ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters

View Author Information
CICECO, Chemistry Department, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal, Polytechnic Institute of Leiria, Leiria, Morro do Lena - Alto Vieiro, 2411-901 Leiria, Portugal, and Universidade Tiradentes, Av. Murilo Dantas 300, Farolândia, Aracaju-SE, Brasil
* To whom correspondence should be addressed. E-mail: [email protected]. Phone: +351 234401507. Fax: +351 234370084.
†University of Aveiro.
‡Polytechnic Institute of Leiria.
§Universidade Tiradentes.
Cite this: J. Chem. Eng. Data 2010, 55, 9, 3983–3990
Publication Date (Web):July 19, 2010
https://doi.org/10.1021/je100042c
Copyright © 2010 American Chemical Society

    Article Views

    4867

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    To develop reliable models for the densities and viscosities of biodiesel fuel, reliable data for the pure fatty acid esters are required. Densities and viscosities were measured for seven ethyl esters and eight methyl esters, at atmospheric pressure and temperatures from (273.15 to 363.15) K. A critical assessment of the measured data against the data previously available in the literature was carried out. It is shown that the data here reported presents deviations of less than 0.15 % for densities and less than 5 % for viscosities. Correlations for the densities and viscosities with temperature are proposed. The densities and viscosities of the pure ethyl and methyl esters here reported were used to evaluate three predictive models. The GCVOL group contribution method is shown to be able to predict densities for these compounds within 1 %. The methods of Ceriani and Meirelles (CM) and of Marreiro and Gani (MG) were applied to the viscosity data. It is shown that only the first of these methods is able to provide a fair description of the viscosities of fatty acid esters.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 272 publications.

    1. Ao Dong, Taotao Zhan, Yuqi Su, Hongyu He, Weijie Jia, Maogang He, Ying Zhang. Thermodynamic Properties of 1-Butanol + Ethyl Laurate Binary Mixtures by Combining Experimental Speeds of Sound with Volume Translated Peng–Robinson Equation of State. Journal of Chemical & Engineering Data 2023, 68 (12) , 3021-3032. https://doi.org/10.1021/acs.jced.3c00289
    2. Chandani Sharma, Ankush Bakshi, Ushma Syal, Meena Sharma. Excess Thermodynamic and Transport Investigations for the Binary Mixtures of 1,2,3,4-Tetrahydronaphthalene with Fatty Acid Ethyl Esters as Potential Biodiesel Fuels. Journal of Chemical & Engineering Data 2022, 67 (12) , 3622-3636. https://doi.org/10.1021/acs.jced.2c00547
    3. Suleiman M. Rasulov, Il’yas A. Isaev, Ilmutdin M. Abdulagatov. High-Temperature and High-Pressure PVT Measurements of the Binary n-Hexane + Methyl Octanoate Mixture near the Critical Point of the Pure Solvent (n-Hexane). Journal of Chemical & Engineering Data 2022, 67 (9) , 2333-2346. https://doi.org/10.1021/acs.jced.2c00325
    4. Lala A. Akhmedova-Azizova, Mirvari Mammedova, Gachay Nazhafov, Misirkhan A. Talybov, Ilmutdin M. Abdulagatov. Measurements and Reference Correlation of the Density and Speed of Sound and Derived Thermodynamic Properties of Methyl Laurate and Methyl Stearate. Journal of Chemical & Engineering Data 2022, 67 (3) , 580-593. https://doi.org/10.1021/acs.jced.1c00845
    5. Alanderson Arthu Araújo Alves, Lucas Henrique Gomes de Medeiros, Filipe Xavier Feitosa, Hosiberto Batista de Sant’Ana. Thermodynamic Properties of Biodiesel and Petrodiesel Blends at High Pressure and High Temperature and a New Model for Density Prediction. Journal of Chemical & Engineering Data 2022, 67 (3) , 607-621. https://doi.org/10.1021/acs.jced.1c00918
    6. Abel G. M. Ferreira, Jaime Batista Santos, Johnny Baptista, Saman Khalighi, Rui M. M. Brito, Pedro F. Cruz. Effect of Isobutanol Addition on the Biodiesel Density. Journal of Chemical & Engineering Data 2021, 66 (12) , 4542-4562. https://doi.org/10.1021/acs.jced.1c00588
    7. Grigor B. Bantchev Cinta Lorenzo-Martin Oyelayo O. Ajayi . Phosphonates from Lipids—Synthesis and Tribological Evaluation. , 139-156. https://doi.org/10.1021/bk-2021-1392.ch008
    8. Pengfei Jiang, Yitong Dai, Tong Du, Yongsheng Guo, Wenjun Fang. Densities and Viscosities for the Ternary Mixture of n-Undecane (1) + Methyl Decanoate (2) + n-Butanol (3) and Corresponding Binaries from T = 293.15 to 333.15 K and at Atmospheric Pressure. Journal of Chemical & Engineering Data 2021, 66 (10) , 3834-3843. https://doi.org/10.1021/acs.jced.1c00480
    9. Elias Martinez-Hernandez, Diego Valencia, Cristopher Arvizu, Diego Francisco Romero Alatorre, Jorge Aburto. Molecular Graph Modularity as a Descriptor for Property Estimation—Application to the Viscosity of Biomass-Derived Molecules. ACS Sustainable Chemistry & Engineering 2021, 9 (20) , 7044-7052. https://doi.org/10.1021/acssuschemeng.1c00841
    10. Zilin Zhou, Jonathan P. D. Abbatt. Formation of Gas-Phase Hydrogen Peroxide via Multiphase Ozonolysis of Unsaturated Lipids. Environmental Science & Technology Letters 2021, 8 (2) , 114-120. https://doi.org/10.1021/acs.estlett.0c00757
    11. Alessandro Perego, Fardin Khabaz. Thermodynamics, Dynamics, and Rheology of Fuel Surrogates: Application of the Time–Temperature Superposition Principle in Molecular Dynamics Simulations. Energy & Fuels 2020, 34 (9) , 10631-10640. https://doi.org/10.1021/acs.energyfuels.0c01183
    12. Farid Jafarihaghighi, Mehdi Ardjmand, Mohammad Salar Hassani, Mehrdad Mirzajanzadeh, Hasanali Bahrami. Effect of Fatty Acid Profiles and Molecular Structures of Nine New Source of Biodiesel on Combustion and Emission. ACS Omega 2020, 5 (26) , 16053-16063. https://doi.org/10.1021/acsomega.0c01526
    13. Taotao Zhan, Junshuai Chen, Xin Li, Qi Zhou, Maogang He, Ying Zhang. Speed of Sound and Derivative Properties of Ethyl Laurate from Rayleigh–Brillouin Light-Scattering Spectroscopy. Journal of Chemical & Engineering Data 2020, 65 (6) , 3146-3160. https://doi.org/10.1021/acs.jced.0c00164
    14. Dan Li, Juan Wang, Yanan Gao, Xinyu Zhan, Mengyun Li, Yuxiang Wang. Density, Viscosity, and Refractive Index of Binary Mixtures of Fatty Acid Ethyl Esters with Ethylcyclohexane. Journal of Chemical & Engineering Data 2019, 64 (12) , 5324-5331. https://doi.org/10.1021/acs.jced.9b00544
    15. Guanjia Zhao, Zemin Yuan, Jianguo Yin, Suxia Ma. Experimental Investigation of the Thermophysical Properties of the Bio-Aviation Fuel Surrogates: Binary and Ternary Mixtures of n-Dodecane, Methyl Butyrate, and Methyl Decanoate. Journal of Chemical & Engineering Data 2019, 64 (12) , 5510-5522. https://doi.org/10.1021/acs.jced.9b00643
    16. Joan F. Brennecke (Editor-in-Chief). Celebrating JCED’s High Impact Authors. Journal of Chemical & Engineering Data 2019, 64 (11) , 4607-4610. https://doi.org/10.1021/acs.jced.9b01050
    17. Junshuai Chen, Ying Zhang, Taotao Zhan, Qi Zhou, Tian Lan, Maogang He. Measurement of the Speed of Sound in Methyl Caprylate from 298.22 to 608.38 K and up to 10 MPa. Journal of Chemical & Engineering Data 2019, 64 (8) , 3617-3623. https://doi.org/10.1021/acs.jced.9b00371
    18. Lucas F. F. Corrêa, Rafael P. Soares, Roberta Ceriani. Liquid–Liquid Equilibria for Ternary Mixtures of γ-Valerolactone + n-Tetradecane + (Butanoic Acid or Hexanoic Acid or Methyl Myristate) at 298.15 K. Journal of Chemical & Engineering Data 2019, 64 (5) , 2045-2051. https://doi.org/10.1021/acs.jced.8b01025
    19. María F. Gutiérrez, Andrea Suaza, José L. Rivera, Alvaro Orjuela. Solid–Liquid Equilibria and Characterization of the Reaction Mixture To Produce Sucrose Palmitate in Solvent-Free Media. Journal of Chemical & Engineering Data 2019, 64 (5) , 2052-2061. https://doi.org/10.1021/acs.jced.8b01026
    20. Niklas Haarmann, Riko Siewert, Artemiy A. Samarov, Sergey P. Verevkin, Christoph Held, Gabriele Sadowski. Thermodynamic Properties of Systems Comprising Esters: Experimental Data and Modeling with PC-SAFT and SAFT-γ Mie. Industrial & Engineering Chemistry Research 2019, 58 (16) , 6841-6849. https://doi.org/10.1021/acs.iecr.9b00714
    21. Nieves M. C. Talavera-Prieto, Abel G. M. Ferreira, António T. G. Portugal, Ana P. V. Egas. Viscosity of Cottonseed Oil and Biodiesel. Journal of Chemical & Engineering Data 2019, 64 (3) , 1166-1176. https://doi.org/10.1021/acs.jced.8b01087
    22. Niklas Haarmann, Sabine Enders, Gabriele Sadowski. Heterosegmental Modeling of Long-Chain Molecules and Related Mixtures using PC-SAFT: 1. Polar Compounds. Industrial & Engineering Chemistry Research 2019, 58 (7) , 2551-2574. https://doi.org/10.1021/acs.iecr.8b03799
    23. Xiangyang Liu, Feng Yang, Tianwang Lai, Chenyang Zhu, Maogang He. Densities and Viscosities of Mixtures of Methyl Dodecanoate + Ethyl Octanoate at Pressures up to 15 MPa. Journal of Chemical & Engineering Data 2018, 63 (11) , 4085-4094. https://doi.org/10.1021/acs.jced.8b00521
    24. Maxwell G. Silva, Lucas R. P. Nobre, Luiz E. P. Santiago, Marcell S. Deus, Anderson A. Jesus, Jackson A. Oliveira, Domingos F. S. Souza. Mathematical Modeling and Simulation of Biodiesel Production in a Semibatch Bubble Reactor. Energy & Fuels 2018, 32 (9) , 9614-9623. https://doi.org/10.1021/acs.energyfuels.8b02196
    25. Pedro F. Arce, Nian F. Vieira, and Edson M. S. Igarashi . Thermodynamic Modeling and Simulation of Biodiesel Systems at Supercritical Conditions. Industrial & Engineering Chemistry Research 2018, 57 (2) , 751-767. https://doi.org/10.1021/acs.iecr.7b04195
    26. Mostafa Abolala, Zahra Pourdehzad, and Kiana Peyvandi . Extension of 2C Association Scheme to Polyols Phase Equilibria. Industrial & Engineering Chemistry Research 2017, 56 (48) , 14369-14383. https://doi.org/10.1021/acs.iecr.7b03453
    27. Xiangyang Liu, Tianwang Lai, Xudong Guo, Maogang He, Wei Dong, Tansu Shang, and Weiping Yang . Densities and Viscosities of Ethyl Heptanoate and Ethyl Octanoate at Temperatures from 303 to 353 K and at Pressures up to 15 MPa. Journal of Chemical & Engineering Data 2017, 62 (8) , 2454-2460. https://doi.org/10.1021/acs.jced.7b00386
    28. Mohamed A. Aissa, Gorica R. Ivaniš, Ivona R. Radović, and Mirjana Lj. Kijevčanin . Experimental Investigation and Modeling of Thermophysical Properties of Pure Methyl and Ethyl Esters at High Pressures. Energy & Fuels 2017, 31 (7) , 7110-7122. https://doi.org/10.1021/acs.energyfuels.7b00561
    29. Anton M. Reiter, Nikolai Schubert, Andreas Pfennig, and Thomas Wallek . Surrogate Generation and Evaluation for Biodiesel and Its Mixtures with Fossil Diesel. Energy & Fuels 2017, 31 (6) , 6173-6181. https://doi.org/10.1021/acs.energyfuels.7b00603
    30. Marzena Dzida, Edward Zorębski, Michał Zorębski, Monika Żarska, Monika Geppert-Rybczyńska, Mirosław Chorążewski, Johan Jacquemin, and Ivan Cibulka . Speed of Sound and Ultrasound Absorption in Ionic Liquids. Chemical Reviews 2017, 117 (5) , 3883-3929. https://doi.org/10.1021/acs.chemrev.5b00733
    31. Vineet Aniya, Ramesh Tangirala, Prathap K. Thella, and Bankupalli Satyavathi . Measurement and Correlation Studies of the Saturated Vapor Pressure, Density, Refractive Indices, and Viscosity of Methyl 4-tert-Butylbenzoate. Journal of Chemical & Engineering Data 2017, 62 (1) , 96-104. https://doi.org/10.1021/acs.jced.6b00470
    32. Didier Mathieu and Rémi Bouteloup . Reliable and Versatile Model for the Density of Liquids Based on Additive Volume Increments. Industrial & Engineering Chemistry Research 2016, 55 (50) , 12970-12980. https://doi.org/10.1021/acs.iecr.6b03809
    33. Ying Zhang, Xiong Zheng, Mao-Gang He, and Yutian Chen . Speed of Sound in Methyl Caprate, Methyl Laurate, and Methyl Myristate: Measurement by Brillouin Light Scattering and Prediction by Wada’s Group Contribution Method. Energy & Fuels 2016, 30 (11) , 9502-9509. https://doi.org/10.1021/acs.energyfuels.6b01959
    34. Ying Duan, Yong Nie, Ruchao Gong, Shangzhi Yu, Dongshun Deng, Meizhen Lu, Ping Chen, and Jianbing Ji . Measurements and Correlations of Density, Viscosity, and Vapor Pressure for Methyl Ricinoleate. Journal of Chemical & Engineering Data 2016, 61 (2) , 766-771. https://doi.org/10.1021/acs.jced.5b00545
    35. Matthieu Habrioux, Jean-Patrick Bazile, Guillaume Galliero, and Jean Luc Daridon . Viscosities of Fatty Acid Methyl and Ethyl Esters under High Pressure: Methyl Myristate and Ethyl Myristate. Journal of Chemical & Engineering Data 2016, 61 (1) , 398-403. https://doi.org/10.1021/acs.jced.5b00612
    36. Frederico R. do Carmo, Nathan S. Evangelista, Fabiano A. N. Fernandes, and Hosiberto B. de Sant’Ana . Evaluation of Optimal Methods for Critical Properties and Acentric Factor of Biodiesel Compounds with Their Application on Soave–Redlich–Kwong and Peng–Robinson Equations of State. Journal of Chemical & Engineering Data 2015, 60 (11) , 3358-3381. https://doi.org/10.1021/acs.jced.5b00638
    37. Rustam A. Usmanov, Sergei V. Mazanov, Asiya R. Gabitova, Lina Kh. Miftakhova, Farid M. Gumerov, Rashid Z. Musin, and Ilmutdin M. Abdulagatov . The Effect of Fatty Acid Ethyl Esters Concentration on the Kinematic Viscosity of Biodiesel Fuel. Journal of Chemical & Engineering Data 2015, 60 (11) , 3404-3413. https://doi.org/10.1021/acs.jced.5b00683
    38. Matthieu Habrioux, Jean-Patrick Bazile, Guillaume Galliero, and Jean Luc Daridon . Viscosities of Fatty Acid Methyl and Ethyl Esters under High Pressure: Methyl Caprate and Ethyl Caprate. Journal of Chemical & Engineering Data 2015, 60 (3) , 902-908. https://doi.org/10.1021/je500980a
    39. Indra Bahadur, Faizal Bux, Abhishek Guldhe, Kaniki Tumba, Bhaskar Singh, Deresh Ramjugernath, and Kandasamy G. Moodley . Assessment of Potential of Croton gratissimus Oil for Macroscale Production of Biodiesel Based on Thermophysical Properties. Energy & Fuels 2014, 28 (12) , 7576-7581. https://doi.org/10.1021/ef502270v
    40. Suriya Phankosol, Kaokanya Sudaprasert, Supathra Lilitchan, Kornkanok Aryusuk, and Kanit Krisnangkura . Estimation of Density of Biodiesel. Energy & Fuels 2014, 28 (7) , 4633-4641. https://doi.org/10.1021/ef501031z
    41. Thomas Wallek, Jürgen Rarey, Jürgen O. Metzger, and Jürgen Gmehling . Estimation of Pure-Component Properties of Biodiesel-Related Components: Fatty Acid Methyl Esters, Fatty Acids, and Triglycerides. Industrial & Engineering Chemistry Research 2013, 52 (47) , 16966-16978. https://doi.org/10.1021/ie402591g
    42. Samuel V. D. Freitas, Francisca A. e Silva, María José Pastoriza-Gallego, Manuel M. Piñeiro, Álvaro S. Lima, and João A. P. Coutinho . Measurement and Prediction of Densities of Vegetable Oils at Pressures up to 45 MPa. Journal of Chemical & Engineering Data 2013, 58 (11) , 3046-3053. https://doi.org/10.1021/je400474w
    43. Rodrigo C. Basso, Antônio J. A. Meirelles, and Eduardo A. C. Batista . Biodiesel Produced by Ethanolysis: Melting Profile, Densities, and Viscosities. Energy & Fuels 2013, 27 (10) , 5907-5914. https://doi.org/10.1021/ef401102e
    44. El Hadji I. Ndiaye, Matthieu Habrioux, João A. P. Coutinho, Márcio L. L. Paredes, and Jean Luc Daridon . Speed of Sound, Density, and Derivative Properties of Methyl Oleate and Methyl Linoleate under High Pressure. Journal of Chemical & Engineering Data 2013, 58 (8) , 2345-2354. https://doi.org/10.1021/je4005323
    45. Marzena Dzida, Sylwia Jężak, Justyna Sumara, Monika Żarska, and Paweł Góralski . High-Pressure Physicochemical Properties of Ethyl Caprylate and Ethyl Caprate. Journal of Chemical & Engineering Data 2013, 58 (7) , 1955-1962. https://doi.org/10.1021/je400157s
    46. El Hadji I. Ndiaye, Matthieu Habrioux, João A. P. Coutinho, Márcio L. L. Paredes, and Jean Luc Daridon . Speed of Sound, Density, and Derivative Properties of Ethyl Myristate, Methyl Myristate, and Methyl Palmitate under High Pressure. Journal of Chemical & Engineering Data 2013, 58 (5) , 1371-1377. https://doi.org/10.1021/je400122k
    47. Samuel V. D. Freitas, Deivisson L. Cunha, Rodrigo A. Reis, Álvaro S. Lima, Jean-Luc Daridon, João A. P. Coutinho, and Márcio L. L. Paredes . Application of Wada’s Group Contribution Method to the Prediction of the Speed of Sound of Biodiesel. Energy & Fuels 2013, 27 (3) , 1365-1370. https://doi.org/10.1021/ef3018089
    48. Rodrigo Corrêa Basso, Antonio José de Almeida Meirelles, and Eduardo Augusto Caldas Batista . Densities and Viscosities of Fatty Acid Ethyl Esters and Biodiesels Produced by Ethanolysis from Palm, Canola, and Soybean Oils: Experimental Data and Calculation Methodologies. Industrial & Engineering Chemistry Research 2013, 52 (8) , 2985-2994. https://doi.org/10.1021/ie3026899
    49. G. R. Moradi, B. Karami, and M. Mohadesi . Densities and Kinematic Viscosities in Biodiesel–Diesel Blends at Various Temperatures. Journal of Chemical & Engineering Data 2013, 58 (1) , 99-105. https://doi.org/10.1021/je3008843
    50. El Hadji Ibrahima Ndiaye, Djamel Nasri, and Jean Luc Daridon . Speed of Sound, Density, and Derivative Properties of Fatty Acid Methyl and Ethyl Esters under High Pressure: Methyl Caprate and Ethyl Caprate. Journal of Chemical & Engineering Data 2012, 57 (10) , 2667-2676. https://doi.org/10.1021/je300405a
    51. Satish Kumar, Vinod Kumar Sharma, Wonsub Lim, Jae Hyun Cho, and Il Moon . Densities and Speeds of Sound of Jatropha curcas Biodiesel + (C4–C5) Alkan-1-ol Binary Mixtures. Journal of Chemical & Engineering Data 2012, 57 (8) , 2236-2242. https://doi.org/10.1021/je300256m
    52. Saeid Baroutian, Kaveh Shahbaz, Farouq S. Mjalli, Mohd A. Hashim, and Inas M. AlNashef . Densities and Viscosities of Binary Blends of Methyl Esters + Ethyl Esters and Ternary Blends of Methyl Esters + Ethyl Esters + Diesel Fuel from T = (293.15 to 358.15) K. Journal of Chemical & Engineering Data 2012, 57 (5) , 1387-1395. https://doi.org/10.1021/je2013445
    53. Diego Alonso Saldana, Laurie Starck, Pascal Mougin, Bernard Rousseau, Nicolas Ferrando, and Benoit Creton . Prediction of Density and Viscosity of Biofuel Compounds Using Machine Learning Methods. Energy & Fuels 2012, 26 (4) , 2416-2426. https://doi.org/10.1021/ef3001339
    54. Paul Hellier, Nicos Ladommatos, Robert Allan, and John Rogerson . The Influence of Fatty Acid Ester Alcohol Moiety Molecular Structure on Diesel Combustion and Emissions. Energy & Fuels 2012, 26 (3) , 1912-1927. https://doi.org/10.1021/ef2017545
    55. Manuel García, Juan-José Alba, Alberto Gonzalo, José Luis Sánchez, and Jesús Arauzo . Comparison of Methods for Estimating Critical Properties of Alkyl Esters and Its Mixtures. Journal of Chemical & Engineering Data 2012, 57 (1) , 208-218. https://doi.org/10.1021/je201039n
    56. István Barabás and Ioan-Adrian Todoruţ . Predicting the Temperature Dependent Viscosity of Biodiesel–Diesel–Bioethanol Blends. Energy & Fuels 2011, 25 (12) , 5767-5774. https://doi.org/10.1021/ef2007936
    57. Stephanie L. Outcalt . Compressed-Liquid Density Measurements of Methyl Oleate and Methyl Linoleate. Journal of Chemical & Engineering Data 2011, 56 (11) , 4239-4243. https://doi.org/10.1021/je2008582
    58. Samuel V. D. Freitas, Mariana B. Oliveira, António J. Queimada, Maria Jorge Pratas, Álvaro S. Lima, and João A. P. Coutinho . Measurement and Prediction of Biodiesel Surface Tensions. Energy & Fuels 2011, 25 (10) , 4811-4817. https://doi.org/10.1021/ef201217q
    59. Maria Jorge Pratas, Mariana B. Oliveira, Maria José Pastoriza-Gallego, António J. Queimada, Manuel M. Piñeiro, and João A. P. Coutinho . High-Pressure Biodiesel Density: Experimental Measurements, Correlation, and Cubic-Plus-Association Equation of State (CPA EoS) Modeling. Energy & Fuels 2011, 25 (8) , 3806-3814. https://doi.org/10.1021/ef200807m
    60. Maria Jorge Pratas, Samuel V. D. Freitas, Mariana B. Oliveira, Sílvia C. Monteiro, Álvaro S. Lima, and João A. P. Coutinho . Biodiesel Density: Experimental Measurements and Prediction Models. Energy & Fuels 2011, 25 (5) , 2333-2340. https://doi.org/10.1021/ef2002124
    61. Maria Jorge Pratas, Samuel Freitas, Mariana B. Oliveira, Sílvia C. Monteiro, Álvaro S. Lima, and João A.P. Coutinho . Densities and Viscosities of Minority Fatty Acid Methyl and Ethyl Esters Present in Biodiesel. Journal of Chemical & Engineering Data 2011, 56 (5) , 2175-2180. https://doi.org/10.1021/je1012235
    62. Samuel V. D. Freitas, Maria Jorge Pratas, Roberta Ceriani, Álvaro S. Lima, and João A. P. Coutinho . Evaluation of Predictive Models for the Viscosity of Biodiesel. Energy & Fuels 2011, 25 (1) , 352-358. https://doi.org/10.1021/ef101299d
    63. Luis A. Follegatti-Romero, Marcelo Lanza, Fabio R. M. Batista, Eduardo A. C. Batista, Mariana B. Oliveira, João A. P. Coutinho, and Antonio J. A. Meirelles. Liquid−Liquid Equilibrium for Ternary Systems Containing Ethyl Esters, Anhydrous Ethanol and Water at 298.15, 313.15, and 333.15 K. Industrial & Engineering Chemistry Research 2010, 49 (24) , 12613-12619. https://doi.org/10.1021/ie101611j
    64. Gokul Raghavendra Srinivasan, Krishna Kumar Yadav, Arif Senol Sener, Zaher Mundher Yaseen, Mudassir Hasan, Fredrick Orori Kengara, Balasubramani Ravindran, Santhana Krishnan, Shiv Prasad, Maha Awjan Alreshidi, Vandana Vinayak, Amin Salhi, Mohd Zahid Ansari, Ramnarayan Yadava. Mono- and Co- solvency based transesterification of Caryota urens seed oil. Industrial Crops and Products 2024, 209 , 117965. https://doi.org/10.1016/j.indcrop.2023.117965
    65. Luis Felipe Ramírez-Verduzco, Mirna Jimena Hernández-Sánchez. Group contribution method for predicting viscosity of alkyl esters and biodiesel. Fuel 2024, 357 , 129666. https://doi.org/10.1016/j.fuel.2023.129666
    66. M. G. Arenas-Quevedo, M. E. Manríquez, J. A. Wang, O. Elizalde-Solís, J. González-García, A. Zúñiga-Moreno, L. F. Chen. ZnO–Doped CaO Binary Core–Shell Catalysts for Biodiesel Production via Mexican Palm Oil Transesterification. Inorganics 2024, 12 (2) , 51. https://doi.org/10.3390/inorganics12020051
    67. Xiang Gao, Biyuan Hong, Meiyu Zhang, Dan Li. Investigations on the Thermophysical Properties of Binary Systems of Fatty Acid Esters + Dimethyl Carbonate. Journal of Solution Chemistry 2024, 53 (2) , 257-277. https://doi.org/10.1007/s10953-023-01327-7
    68. Monika Żarska, Michał Zorębski, Marzena Dzida. Examination of compressed isopropyl myristate and isopropyl palmitate as components of biodiesel fuel with improved cold flow characteristics. Fluid Phase Equilibria 2024, 576 , 113937. https://doi.org/10.1016/j.fluid.2023.113937
    69. Naoual Dahmana, Pierre-Louis Destruel, Samantha Facchetti, Vanessa Braun, Vanessa Lebouc, Zana Marin, Sulabh Patel, Gregoire Schwach. Reversible protein complexes as a promising avenue for the development of high concentration formulations of biologics. International Journal of Pharmaceutics 2023, 648 , 123616. https://doi.org/10.1016/j.ijpharm.2023.123616
    70. Jingyi Wang, Yifan Wang, Kuanjun Zhang, Xun Liu, Shishuang Zhang, Dianlin Wang, Lei Xie. Understanding the role of infusing lubricant composition in the interfacial interactions and properties of slippery surface. Journal of Colloid and Interface Science 2023, 30 https://doi.org/10.1016/j.jcis.2023.12.174
    71. Hiroshi Yamawaki. Pressure Dependence of the Viscosity and Density of Oleic Acid. International Journal of Thermophysics 2023, 44 (11) https://doi.org/10.1007/s10765-023-03270-7
    72. Maxime Touffet, Paul Smith, Olivier Vitrac. A comprehensive two-scale model for predicting the oxidizability of fatty acid methyl ester mixtures. Food Research International 2023, 173 , 113289. https://doi.org/10.1016/j.foodres.2023.113289
    73. Adewale Johnson Folayan, Adewale Dosunmu, Aleruchi Boniface Oriji. Synthesis and characterization of polyvalent high-performance synthetic base oil for drilling operations in recalcitrant and unconventional oil and gas reservoirs. South African Journal of Chemical Engineering 2023, 46 , 143-164. https://doi.org/10.1016/j.sajce.2023.08.001
    74. Dan Li, Yingdi Zheng, Yang Jin, Yixin Li. Densities, Viscosities and Refractive Indices for Binary Mixtures of Diethyl Carbonate with Fatty Acid Ethyl Esters. Journal of Solution Chemistry 2023, 52 (9) , 1048-1065. https://doi.org/10.1007/s10953-023-01295-y
    75. M. Muhammed Niyas, A. Shaija. Effect of fatty acid profiles of waste cooking oil biodiesels on their thermal and physical properties. Journal of Thermal Analysis and Calorimetry 2023, 148 (17) , 9225-9235. https://doi.org/10.1007/s10973-023-12279-x
    76. Hussain A. AlNazr, Nabeel Ahmad, Usama Ahmed, Balaji Mohan, Abdul Gani Abdul Jameel. Predicting physical properties of oxygenated gasoline and diesel range fuels using machine learning. Alexandria Engineering Journal 2023, 76 , 193-219. https://doi.org/10.1016/j.aej.2023.06.037
    77. J. Jovanović, D. Majstorović, I. Milošević, E. Živković, N. Grozdanić, V. Vesovic. Viscosity of methyl and ethyl esters: Experiments and modeling. Journal of Molecular Liquids 2023, 382 , 121930. https://doi.org/10.1016/j.molliq.2023.121930
    78. Jaykumar Yadav, Stefan Pischinger. A Novel Surrogate Fuel Approach for the Numerical Simulation of Renewable Fuels for the Transport Sector. Energy Conversion and Management 2023, 287 , 117056. https://doi.org/10.1016/j.enconman.2023.117056
    79. Alok Rout, Satyabrata Mishra. Ligand Effect on Physicochemical Properties of Ionic Liquid. ChemPhysChem 2023, 24 (10) https://doi.org/10.1002/cphc.202200802
    80. Carsten Wedler, J.P. Martin Trusler. Review of density and viscosity data of pure fatty acid methyl ester, ethyl ester and butyl ester. Fuel 2023, 339 , 127466. https://doi.org/10.1016/j.fuel.2023.127466
    81. Kuber Singh Mehra, Jyoti Pal, Varun Goel. A comprehensive review on the atomization and spray characteristics of renewable biofuels. Sustainable Energy Technologies and Assessments 2023, 56 , 103106. https://doi.org/10.1016/j.seta.2023.103106
    82. Nian V. Freire, Matheus C. Nunes, Pedro F. Arce. Vapor-liquid equilibrium for the {R-OH + R-palmitate} systems at 50.3 and 101.3 kPa. Fuel 2023, 333 , 126459. https://doi.org/10.1016/j.fuel.2022.126459
    83. X. Wei, V. V. Matichenkov, E. A. Bocharnikova, S. M. Sevostianov. Fatty acid esters as additive for enhancing plant uptake and translocation of iron. 2023, 020007. https://doi.org/10.1063/5.0179312
    84. S. V. Mazanov, Z. I. Zaripov, F. M. Gumerov, R. A. Usmanov, Yu. A. Shapovalov. Biodiesel fuel. part ii. thermophysical properties of systems participated in the process of obtaining biodiesel fuel using working media in the supercritical fluid state. Power engineering: research, equipment, technology 2022, 24 (5) , 35-60. https://doi.org/10.30724/1998-9903-2022-24-5-35-60
    85. M. Muhammed Niyas, A. Shaija. Effect of repeated heating of coconut, sunflower, and palm oils on their fatty acid profiles, biodiesel properties and performance, combustion, and emission, characteristics of a diesel engine fueled with their biodiesel blends. Fuel 2022, 328 , 125242. https://doi.org/10.1016/j.fuel.2022.125242
    86. Eugenio Quaranta, Angela Dibenedetto, Antonella Colucci, Daniele Cornacchia. Partial hydrogenation of FAMEs with high content of C18:2 dienes. Selective hydrogenation of tobacco seed oil-derived biodiesel. Fuel 2022, 326 , 125030. https://doi.org/10.1016/j.fuel.2022.125030
    87. Ilmutdin M. Abdulagatov, Rabiyat G. Batyrova, Nikolai G. Polikhronidi. Simultaneously measurements of vapor-pressure, saturated liquid density, single-phase PVT properties, and thermal -pressure coefficient of methyl decanoate at high- temperatures and high-pressures. Fluid Phase Equilibria 2022, 560 , 113506. https://doi.org/10.1016/j.fluid.2022.113506
    88. Monika Żarska, Michał Zorębski, Marzena Dzida. High pressure thermophysical characteristics of butyl caprate and butyl laurate as fully biorenewable components of biodiesel fuel. Fuel 2022, 323 , 124274. https://doi.org/10.1016/j.fuel.2022.124274
    89. Xiaojie Wang, Yingjie Ma, Jianing Huo, Jidong Liu, Shizhao Wang, Lide Fang, Zhiyue Zhao. Viscosity measurement and correlation research of one biodiesel component (methyl octanoate) with five 1-alcohols. Fuel 2022, 324 , 124441. https://doi.org/10.1016/j.fuel.2022.124441
    90. Hiroshi Yamawaki. Dependence of the Viscosity of Bromobenzene on Pressure Up to 400 MPa. International Journal of Thermophysics 2022, 43 (8) https://doi.org/10.1007/s10765-022-03051-8
    91. Khalil Parvaneh, Mehdi Boghrati. Global and straightforward models for viscosity prediction of fatty acid alkyl esters. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2022, 44 (8) https://doi.org/10.1007/s40430-022-03660-2
    92. Ugo Azzena, Massimo Carraro, Luisa Pisano, Elisa Pintus, Salvatore Pintus, Riccardo Polese, Pierpaolo Satta, Silvia Gaspa, Lidia De Luca, Alessandro Taras, Sebastiano Garroni. Size Selectivity in the Hydroxylation of Esters of Unsaturated Fatty Acids. European Journal of Lipid Science and Technology 2022, 124 (6) https://doi.org/10.1002/ejlt.202100234
    93. Luis Felipe Ramírez-Verduzco. A Group Contribution Method for Predicting the Alkyl Ester and Biodiesel Densities at Various Temperatures. Sustainability 2022, 14 (11) , 6804. https://doi.org/10.3390/su14116804
    94. Nidhi Kushwaha, Debarun Banerjee, Khwaja Alamgir Ahmad, Nagaraj P. Shetti, Tejraj M. Aminabhavi, Kamal K. Pant, Ejaz Ahmad. Catalytic production and application of bio-renewable butyl butyrate as jet fuel blend- A review. Journal of Environmental Management 2022, 310 , 114772. https://doi.org/10.1016/j.jenvman.2022.114772
    95. Robert O. Dunn. Fuel properties of low-erucic acid pennycress (LEAP) oil biodiesel. Industrial Crops and Products 2022, 178 , 114543. https://doi.org/10.1016/j.indcrop.2022.114543
    96. Jussi Isokuortti, Iiro Kiiski, Tiina Sikanen, Nikita Durandin, Timo Laaksonen. Microfluidic oxygen tolerability screening of nanocarriers for triplet fusion photon upconversion. Journal of Materials Chemistry C 2022, 10 (12) , 4871-4877. https://doi.org/10.1039/D2TC00156J
    97. Kiran Raj Bukkarapu, Anand Krishnasamy. A critical review on available models to predict engine fuel properties of biodiesel. Renewable and Sustainable Energy Reviews 2022, 155 , 111925. https://doi.org/10.1016/j.rser.2021.111925
    98. Jean-Luc Daridon, Jean-Patrick Bazile, Djamel Nasri. Speed of Sound, Density, and Related Thermophysical Properties of the Methyl Caprate + Methyl Oleate Binary System from 0.1 MPa to 70 MPa at 303.15 K. International Journal of Thermophysics 2022, 43 (2) https://doi.org/10.1007/s10765-021-02930-w
    99. Dan Li, Yujia Zheng, Jingying Wang, Yan Pang, Meifang Liu. Volumetric properties and viscosity for the ternary system of (1-pentanol + ethylcyclohexane + methyl myristate) and corresponding binary systems at T = 293.15–323.15 K. The Journal of Chemical Thermodynamics 2022, 165 , 106660. https://doi.org/10.1016/j.jct.2021.106660
    100. Ilmutdin M. Abdulagatov, Nikolai G. Polikhronidi, Rabiyat G. Batyrova, Marzena Dzida. Isochoric heat capacity, phase transition and derived key thermodynamic properties of methyl decanoate. Fuel 2022, 310 , 122251. https://doi.org/10.1016/j.fuel.2021.122251
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect