ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Separation of CO2 and H2S Using Room-Temperature Ionic Liquid [bmim][MeSO4]

View Author Information
DuPont Central Research and Development, Experimental Station, Wilmington, Delaware 19880, and 109-C Congressional Drive, Wilmington, Delaware 19807
* To whom correspondence should be addressed. Phone: 302-695-2572. Fax: 302-695-4414. E-mail: [email protected]
†DuPont Central Research and Development, Experimental Station.
‡109-C Congressional Drive.
Cite this: J. Chem. Eng. Data 2010, 55, 11, 4785–4793
Publication Date (Web):July 15, 2010
https://doi.org/10.1021/je1004005
Copyright © 2010 American Chemical Society

    Article Views

    1712

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (652 KB)

    Abstract

    We have developed a ternary equation of state (EOS) model for the CO2/H2S/1-butyl-3-methylimidazolium methylsulfate ([bmim][MeSO4]) system to understand separation of these gases using room-temperature ionic liquids (RTILs). The present model is based on a modified RK (Redlich−Kwong) EOS, with empirical interaction parameters for each binary system. The interaction parameters have been determined using our measured VLE (vapor−liquid equilibrium) data for H2S/[bmim][MeSO4] and literature data for CO2/[bmim][MeSO4] and CO2/H2S. Due to limited VLE data for H2S/[bmim][MeSO4], we have also used VLLE (vapor−liquid−liquid equilibrium) measurements to construct the EOS model. The VLLE for H2S/[bmim][MeSO4] is highly asymmetric with a narrow (mole fraction H2S between 0.97 and 0.99) LLE gap which is the first such case reported in the literature and exhibits Type V phase behavior, according to the classification of van Konynenburg and Scott. The validity of the ternary EOS model has been checked by conducting VLE experiments for the CO2/H2S/[bmim][MeSO4] system. With this EOS model, solubility (VLE) behavior has been calculated for various (T, P, and feed compositions) conditions. For large (9/1) and intermediate (1/1) CO2/H2S feed ratios, the CO2/H2S gas selectivity is high (10 to 13, compared with <4.5 in the absence of ionic liquid) and nearly independent of the amount of ionic liquid added. For small CO2/H2S mole ratios (1/9) at 298.15 K, increasing the ionic liquid concentration increases the CO2/H2S gas selectivity from about 7.4 to 12.4. For high temperature (313.15 K) and large CO2/H2S feed ratios, the addition of the ionic liquid provides the only means of separation because no VLE exists for the CO2/H2S binary system without the ionic liquid.

    Cited By

    This article is cited by 103 publications.

    1. Tianxiong Liu, Zihao Dong, Wenguang Zhu, Yusen Chen, Mengjin Zhou, Peizhe Cui, Yinglong Wang, Zhaoyou Zhu. Prediction of the Solubility of Acid Gas Hydrogen Sulfide in Green Solvent Ionic Liquids via Quantitative Structure–Property Relationship Models Based on the Molecular Structure. ACS Sustainable Chemistry & Engineering 2023, 11 (9) , 3917-3931. https://doi.org/10.1021/acssuschemeng.2c07541
    2. Fangfang Li, Aatto Laaksonen, Xiangping Zhang, Xiaoyan Ji. Rotten Eggs Revaluated: Ionic Liquids and Deep Eutectic Solvents for Removal and Utilization of Hydrogen Sulfide. Industrial & Engineering Chemistry Research 2022, 61 (7) , 2643-2671. https://doi.org/10.1021/acs.iecr.1c04142
    3. Prathana Nimmanterdwong, Rachaneeporn Changpun, Patipon Janthboon, Sukanya Nakrak, Hongxia Gao, Zhiwu Liang, Paitoon Tontiwachwuthikul, Teerawat Sema. Applied Artificial Neural Network for Hydrogen Sulfide Solubility in Natural Gas Purification. ACS Omega 2021, 6 (46) , 31321-31329. https://doi.org/10.1021/acsomega.1c05169
    4. Xiaoyang Liu, Jason E. Bara, C. Heath Turner. Understanding Gas Solubility of Pure Component and Binary Mixtures within Multivalent Ionic Liquids from Molecular Simulations. The Journal of Physical Chemistry B 2021, 125 (29) , 8165-8174. https://doi.org/10.1021/acs.jpcb.1c04212
    5. Jesús Lemus, Rubén Santiago, Daniel Hospital-Benito, Tom Welton, Jason P. Hallett, José Palomar. Process Analysis of Ionic Liquid-Based Blends as H2S Absorbents: Search for Thermodynamic/Kinetic Synergies. ACS Sustainable Chemistry & Engineering 2021, 9 (5) , 2080-2088. https://doi.org/10.1021/acssuschemeng.0c07229
    6. Yuqiu Chen, Xinyan Liu, John M. Woodley, Georgios M. Kontogeorgis. Gas Solubility in Ionic Liquids: UNIFAC-IL Model Extension. Industrial & Engineering Chemistry Research 2020, 59 (38) , 16805-16821. https://doi.org/10.1021/acs.iecr.0c02769
    7. Marcus Stuckenholz, Malte F. B. Stodt, Wolffram Schröer, Johannes Kiefer, Bernd Rathke. Vapor–Liquid Equilibria of the Ionic Liquid 1-Hexyl-3-methylimidazolium Triflate (C6mimTfO) with n-Alkyl Alcohols. Industrial & Engineering Chemistry Research 2020, 59 (11) , 5142-5157. https://doi.org/10.1021/acs.iecr.9b06909
    8. Utkarsh Kapoor, Jindal K. Shah. Monte Carlo Simulations of Pure and Mixed Gas Solubilities of CO2 and CH4 in Nonideal Ionic Liquid–Ionic Liquid Mixtures. Industrial & Engineering Chemistry Research 2019, 58 (50) , 22569-22578. https://doi.org/10.1021/acs.iecr.9b03384
    9. XiangFeng Tian, LeMeng Wang, Dong Fu. Absorption and Removal Efficiency of Low-Partial-Pressure H2S in a Tetramethylammonium Glycinate Activated N-Methyldiethanolamine Aqueous Solution. Energy & Fuels 2019, 33 (9) , 8413-8422. https://doi.org/10.1021/acs.energyfuels.9b01983
    10. Lan-yun Wang, Yong-liang Xu, Zhen-dong Li, Ya-nan Wei, and Jian-ping Wei . CO2/CH4 and H2S/CO2 Selectivity by Ionic Liquids in Natural Gas Sweetening. Energy & Fuels 2018, 32 (1) , 10-23. https://doi.org/10.1021/acs.energyfuels.7b02852
    11. Kuan Huang, Jia-Yin Zhang, Xing-Bang Hu, and You-Ting Wu . Absorption of H2S and CO2 in Aqueous Solutions of Tertiary-Amine Functionalized Protic Ionic Liquids. Energy & Fuels 2017, 31 (12) , 14060-14069. https://doi.org/10.1021/acs.energyfuels.7b03049
    12. Shaojuan Zeng, Xiangping Zhang, Lu Bai, Xiaochun Zhang, Hui Wang, Jianji Wang, Di Bao, Mengdie Li, Xinyan Liu, and Suojiang Zhang . Ionic-Liquid-Based CO2 Capture Systems: Structure, Interaction and Process. Chemical Reviews 2017, 117 (14) , 9625-9673. https://doi.org/10.1021/acs.chemrev.7b00072
    13. Brian S. Flowers, Max S. Mittenthal, Alexander H. Jenkins, David A. Wallace, John W. Whitley, Grayson P. Dennis, Mei Wang, C. Heath Turner, Vladimir N. Emel’yanenko, Sergey P. Verevkin, and Jason E. Bara . 1,2,3-Trimethoxypropane: A Glycerol-Derived Physical Solvent for CO2 Absorption. ACS Sustainable Chemistry & Engineering 2017, 5 (1) , 911-921. https://doi.org/10.1021/acssuschemeng.6b02231
    14. Yongsheng Zhao, Hongshuai Gao, Xiangping Zhang, Ying Huang, Di Bao, and Suojiang Zhang . Hydrogen Sulfide Solubility in Ionic Liquids (ILs): An Extensive Database and a New ELM Model Mainly Established by Imidazolium-Based ILs. Journal of Chemical & Engineering Data 2016, 61 (12) , 3970-3978. https://doi.org/10.1021/acs.jced.6b00449
    15. Salisu Ibrahim and Abhijeet Raj . Kinetic Simulation of Acid Gas (H2S and CO2) Destruction for Simultaneous Syngas and Sulfur Recovery. Industrial & Engineering Chemistry Research 2016, 55 (24) , 6743-6752. https://doi.org/10.1021/acs.iecr.6b01176
    16. D. S. Karousos, E. Kouvelos, A. Sapalidis, K. Pohako-Esko, M. Bahlmann, P. S. Schulz, P. Wasserscheid, E. Siranidi, O. Vangeli, P. Falaras, N. Kanellopoulos, and G. Em. Romanos . Novel Inverse Supported Ionic Liquid Absorbents for Acidic Gas Removal from Flue Gas. Industrial & Engineering Chemistry Research 2016, 55 (19) , 5748-5762. https://doi.org/10.1021/acs.iecr.6b00664
    17. Jingli Han, Zhigang Lei, Chengna Dai, and Jiangsheng Li . Vapor Pressure Measurements for Binary Mixtures Containing Ionic Liquid and Predictions by the Conductor-like Screening Model for Real Solvents. Journal of Chemical & Engineering Data 2016, 61 (3) , 1117-1124. https://doi.org/10.1021/acs.jced.5b00760
    18. Duane D. Miller and Steven S.C. Chuang . Experimental and Theoretical Investigation of SO2 Adsorption over the 1,3-Phenylenediamine/SiO2 System. The Journal of Physical Chemistry C 2015, 119 (12) , 6713-6727. https://doi.org/10.1021/acs.jpcc.5b01131
    19. Zhengjie Li, Yuanlong Xiao, Wenjuan Xue, Qingyuan Yang, and Chongli Zhong . Ionic Liquid/Metal–Organic Framework Composites for H2S Removal from Natural Gas: A Computational Exploration. The Journal of Physical Chemistry C 2015, 119 (7) , 3674-3683. https://doi.org/10.1021/acs.jpcc.5b00019
    20. Matthew S. Shannon, A. Christopher Irvin, Haining Liu, Joshua D. Moon, Michelle S. Hindman, C. Heath Turner, and Jason E. Bara . Chemical and Physical Absorption of SO2 by N-Functionalized Imidazoles: Experimental Results and Molecular-level Insight. Industrial & Engineering Chemistry Research 2015, 54 (1) , 462-471. https://doi.org/10.1021/ie503752h
    21. Zhigang Lei, Chengna Dai, and Biaohua Chen . Gas Solubility in Ionic Liquids. Chemical Reviews 2014, 114 (2) , 1289-1326. https://doi.org/10.1021/cr300497a
    22. Xingming Jie, John Chau, Gordana Obuskovic, and Kamalesh K. Sirkar . Preliminary Studies of CO2 Removal from Precombustion Syngas through Pressure Swing Membrane Absorption Process with Ionic Liquid as Absorbent. Industrial & Engineering Chemistry Research 2013, 52 (26) , 8783-8799. https://doi.org/10.1021/ie302122s
    23. Vitaly V. Chaban and Oleg V. Prezhdo . Ionic and Molecular Liquids: Working Together for Robust Engineering. The Journal of Physical Chemistry Letters 2013, 4 (9) , 1423-1431. https://doi.org/10.1021/jz400113y
    24. Jason E. Bara . Considering the Basis of Accounting for CO2 Mole Fractions in Ionic Liquids and Its Influence on the Interpretation of Solution Nonideality. Industrial & Engineering Chemistry Research 2013, 52 (9) , 3522-3529. https://doi.org/10.1021/ie3034416
    25. R. Yusoff, M. K. Aroua, Ahmad Shamiri, Afshin Ahmady, N. S. Jusoh, N. F. Asmuni, L. C. Bong, and S. H. Thee . Density and Viscosity of Aqueous Mixtures of N-Methyldiethanolamines (MDEA) and Ionic Liquids. Journal of Chemical & Engineering Data 2013, 58 (2) , 240-247. https://doi.org/10.1021/je300628e
    26. Zhigang Lei, Jingli Han, Benfeng Zhang, Qunsheng Li, Jiqin Zhu, and Biaohua Chen . Solubility of CO2 in Binary Mixtures of Room-Temperature Ionic Liquids at High Pressures. Journal of Chemical & Engineering Data 2012, 57 (8) , 2153-2159. https://doi.org/10.1021/je300016q
    27. Mahinder Ramdin, Theo W. de Loos, and Thijs J.H. Vlugt . State-of-the-Art of CO2 Capture with Ionic Liquids. Industrial & Engineering Chemistry Research 2012, 51 (24) , 8149-8177. https://doi.org/10.1021/ie3003705
    28. Matthew S. Shannon, Jason M. Tedstone, Scott P. O. Danielsen, and Jason E. Bara . Evaluation of Alkylimidazoles as Physical Solvents for CO2/CH4 Separation. Industrial & Engineering Chemistry Research 2012, 51 (1) , 515-522. https://doi.org/10.1021/ie202111k
    29. Hanming Liu Junhua Huang Phillip Pendleton . Tailoring Ionic Liquids for Post-Combustion CO2 Capture. 2012, 153-175. https://doi.org/10.1021/bk-2012-1097.ch008
    30. Dirk Tuma Gerd Maurer . Gas Solubility in Ionic Liquids: Mixed Gases in Pure Ionic Liquids and Single Gases in Binary Liquid Mixtures. 2012, 217-238. https://doi.org/10.1021/bk-2012-1117.ch010
    31. Mark B. Shiflett, Anne Marie S. Niehaus, and A. Yokozeki . Separation of N2O and CO2 Using Room-Temperature Ionic Liquid [bmim][BF4]. The Journal of Physical Chemistry B 2011, 115 (13) , 3478-3487. https://doi.org/10.1021/jp107879s
    32. Ferdi Karadas, Mert Atilhan, and Santiago Aparicio . Review on the Use of Ionic Liquids (ILs) as Alternative Fluids for CO2 Capture and Natural Gas Sweetening. Energy & Fuels 2010, 24 (11) , 5817-5828. https://doi.org/10.1021/ef1011337
    33. M. A. Moradkhani, S. H. Hosseini, K. Ranjbar, M. Moradi. Intelligent modeling of hydrogen sulfide solubility in various types of single and multicomponent solvents. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-30777-8
    34. Seyed-Pezhman Mousavi, Reza Nakhaei-Kohani, Saeid Atashrouz, Fahimeh Hadavimoghaddam, Ali Abedi, Abdolhossein Hemmati-Sarapardeh, Ahmad Mohaddespour. Modeling of H2S solubility in ionic liquids: comparison of white-box machine learning, deep learning and ensemble learning approaches. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-34193-w
    35. Yang Lei, Lei Du, Xinyan Liu, Haoshui Yu, Xiaodong Liang, Georgios M. Kontogeorgis, Yuqiu Chen. Natural gas sweetening using tailored ionic liquid-methanol mixed solvent with selective removal of H2S and CO2. Chemical Engineering Journal 2023, 476 , 146424. https://doi.org/10.1016/j.cej.2023.146424
    36. Ning Ai, Xiaoting Huang, Caijin Zhou, Fengyan Lou, Qining Wang, Jisong Zhang, Jie Ren. Solubility and diffusivity of CO2 and C2H4 in the ionic liquids 1-alkyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide by tube-in-tube reactor method. Journal of Molecular Liquids 2023, 385 , 122257. https://doi.org/10.1016/j.molliq.2023.122257
    37. Wamda Faisal Elmobarak, Fares Almomani, Muhammad Tawalbeh, Amani Al-Othman, Remston Martis, Kashif Rasool. Current status of CO2 capture with ionic liquids: Development and progress. Fuel 2023, 344 , 128102. https://doi.org/10.1016/j.fuel.2023.128102
    38. Amita Chaudhary, Ashok N Bhaskarwar. Effect of physical properties of synthesized protic ionic liquid on carbon dioxide absorption rate. Environmental Science and Pollution Research 2023, 30 (4) , 8429-8447. https://doi.org/10.1007/s11356-021-17154-6
    39. Pan Zhang, Yuetong Zhao, Xiangfeng Tian, Yanxi Ji, Yuxuan Shu, Kun Fu, Dong Fu, Lemeng Wang. Selective absorption of H2S and CO2 from simulated coke oven gas by aqueous blends of N-methyldiethanolamine and tetramethylammonium glycine. Korean Journal of Chemical Engineering 2022, 39 (11) , 3039-3047. https://doi.org/10.1007/s11814-022-1204-2
    40. Roohollah Azadfar, Masoud Shaabanzadeh, Hamid Hashemi-Moghaddam, Abdorreza Mohammadi Nafchi. Estimation of Heat Capacity of 143 Pure Ionic Liquids Using Artificial Neural Network. International Journal of Thermophysics 2022, 43 (6) https://doi.org/10.1007/s10765-022-03003-2
    41. Seyed Pezhman Mousavi, Saeid Atashrouz, Reza Nakhaei-Kohani, Fahimeh Hadavimoghaddam, Ali Shawabkeh, Abdolhossein Hemmati-Sarapardeh, Ahmad Mohaddespour. Modeling of H2S solubility in ionic liquids using deep learning: A chemical structure-based approach. Journal of Molecular Liquids 2022, 351 , 118418. https://doi.org/10.1016/j.molliq.2021.118418
    42. Lili Jiang, Ke Mei, Kaihong Chen, Rina Dao, Haoran Li, Congmin Wang. Design and prediction for highly efficient SO2 capture from flue gas by imidazolium ionic liquids. Green Energy & Environment 2022, 7 (1) , 130-136. https://doi.org/10.1016/j.gee.2020.08.008
    43. Amita Chaudhary. Green Pathway of CO2 Capture. 2022, 271-284. https://doi.org/10.1007/978-3-030-72877-9_13
    44. Tri Partono Adhi, Yohanes Andre Situmorang, Haryo Pandu Winoto, Danu Ariono, Diannisa Septiana, Patricia Imanuela, Antonius Indarto. H2S–CO2 gas separation with ionic liquids on low ratio of H2S/CO2. Heliyon 2021, 7 (12) , e08611. https://doi.org/10.1016/j.heliyon.2021.e08611
    45. Andressa Mota-Lima, Murilo Leite Alcantara, Fernando J. Pérez-Sanz, Reinaldo C. Bazito, Pedro Vidinha, Rita M. B. Alves, Claudio A. Oller Nascimento. Review—High-Pressure Carbon Dioxide Separation Using Ionic Liquids: A CO 2 -Electrocatalysis Perspective. Journal of The Electrochemical Society 2021, 168 (8) , 086502. https://doi.org/10.1149/1945-7111/ac085d
    46. José M.M.V. Sousa, Tânia E. Sintra, Abel G.M. Ferreira, Pedro J. Carvalho, Isabel M.A. Fonseca. Solubility of H2S in ammonium-based ionic liquids. The Journal of Chemical Thermodynamics 2021, 154 , 106336. https://doi.org/10.1016/j.jct.2020.106336
    47. Guocai Tian. Applications of green solvents in toxic gases removal. 2021, 149-201. https://doi.org/10.1016/B978-0-12-821884-6.00008-5
    48. Pobitra Halder, Savankumar Patel, Sazal Kundu, Biplob Pramanik, Rajarathinam Parthasarathy, Kalpit Shah. Potential of ionic liquid applications in natural gas/biogas sweetening and liquid fuel cleaning process. 2021, 121-154. https://doi.org/10.1016/B978-0-12-822525-7.00001-9
    49. Menad Nait Amar, Mohammed Abdelfetah Ghriga, Hocine Ouaer. On the evaluation of solubility of hydrogen sulfide in ionic liquids using advanced committee machine intelligent systems. Journal of the Taiwan Institute of Chemical Engineers 2021, 118 , 159-168. https://doi.org/10.1016/j.jtice.2021.01.007
    50. Mostafa Hosseini, Reza Rahimi, Mojtaba Ghaedi. Hydrogen sulfide solubility in different ionic liquids: an updated database and intelligent modeling. Journal of Molecular Liquids 2020, 317 , 113984. https://doi.org/10.1016/j.molliq.2020.113984
    51. Jingwen Wang, Zhen Song, Hongye Cheng, Lifang Chen, Liyuan Deng, Zhiwen Qi. Multilevel screening of ionic liquid absorbents for simultaneous removal of CO2 and H2S from natural gas. Separation and Purification Technology 2020, 248 , 117053. https://doi.org/10.1016/j.seppur.2020.117053
    52. Ilya Polishuk. Wide-ranging prediction of phase behavior in complex systems by CP-PC-SAFT with universal kij values. I. Mixtures of non-associating compounds with [C2mim][EtSO4], [C4mim][MeSO4], and [C2mim][MeSO3] ionic liquids. Journal of Molecular Liquids 2020, 310 , 113266. https://doi.org/10.1016/j.molliq.2020.113266
    53. Firas Alnili, Paul James, Ahmed Barifcani. Natural gas sweetening using low temperature distillation: simulation and configuration. Separation Science and Technology 2020, 55 (8) , 1569-1576. https://doi.org/10.1080/01496395.2019.1599018
    54. Rubén Santiago, Jesús Lemus, Ana Xiao Outomuro, Jorge Bedia, José Palomar. Assessment of ionic liquids as H2S physical absorbents by thermodynamic and kinetic analysis based on process simulation. Separation and Purification Technology 2020, 233 , 116050. https://doi.org/10.1016/j.seppur.2019.116050
    55. Pawanpreet Kaur, Harish Kumar Chopra. Recent Advances in Applications of Supported Ionic Liquids. Current Organic Chemistry 2020, 23 (26) , 2881-2915. https://doi.org/10.2174/1385272823666191204151803
    56. J. G. Yao, P. S. Fennell, J. P. Hallett. Ionic Liquids. 2019, 69-105. https://doi.org/10.1039/9781788012744-00069
    57. Hongyu Wu, Mengyao Shen, Xiaochun Chen, Guangren Yu, Ahmed A. Abdeltawab, Sobhy M. Yakout. New absorbents for hydrogen sulfide: Deep eutectic solvents of tetrabutylammonium bromide/carboxylic acids and choline chloride/carboxylic acids. Separation and Purification Technology 2019, 224 , 281-289. https://doi.org/10.1016/j.seppur.2019.04.082
    58. Alireza Rostami, Abdolhossein Hemmati-Sarapardeh, Abdorreza Karkevandi-Talkhooncheh, Maen M. Husein, Shahaboddin Shamshirband, Timon Rabczuk. Modeling heat capacity of ionic liquids using group method of data handling: A hybrid and structure-based approach. International Journal of Heat and Mass Transfer 2019, 129 , 7-17. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.057
    59. Firas Alnili, Ahmed Barifcani. Simulation study of sweetening and dehydration of natural gas stream using MEG solution. The Canadian Journal of Chemical Engineering 2018, 96 (9) , 2000-2006. https://doi.org/10.1002/cjce.23132
    60. Xuejing Kang, Jianguo Qian, Jing Deng, Ullah Latif, Yongsheng Zhao. Novel molecular descriptors for prediction of H2S solubility in ionic liquids. Journal of Molecular Liquids 2018, 265 , 756-764. https://doi.org/10.1016/j.molliq.2018.06.113
    61. L.F. Lepre, L. Pison, L.J.A. Siqueira, R.A. Ando, M.F. Costa Gomes. Improvement of carbon dioxide absorption by mixing poly(ethylene glycol) dimethyl ether with ammonium-based ionic liquids. Separation and Purification Technology 2018, 196 , 10-19. https://doi.org/10.1016/j.seppur.2017.07.010
    62. Seyed Hossein Hosseini Nazhad Ghazani, Alireza Baghban, Amir H. Mohammadi, Sajjad Habibzadeh. Absorption of CO2-rich gaseous mixtures in ionic liquids: A computational study. The Journal of Supercritical Fluids 2018, 133 , 455-465. https://doi.org/10.1016/j.supflu.2017.10.024
    63. Alireza Kheiri, Alireza Afsharpour, Mohammad Bagher Zare Talavaki. Modeling of acid gases solubility in ionic liquid [BMIM][MeSO 4 ] using CPA EoS. Petroleum Science and Technology 2018, 36 (4) , 319-325. https://doi.org/10.1080/10916466.2017.1421974
    64. Firas Alnili, Ahmed Barifcani. Efficient separation scheme for binary mixture of CO 2 and H 2 S using aromatic components. Separation Science and Technology 2018, 53 (2) , 312-319. https://doi.org/10.1080/01496395.2017.1377243
    65. Kuan Huang, Xiao-Min Zhang, Lin-Sen Zhou, Duan-Jian Tao, Jie-Ping Fan. Highly efficient and selective absorption of H2S in phenolic ionic liquids: A cooperative result of anionic strong basicity and cationic hydrogen-bond donation. Chemical Engineering Science 2017, 173 , 253-263. https://doi.org/10.1016/j.ces.2017.07.048
    66. Amir H. Jalili, Mehrnoosh Mehrabi, Ali Taghi Zoghi, Mohammad Shokouhi, Sayyed Ali Taheri. Solubility of carbon dioxide and hydrogen sulfide in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate. Fluid Phase Equilibria 2017, 453 , 1-12. https://doi.org/10.1016/j.fluid.2017.09.003
    67. Mark B. Shiflett, Edward J. Maginn. The solubility of gases in ionic liquids. AIChE Journal 2017, 63 (11) , 4722-4737. https://doi.org/10.1002/aic.15957
    68. Cinzia Chiappe, Christian Silvio Pomelli. Hydrogen Sulfide and Ionic Liquids: Absorption, Separation, and Oxidation. Topics in Current Chemistry 2017, 375 (3) https://doi.org/10.1007/s41061-017-0140-9
    69. Zhijun Zhao, Xiao Xing, Zhigang Tang, Yongsheng Zhao, Weiyang Fei, Xiangfeng Liang, Zhimin He, Shaofeng Zhang, Dong Guo. Solubility of CO 2 and H 2 S in carbonates solvent: Experiment and quantum chemistry calculation. International Journal of Greenhouse Gas Control 2017, 59 , 123-135. https://doi.org/10.1016/j.ijggc.2017.02.011
    70. Abolfazl Shojaeian. Thermodynamic modeling of solubility of hydrogen sulfide in ionic liquids using Peng Robinson-Two State equation of state. Journal of Molecular Liquids 2017, 229 , 591-598. https://doi.org/10.1016/j.molliq.2016.12.001
    71. Ali Barati-Harooni, Adel Najafi-Marghmaleki, Amir H Mohammadi. Prediction of heat capacities of ionic liquids using chemical structure based networks. Journal of Molecular Liquids 2017, 227 , 324-332. https://doi.org/10.1016/j.molliq.2016.11.119
    72. Kuan Huang, Xiao‐Min Zhang, Xing‐Bang Hu, You‐Ting Wu. Hydrophobic protic ionic liquids tethered with tertiary amine group for highly efficient and selective absorption of H 2 S from CO 2. AIChE Journal 2016, 62 (12) , 4480-4490. https://doi.org/10.1002/aic.15363
    73. Wai Lip Theo, Jeng Shiun Lim, Haslenda Hashim, Azizul Azri Mustaffa, Wai Shin Ho. Review of pre-combustion capture and ionic liquid in carbon capture and storage. Applied Energy 2016, 183 , 1633-1663. https://doi.org/10.1016/j.apenergy.2016.09.103
    74. Mitsuhiro Kanakubo, Takashi Makino, Tatsuya Umecky, Masato Sakurai. Effect of partial pressure on CO2 solubility in ionic liquid mixtures of 1-butyl-3-methylimidazolium acetate and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide. Fluid Phase Equilibria 2016, 420 , 74-82. https://doi.org/10.1016/j.fluid.2016.01.034
    75. Hamid Reza Amedi, Alireza Baghban, Mohammad Ali Ahmadi. Evolving machine learning models to predict hydrogen sulfide solubility in the presence of various ionic liquids. Journal of Molecular Liquids 2016, 216 , 411-422. https://doi.org/10.1016/j.molliq.2016.01.060
    76. Byung-Chul Lee. Solubility of Hydrogen Sulfide and Methane in Ionic Liquids: 1-Ethy-3-methylimidazolium Trifluoromethanesulfonate and 1-Butyl-1-methylpyrrolidinium Trifluoromethanesulfonate. Korean Chemical Engineering Research 2016, 54 (2) , 213-222. https://doi.org/10.9713/kcer.2016.54.2.213
    77. Yongsheng Zhao, Jubao Gao, Ying Huang, Raja Muhammad Afzal, Xiangping Zhang, Suojiang Zhang. Predicting H 2 S solubility in ionic liquids by the quantitative structure–property relationship method using S σ-profile molecular descriptors. RSC Advances 2016, 6 (74) , 70405-70413. https://doi.org/10.1039/C6RA15429H
    78. Fengtao Zhang, Guokai Cui, Ning Zhao, Yanjie Huang, Yuling Zhao, Jianji Wang. Improving SO 2 capture by basic ionic liquids in an acid gas mixture (10% vol SO 2 ) through tethering a formyl group to the anions. RSC Advances 2016, 6 (89) , 86082-86088. https://doi.org/10.1039/C6RA18589D
    79. Bing Wang, Kai Zhang, Shuhang Ren, Yucui Hou, Weize Wu. Efficient capture of low partial pressure H 2 S by tetraethyl ammonium amino acid ionic liquids with absorption-promoted solvents. RSC Advances 2016, 6 (103) , 101462-101469. https://doi.org/10.1039/C6RA19149E
    80. Fèlix Llovell, Mariana B. Oliveira, João A.P. Coutinho, Lourdes F. Vega. Solubility of greenhouse and acid gases on the [C4mim][MeSO4] ionic liquid for gas separation and CO2 conversion. Catalysis Today 2015, 255 , 87-96. https://doi.org/10.1016/j.cattod.2014.12.049
    81. Ali Haghtalab, Alireza Kheiri. High pressure measurement and CPA equation of state for solubility of carbon dioxide and hydrogen sulfide in 1-butyl-3-methylimidazolium acetate. The Journal of Chemical Thermodynamics 2015, 89 , 41-50. https://doi.org/10.1016/j.jct.2015.04.032
    82. Kaihong Chen, Wenjun Lin, Xini Yu, Xiaoyan Luo, Fang Ding, Xi He, Haoran Li, Congmin Wang. Designing of anion‐functionalized ionic liquids for efficient capture of SO 2 from flue gas. AIChE Journal 2015, 61 (6) , 2028-2034. https://doi.org/10.1002/aic.14793
    83. Guokai Cui , Fengtao Zhang, Xiuyuan Zhou , Haoran Li, Jianji Wang, Congmin Wang. Tuning the Basicity of Cyano‐Containing Ionic Liquids to Improve SO 2 Capture through Cyano–Sulfur Interactions. Chemistry – A European Journal 2015, 21 (14) , 5632-5639. https://doi.org/10.1002/chem.201405683
    84. Kuan Huang, Xiao‐Min Zhang, Yun Xu, You‐Ting Wu, Xing‐Bang Hu, Yun Xu. Protic ionic liquids for the selective absorption of H 2 S from CO 2 : Thermodynamic analysis. AIChE Journal 2014, 60 (12) , 4232-4240. https://doi.org/10.1002/aic.14634
    85. Majid Nour, Kyle Berean, Adam Chrimes, Ahmad Sabirin Zoolfakar, Kay Latham, Chris McSweeney, Matthew R. Field, Sharath Sriram, Kourosh Kalantar-zadeh, Jian Zhen Ou. Silver nanoparticle/PDMS nanocomposite catalytic membranes for H2S gas removal. Journal of Membrane Science 2014, 470 , 346-355. https://doi.org/10.1016/j.memsci.2014.07.047
    86. Kuan Huang, Yong-Le Chen, Xiao-Min Zhang, Shao-Ling Ma, You-Ting Wu, Xing-Bang Hu. Experimental study and thermodynamical modelling of the solubilities of SO 2 , H 2 S and CO 2 in N-dodecylimidazole and 1,1′-[oxybis(2,1-ethanediyloxy-2,1-ethanediyl)]bis(imidazole): An evaluation of their potential application in the separation of acidic gases. Fluid Phase Equilibria 2014, 378 , 21-33. https://doi.org/10.1016/j.fluid.2014.06.026
    87. José M.M.V. Sousa, José F.O. Granjo, António J. Queimada, Abel G.M. Ferreira, Nuno M.C. Oliveira, Isabel M.A. Fonseca. Solubilities of hydrofluorocarbons in ionic liquids: Experimental and modelling study. The Journal of Chemical Thermodynamics 2014, 73 , 36-43. https://doi.org/10.1016/j.jct.2013.07.013
    88. Kuan Huang, Da‐Niu Cai, Yong‐Le Chen, You‐Ting Wu, Xing‐Bang Hu, Zhi‐Bing Zhang. Dual Lewis Base Functionalization of Ionic Liquids for Highly Efficient and Selective Capture of H 2 S. ChemPlusChem 2014, 79 (2) , 241-249. https://doi.org/10.1002/cplu.201300365
    89. Satish Kumar, Jae Hyun Cho, Il Moon. Ionic liquid-amine blends and CO2BOLs: Prospective solvents for natural gas sweetening and CO2 capture technology—A review. International Journal of Greenhouse Gas Control 2014, 20 , 87-116. https://doi.org/10.1016/j.ijggc.2013.10.019
    90. Guokai Cui, Wenjun Lin, Fang Ding, Xiaoyan Luo, Xi He, Haoran Li, Congmin Wang. Highly efficient SO 2 capture by phenyl-containing azole-based ionic liquids through multiple-site interactions. Green Chem. 2014, 16 (3) , 1211-1216. https://doi.org/10.1039/C3GC41458B
    91. Jie‐Jie Chen, Wen‐Wei Li, Han‐Qing Yu, Xue‐Liang Li. Capture of H 2 S from binary gas mixture by imidazolium‐based ionic liquids with nonfluorous anions: A theoretical study. AIChE Journal 2013, 59 (10) , 3824-3833. https://doi.org/10.1002/aic.14111
    92. Mohammadali Safavi, Cyrus Ghotbi, Vahid Taghikhani, Amir Hossein Jalili, Ali Mehdizadeh. Study of the solubility of CO2, H2S and their mixture in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate: Experimental and modelling. The Journal of Chemical Thermodynamics 2013, 65 , 220-232. https://doi.org/10.1016/j.jct.2013.05.038
    93. Kuan Huang, Da‐Niu Cai, Yong‐Le Chen, You‐Ting Wu, Xing‐Bang Hu, Zhi‐Bing Zhang. Thermodynamic validation of 1‐alkyl‐3‐methylimidazolium carboxylates as task‐specific ionic liquids for H 2 S absorption. AIChE Journal 2013, 59 (6) , 2227-2235. https://doi.org/10.1002/aic.13976
    94. Sang Gyu Nam, Byung-Chul Lee. Solubility of carbon dioxide in ammonium-based ionic liquids: Butyltrimethylammonium bis(trifluoromethylsulfonyl)imide and methyltrioctylammonium bis(trifluoromethylsulfonyl)imide. Korean Journal of Chemical Engineering 2013, 30 (2) , 474-481. https://doi.org/10.1007/s11814-012-0178-x
    95. Mark B. Shiflett, Akimichi Yokozeki. Phase Behaviour of Gases in Ionic Liquids. 2012, 349-386. https://doi.org/10.1002/9781118434987.ch11
    96. Filipa M. Maia, Ioannis Tsivintzelis, Oscar Rodriguez, Eugénia A. Macedo, Georgios M. Kontogeorgis. Equation of state modelling of systems with ionic liquids: Literature review and application with the Cubic Plus Association (CPA) model. Fluid Phase Equilibria 2012, 332 , 128-143. https://doi.org/10.1016/j.fluid.2012.06.026
    97. Mark B. Shiflett, Anne Marie S. Niehaus, Beth A. Elliott, A. Yokozeki. Phase Behavior of N2O and CO2 in Room-Temperature Ionic Liquids [bmim][Tf2N], [bmim][BF4], [bmim][N(CN)2], [bmim][Ac], [eam][NO3], and [bmim][SCN]. International Journal of Thermophysics 2012, 33 (3) , 412-436. https://doi.org/10.1007/s10765-011-1150-4
    98. Mark B. Shiflett, Beth A. Elliott, A. Yokozeki. Phase behavior of vinyl fluoride in room-temperature ionic liquids [emim][Tf2N], [bmim][N(CN)2], [bmpy][BF4], [bmim][HFPS] and [omim][TFES]. Fluid Phase Equilibria 2012, 316 , 147-155. https://doi.org/10.1016/j.fluid.2011.11.030
    99. Mark B. Shiflett, Beth A. Elliott, Anne Marie S. Niehaus, A. Yokozeki. Separation of N 2 O and CO 2 using Room-Temperature Ionic Liquid [bmim][Ac]. Separation Science and Technology 2012, 47 (2) , 411-421. https://doi.org/10.1080/01496395.2011.627905
    100. Xiangping Zhang, Xiaochun Zhang, Haifeng Dong, Zhijun Zhao, Suojiang Zhang, Ying Huang. Carbon capture with ionic liquids: overview and progress. Energy & Environmental Science 2012, 5 (5) , 6668. https://doi.org/10.1039/c2ee21152a
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect