Andrii Kostyniuk, Nikola Nikačević, Blaž Likozar. Reaction microkinetic model of xylose dehydration to furfural over beta zeolite catalyst. Biomass Conversion and Biorefinery 2023, 12 https://doi.org/10.1007/s13399-023-04969-1
    8. Robert M. Elder, David M. Saylor. Robust estimates of solute diffusivity in polymers for predicting patient exposure to medical device leachables. Journal of Polymer Science 2023, 61 (18) , 2163-2180. https://doi.org/10.1002/pol.20230219
    9. Victoria D. S. Freitas, Ana Paez, Pascal Fongarland, Régis Philippe, Léa Vilcocq. Catalytic Hydrogenation of Hemicellulosic Sugars: Reaction Kinetics and Influence of Sugar Structure on Reaction Rate**. ChemCatChem 2023, 15 (13) https://doi.org/10.1002/cctc.202300263
    10. Buddhika Rathnayake, Hanna Valkama, Markku Ohenoja, Jasmiina Haverinen, Riitta L. Keiski. Evaluation of Nanofiltration Membranes for the Purification of Monosaccharides: Influence of pH, Temperature, and Sulfates on the Solute Retention and Fouling. Membranes 2022, 12 (12) , 1210. https://doi.org/10.3390/membranes12121210
    11. Bruno Zêzere, Inês Portugal, José Gomes, Carlos Silva. Modeling Tracer Diffusion Coefficients of Any Type of Solutes in Polar and Non-Polar Dense Solvents. Materials 2022, 15 (18) , 6416. https://doi.org/10.3390/ma15186416
    12. Ozan Tas, Ulku Ertugrul, Leonid Grunin, Mecit Halil Oztop. Investigation of the Hydration Behavior of Different Sugars by Time Domain-NMR. Foods 2022, 11 (8) , 1148. https://doi.org/10.3390/foods11081148
    13. Yong Ho Kim, Kwang-Jin Kim, David Z. D’Argenio, Edward D. Crandall. Characteristics of Passive Solute Transport across Primary Rat Alveolar Epithelial Cell Monolayers. Membranes 2021, 11 (5) , 331. https://doi.org/10.3390/membranes11050331
    14. Théophile Gaudin, Haibo Ma. The macroscopic viscosity approximation: A first-principle relationship between molecular diffusion and viscosity. AIP Advances 2020, 10 (3) https://doi.org/10.1063/1.5131234
    15. Michael H. Abraham, William E. Acree. Limiting Diffusion Coefficients for Ions and Nonelectrolytes in Solvents Water, Methanol, Ethanol, Propan-1-ol, Butan-1-ol, Octan-1-ol, Propanone and Acetonitrile at 298 K, Analyzed Using Abraham Descriptors. Journal of Solution Chemistry 2019, 48 (5) , 748-757. https://doi.org/10.1007/s10953-019-00884-0
    16. Ryan Boehm, John Donovan, Disha Sheth, Andrew Durfor, Jason Roberts, Irada Isayeva. In Vitro Sugar Interference Testing With Amperometric Glucose Oxidase Sensors. Journal of Diabetes Science and Technology 2019, 13 (1) , 82-95. https://doi.org/10.1177/1932296818791538
    17. Wolfgang Wach, Christoph Buttersack, Klaus Buchholz. Chromatography of mono- and disaccharides on granulated pellets of hydrophobic zeolites. Journal of Chromatography A 2018, 1576 , 101-112. https://doi.org/10.1016/j.chroma.2018.09.040
    18. Lei Yao, Zhen Qin, Qiming Chen, Mengyao Zhao, Hefei Zhao, Waheed Ahmad, Liqiang Fan, Liming Zhao. Insights into the nanofiltration separation mechanism of monosaccharides by molecular dynamics simulation. Separation and Purification Technology 2018, 205 , 48-57. https://doi.org/10.1016/j.seppur.2018.04.056
    19. John P. Stanford, Patrick H. Hall, Marjorie R. Rover, Ryan G. Smith, Robert C. Brown. Separation of sugars and phenolics from the heavy fraction of bio-oil using polymeric resin adsorbents. Separation and Purification Technology 2018, 194 , 170-180. https://doi.org/10.1016/j.seppur.2017.11.040
    20. Jochen Winkelmann. Diffusion coefficient of D(+)-xylose in water at infinite dilution. 2018, 2214-2214. https://doi.org/10.1007/978-3-662-54089-3_1626
    21. Jochen Winkelmann. Diffusion coefficient of arabinose in water at infinite dilution. 2018, 2216-2216. https://doi.org/10.1007/978-3-662-54089-3_1628
    22. Jochen Winkelmann. Diffusion coefficient of D(+)-glucose in water at infinite dilution. 2018, 2467-2468. https://doi.org/10.1007/978-3-662-54089-3_1865
    23. Jochen Winkelmann. Diffusion coefficient of mannose in water at infinite dilution. 2018, 2470-2470. https://doi.org/10.1007/978-3-662-54089-3_1867
    24. Jochen Winkelmann. Diffusion coefficient of D-galactose in water at infinite dilution. 2018, 2471-2471. https://doi.org/10.1007/978-3-662-54089-3_1868
    25. Jochen Winkelmann. Diffusion coefficient of saccharose in water at infinite dilution. 2018, 2896-2897. https://doi.org/10.1007/978-3-662-54089-3_2288
    26. Takashi Yamanoi, Yoshiki Oda, Kaname Katsuraya. Separation of the α- and β-Anomers of Carbohydrates by Diffusion-Ordered NMR Spectroscopy. Magnetochemistry 2017, 3 (4) , 38. https://doi.org/10.3390/magnetochemistry3040038
    27. Olumoye Ajao, Mohamed Rahni, Mariya Marinova, Hassan Chadjaa, Oumarou Savadogo. Study of Separation and Fouling of Reverse Osmosis Membranes during Model Hydrolysate Solution Filtration. Membranes 2017, 7 (4) , 68. https://doi.org/10.3390/membranes7040068
    28. Virginie Boy, Hélène Roux‐de Balmann, Sylvain Galier. How do ions enhance the transfer during nanofiltration of saccharides? Experimental assessment of the dehydration assumption. The Canadian Journal of Chemical Engineering 2017, 95 (5) , 974-984. https://doi.org/10.1002/cjce.22755
    29. Mario Novak, Antonija Trontel, Anita Slavica, Predrag Horvat, Božidar Šantek. Computational fluid dynamic (CFD) modeling of simultaneous extraction and fermentation process in a single sugar beet cossette. The EuroBiotech Journal 2017, 1 (1) , 18-26. https://doi.org/10.24190/ISSN2564-615X/2017/01.04
    30. Vincenzo Russo, Teuvo Kilpiö, Martino Di Serio, Riccardo Tesser, Elio Santacesaria, Dmitry Yu. Murzin, Tapio Salmi. Dynamic non-isothermal trickle bed reactor with both internal diffusion and heat conduction: Sugar hydrogenation as a case study. Chemical Engineering Research and Design 2015, 102 , 171-185. https://doi.org/10.1016/j.cherd.2015.06.011
    31. Boya Xiong, Tom L. Richard, Manish Kumar. Integrated acidogenic digestion and carboxylic acid separation by nanofiltration membranes for the lignocellulosic carboxylate platform. Journal of Membrane Science 2015, 489 , 275-283. https://doi.org/10.1016/j.memsci.2015.04.022
    32. Jianquan Luo, Birgitte Zeuner, Sofie T. Morthensen, Anne S. Meyer, Manuel Pinelo. Separation of phenolic acids from monosaccharides by low-pressure nanofiltration integrated with laccase pre-treatments. Journal of Membrane Science 2015, 482 , 83-91. https://doi.org/10.1016/j.memsci.2015.02.022
    33. Johan O Westman, Nicklas Bonander, Mohammad J Taherzadeh, Carl Johan Franzén. Improved sugar co-utilisation by encapsulation of a recombinant Saccharomyces cerevisiae strain in alginate-chitosan capsules. Biotechnology for Biofuels 2014, 7 (1) https://doi.org/10.1186/1754-6834-7-102
    34. Davide Durante, Teuvo Kilpiö, Petteri Suominen, Victor Sifontes Herrera, Johan Wärnå, Paolo Canu, Tapio Salmi. Modeling and simulation of a small-scale trickle bed reactor for sugar hydrogenation. Computers & Chemical Engineering 2014, 66 , 22-35. https://doi.org/10.1016/j.compchemeng.2014.02.025
    35. Qilong REN, Huabin XING, Zongbi BAO, Baogen SU, Qiwei YANG, Yiwen YANG, Zhiguo ZHANG. Recent Advances in Separation of Bioactive Natural Products. Chinese Journal of Chemical Engineering 2013, 21 (9) , 937-952. https://doi.org/10.1016/S1004-9541(13)60560-1
    36. Patrícia F. Lito, Ana L. Magalhães, José R.B. Gomes, Carlos M. Silva. Universal model for accurate calculation of tracer diffusion coefficients in gas, liquid and supercritical systems. Journal of Chromatography A 2013, 1290 , 1-26. https://doi.org/10.1016/j.chroma.2013.03.049
    37. Sylvain Galier, Julie Savignac, Hélène Roux-de Balmann. Influence of the ionic composition on the diffusion mass transfer of saccharides through a cation-exchange membrane. Separation and Purification Technology 2013, 109 , 1-8. https://doi.org/10.1016/j.seppur.2013.02.019
    38. Ana L. Magalhães, Patrícia F. Lito, Francisco A. Da Silva, Carlos M. Silva. Simple and accurate correlations for diffusion coefficients of solutes in liquids and supercritical fluids over wide ranges of temperature and density. The Journal of Supercritical Fluids 2013, 76 , 94-114. https://doi.org/10.1016/j.supflu.2013.02.002
    39. Ana L. Magalhães, Francisco A. Da Silva, Carlos M. Silva. Free-volume model for the diffusion coefficients of solutes at infinite dilution in supercritical CO2 and liquid H2O. The Journal of Supercritical Fluids 2013, 74 , 89-104. https://doi.org/10.1016/j.supflu.2012.12.004
    40. Ana L. Magalhães, Francisco A. Da Silva, Carlos M. Silva. Tracer diffusion coefficients of polar systems. Chemical Engineering Science 2012, 73 , 151-168. https://doi.org/10.1016/j.ces.2011.12.004
    41. Eunpyo Choi, Hyung-kwan Chang, Chae Young Lim, Taesung Kim, Jungyul Park. Concentration gradient generation of multiple chemicals using spatially controlled self-assembly of particles in microchannels. Lab on a Chip 2012, 12 (20) , 3968. https://doi.org/10.1039/c2lc40450h
    42. Ana C.F. Ribeiro, Joselaine C.S. Gomes, Marisa C.F. Barros, Victor M.M. Lobo, Miguel A. Esteso. Diffusion coefficients of nickel chloride in aqueous solutions of lactose at T=298.15K and T=310.15K. The Journal of Chemical Thermodynamics 2011, 43 (3) , 270-274. https://doi.org/10.1016/j.jct.2010.09.006
    43. Ana C.F. Ribeiro, Marisa C.F. Barros, Victor M.M. Lobo, Abílio J.F.N. Sobral, Sonia I.G. Fangaia, Pedro M.G. Nicolau, Fernando A.D.R.A. Guerra, M.A. Esteso. Interaction between calcium chloride and some carbohydrates as seen by mutual diffusion at 25°C and 37°C. Food Chemistry 2011, 124 (3) , 842-849. https://doi.org/10.1016/j.foodchem.2010.07.005
    44. Livia Nagy, Gergely Gyetvai, Geza Nagy. Determination of the Diffusion Coefficient of Monosaccharides with Scanning Electrochemical Microscopy (SECM). Electroanalysis 2009, 21 (3-5) , 542-549. https://doi.org/10.1002/elan.200804442
    45. Tatsuya Umecky, Shigeyoshi Omori, Tomoyuki Kuga, Toshitaka Funazukuri. Effects of hydroxyl groups on binary diffusion coefficients of α-amino acids in dilute aqueous solutions. Fluid Phase Equilibria 2008, 264 (1-2) , 18-22. https://doi.org/10.1016/j.fluid.2007.10.013
    46. Kourosh Malek. Solute transport in orthorhombic lysozyme crystals: a molecular simulation study. Biotechnology Letters 2007, 29 (12) , 1865-1873. https://doi.org/10.1007/s10529-007-9466-7

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect