ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Low-Viscosity Triethylbutylammonium Acetate as a Task-Specific Ionic Liquid for Reversible CO2 Absorption

View Author Information
Separation Engineering Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
*E-mail: [email protected]; [email protected]. Phone: +86-25-83593772. Fax: +86-25-83593772.
Cite this: J. Chem. Eng. Data 2011, 56, 4, 1125–1133
Publication Date (Web):March 7, 2011
https://doi.org/10.1021/je101014q
Copyright © 2011 American Chemical Society

    Article Views

    1757

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)
    Supporting Info (2)»

    Abstract

    Capturing and storing carbon dioxide (CO2) is now of concern. This work presents a task-specific ionic liquid (TSIL), triethylbutylammonium acetate ([N2224][CH3COO]), for the purpose of trapping CO2 instead of the commonly used organic amine solutions. Since [N2224][CH3COO] has a hydrophilic nature, the CO2 dissolution behavior into [N2224][CH3COO]−nH2O complexes has been investigated in detail, including the absorption rate, absorption capacity, and the ability of repeating absorption. The solubilities of CO2 into [N2224][CH3COO]−1H2O at 0 °C, 25 °C, 40 °C, and 60 °C from (0.007 up to 30) bar are presented. The results show strong evidence that [N2224][CH3COO]−1H2O is an excellent reversible absorbent for CO2, and the recovered [N2224][CH3COO]−1H2O maintains the same absorption capacity and absorption rate. The CO2 absorption into [N2224][CH3COO]−nH2O mixtures at 25 °C and pressures up to 30 bar is also studied. It is elucidated that the absorption capacity decreases with the content of water and the rise of operational temperature. The equilibrium constant, Henry’s law constant, overall rate constant, and activation energy are also calculated from the experimental data. All evidence indicates that [N2224][CH3COO]−nH2O with low viscosity may have potential to be used as good absorbents for CO2 capture.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Tables S1 to S5, Figures S1 to S13, and data for Figures 2 to 5. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 89 publications.

    1. Wenjun Lin, Zhiguo Cai, Xiaoyu Lv, Qiaoxin Xiao, Kaihong Chen, Haoran Li, Congmin Wang. Significantly Enhanced Carbon Dioxide Capture by Anion-Functionalized Liquid Pillar[5]arene through Multiple-Site Interactions. Industrial & Engineering Chemistry Research 2019, 58 (36) , 16894-16900. https://doi.org/10.1021/acs.iecr.9b02872
    2. Abobakr Khidir Ziyada, Cecilia Devi Wilfred. Effect of Cation Modification on the Physicochemical Properties and CO2 Solubility: Nonfluorinated Phosphonium-Based Ionic Liquids Incorporating a Dioctylsulfosuccinate Anion. Journal of Chemical & Engineering Data 2018, 63 (10) , 3672-3683. https://doi.org/10.1021/acs.jced.8b00109
    3. Shaojuan Zeng, Xiangping Zhang, Lu Bai, Xiaochun Zhang, Hui Wang, Jianji Wang, Di Bao, Mengdie Li, Xinyan Liu, and Suojiang Zhang . Ionic-Liquid-Based CO2 Capture Systems: Structure, Interaction and Process. Chemical Reviews 2017, 117 (14) , 9625-9673. https://doi.org/10.1021/acs.chemrev.7b00072
    4. Yoshiro Yasaka and Yoshifumi Kimura . Effect of Temperature and Water Concentration on CO2 Absorption by Tetrabutylphosphonium Formate Ionic Liquid. Journal of Chemical & Engineering Data 2016, 61 (2) , 837-845. https://doi.org/10.1021/acs.jced.5b00694
    5. Pengcheng Hu, Rui Zhang, Zhichang Liu, Haiyan Liu, Chunming Xu, Xianghai Meng, Meng Liang, and Shuangshuang Liang . Absorption Performance and Mechanism of CO2 in Aqueous Solutions of Amine-Based Ionic Liquids. Energy & Fuels 2015, 29 (9) , 6019-6024. https://doi.org/10.1021/acs.energyfuels.5b01062
    6. Xiaoshan Li, Liqi Zhang, Ying Zheng, and Chuguang Zheng . Effect of SO2 on CO2 Absorption in Flue Gas by Ionic Liquid 1-Ethyl-3-methylimidazolium Acetate. Industrial & Engineering Chemistry Research 2015, 54 (34) , 8569-8578. https://doi.org/10.1021/acs.iecr.5b02208
    7. Kuan Huang, Shuang Xia, Xiao-Min Zhang, Yong-Le Chen, You-Ting Wu, and Xing-Bang Hu . Comparative Study of the Solubilities of SO2 in Five Low Volatile Organic Solvents (Sulfolane, Ethylene Glycol, Propylene Carbonate, N-Methylimidazole, and N-Methylpyrrolidone). Journal of Chemical & Engineering Data 2014, 59 (4) , 1202-1212. https://doi.org/10.1021/je4007713
    8. Yi Zhang, Zaikun Wu, Shaoli Chen, Ping Yu, and Yunbai Luo . CO2 Capture by Imidazolate-Based Ionic Liquids: Effect of Functionalized Cation and Dication. Industrial & Engineering Chemistry Research 2013, 52 (18) , 6069-6075. https://doi.org/10.1021/ie302928v
    9. Stéphane Stevanovic, Ajda Podgoršek, Agilio A. H. Pádua, and Margarida F. Costa Gomes . Effect of Water on the Carbon Dioxide Absorption by 1-Alkyl-3-methylimidazolium Acetate Ionic Liquids. The Journal of Physical Chemistry B 2012, 116 (49) , 14416-14425. https://doi.org/10.1021/jp3100377
    10. Matthew S. Shannon, Jason M. Tedstone, Scott P. O. Danielsen, Michelle S. Hindman, A. Christopher Irvin, and Jason E. Bara . Free Volume as the Basis of Gas Solubility and Selectivity in Imidazolium-Based Ionic Liquids. Industrial & Engineering Chemistry Research 2012, 51 (15) , 5565-5576. https://doi.org/10.1021/ie202916e
    11. Shidong Tian, Yucui Hou, Weize Wu, Shuhang Ren, and Kun Pang . Physical Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate/N-Methyl-2-pyrrolidone Mixtures and the Solubility of CO2 in the System at Elevated Pressures. Journal of Chemical & Engineering Data 2012, 57 (3) , 756-763. https://doi.org/10.1021/je200886j
    12. Yu Chen, Jin Han, Tao Wang, and Tiancheng Mu . Determination of Absorption Rate and Capacity of CO2 in Ionic Liquids at Atmospheric Pressure by Thermogravimetric Analysis. Energy & Fuels 2011, 25 (12) , 5810-5815. https://doi.org/10.1021/ef201519g
    13. Matthew S. Shannon and Jason E. Bara . Properties of Alkylimidazoles as Solvents for CO2 Capture and Comparisons to Imidazolium-Based Ionic Liquids. Industrial & Engineering Chemistry Research 2011, 50 (14) , 8665-8677. https://doi.org/10.1021/ie200259h
    14. Bahamin Bazooyar, Fariborz Shaahmadi, Abolfazl Jomekian, Seyed Sorosh Mirfasihi. Carbon capture via aqueous ionic liquids intelligent modelling. Case Studies in Chemical and Environmental Engineering 2023, 8 , 100444. https://doi.org/10.1016/j.cscee.2023.100444
    15. Abobakr K. Ziyada, Abdelbagi Osman, Abdullah Ahmed Elbashir, Fahd Rajab, Abdul Majeed Khan, Mei Musa Ali Omar, Cecilia Devi Wilfred. Effect of allyl, benzyl, and hydroxyl groups on the CO2 absorption capacity of propanenitrile imidazolium–based ionic liquids incorporating dioctylsulfosuccinate anion. Ionics 2023, 29 (11) , 4659-4667. https://doi.org/10.1007/s11581-023-05195-5
    16. Mohammad Yousefe, Bruna Ursano, José Antonio Reina, Alberto Puga. Readily regenerable amine-free CO2 sorbent based on a solid-supported carboxylate ionic liquid. Journal of Environmental Management 2023, 334 , 117469. https://doi.org/10.1016/j.jenvman.2023.117469
    17. Muthumari Perumal, Dhanalakshmi Jayaraman. Amine-Ionic Liquid Blends in CO 2 Capture Process for Sustainable Energy and Environment. Energy & Environment 2023, 34 (3) , 517-532. https://doi.org/10.1177/0958305X211070782
    18. Chengmin Gui, Guoxuan Li, Minghao Song, Zhigang Lei. Absorption of dichloromethane in deep eutectic solvents: Experimental and computational thermodynamics. Separation and Purification Technology 2023, 311 , 123281. https://doi.org/10.1016/j.seppur.2023.123281
    19. Ashish Pandey, Prashant R. Jadhao, Snigdha Mishra, K.K. Pant. Ionic liquids: designer sorbents for CO2 capture. 2023, 163-191. https://doi.org/10.1016/B978-0-323-85777-2.00001-9
    20. Md Abu Shahyn Islam, Mohd Arham Khan, Nimra Shakeel, Mohd Imran Ahamed, Naushad Anwar. Ionic liquids as potential materials for carbon dioxide capture and utilization. 2023, 177-196. https://doi.org/10.1016/B978-0-323-99429-3.00004-7
    21. Qazi Sohaib, Mohammad Amin Kazemi, Christophe Charmette, Jim Cartier, Mohammad Younas, Abouzar Azarafza, Mashallah Rezakazemi, José Sanchez-Marcano. CO2 solubility and diffusivity in 1-ethyl-3-methylimidazolium cation-based ionic liquids; isochoric pressure drop approach. Fluid Phase Equilibria 2023, 563 , 113581. https://doi.org/10.1016/j.fluid.2022.113581
    22. Xuanxuan Huang. Experimental and simulation study on the capture and separation of CO2/CH4 by alkali metal complex ionic liquid. Fuel 2022, 329 , 125444. https://doi.org/10.1016/j.fuel.2022.125444
    23. Xutao Hu, Xuemei Yang, Lifang Chen, Mingcan Mei, Zhen Song, Zhaofu Fei, Paul J. Dyson, Zhiwen Qi. Elucidating the transition between CO2 physisorption and chemisorption in 1,2,4-triazolate ionic liquids at a molecular level. Chemical Engineering Journal 2022, 435 , 134956. https://doi.org/10.1016/j.cej.2022.134956
    24. Yuqiu Chen, Baoliang Peng, Georgios M. Kontogeorgis, Xiaodong Liang. Machine learning for the prediction of viscosity of ionic liquid–water mixtures. Journal of Molecular Liquids 2022, 350 , 118546. https://doi.org/10.1016/j.molliq.2022.118546
    25. B. Sasikumar, G. Arthanareeswaran. Advances in the integration of ionic liquids with the membrane technology for gas separation. 2022, 167-187. https://doi.org/10.1016/B978-0-12-824545-3.00011-8
    26. Eiji Kamio. Ionic liquid–based membranes for gas separation. 2022, 1-31. https://doi.org/10.1016/B978-0-323-89977-2.00009-9
    27. Mingzhen Shi, Wenjie Xiong, Xiaomin Zhang, Jialan Ji, Xingbang Hu, Zhuoheng Tu, Youting Wu. Highly efficient and selective H2S capture by task-specific deep eutectic solvents through chemical dual-site absorption. Separation and Purification Technology 2022, 283 , 120167. https://doi.org/10.1016/j.seppur.2021.120167
    28. xuanxuan huang, Yifei Wang, Guangsuo Yu, Fuchen Wang. Experimental and Simulation Study on the Capture and Separation of Co2/Ch4 by Alkali Metal Complex Ionic Liquid. SSRN Electronic Journal 2022, 35 https://doi.org/10.2139/ssrn.4121109
    29. Chunyan Ma, Nan Wang, Nannan Ye, Xiaoyan Ji. CO2 capture using ionic liquid-based hybrid solvents from experiment to process evaluation. Applied Energy 2021, 304 , 117767. https://doi.org/10.1016/j.apenergy.2021.117767
    30. Nadeem Hussain Solangi, Amna Anjum, Faisal Amri Tanjung, Shaukat Ali Mazari, Nabisab Mujawar Mubarak. A review of recent trends and emerging perspectives of ionic liquid membranes for CO2 separation. Journal of Environmental Chemical Engineering 2021, 9 (5) , 105860. https://doi.org/10.1016/j.jece.2021.105860
    31. Venkatramana Losetty, C. Hazarathaiah Yadav, Cecilia Devi Wilfred, Ramesh L. Gardas. Study of CO2 solubility in bicyclic ionic liquids by thermodynamic properties and FT-IR spectroscopic analysis at T=(303.15 and 313.15) K. Chemical Thermodynamics and Thermal Analysis 2021, 3-4 , 100021. https://doi.org/10.1016/j.ctta.2021.100021
    32. Vasa Maureen Shama, Aditya Ravi Swami, R. Aniruddha, I. Sreedhar, Benjaram M. Reddy. Process and engineering aspects of carbon capture by ionic liquids. Journal of CO2 Utilization 2021, 48 , 101507. https://doi.org/10.1016/j.jcou.2021.101507
    33. Nan Wang, Chunyan Ma, Hang Yu, Xiaoyan Ji. Thermodynamics of CO2 separation with the superbase derived ionic liquid -- organic solvent binary system. Journal of Molecular Liquids 2021, 331 , 115760. https://doi.org/10.1016/j.molliq.2021.115760
    34. Ye Qu, Jianwen Lan, Yanglin Chen, Jianmin Sun. Amino acid ionic liquids as efficient catalysts for CO 2 capture and chemical conversion with epoxides under metal/halogen/cocatalyst/solvent-free conditions. Sustainable Energy & Fuels 2021, 5 (9) , 2494-2503. https://doi.org/10.1039/D1SE00060H
    35. Zhaofu Zhang, Shuaishuai Liu, Jun Ma, Tianbin Wu. A depth-suitable and water-stable trap for CO 2 capture. RSC Advances 2021, 11 (26) , 15748-15752. https://doi.org/10.1039/D1RA01268A
    36. Jing Ma, Yutong Wang, Xueqing Yang, Baohe Wang. Fast Track to Acetate-Based Ionic Liquids: Preparation, Properties and Application in Energy and Petrochemical Fields. Topics in Current Chemistry 2021, 379 (1) https://doi.org/10.1007/s41061-020-00315-5
    37. Kailas Wasewar. Carbon Dioxide Capture by Ionic Liquids. 2021, 147-194. https://doi.org/10.1007/978-981-16-0638-0_8
    38. Guocai Tian. Applications of green solvents in toxic gases removal. 2021, 149-201. https://doi.org/10.1016/B978-0-12-821884-6.00008-5
    39. Xutao Hu, Xuemei Yang, Lifang Chen, Mingcan Mei, Zhen Song, Zhaofu Fei, Paul J. Dyson, Zhiwen Qi. Elucidating the Transition between CO 2 Physisorption and Chemisorption in 1,2,4-Triazolate Ionic Liquids at a Molecular Level. SSRN Electronic Journal 2021, 575 https://doi.org/10.2139/ssrn.3969612
    40. Jing Ma, Yutong Wang, Mingxuan Zhu, Xueqing Yang, Baohe Wang. Insight into the separation mechanism of acetate anion-based ionic liquids on CO2 and N2: A multi-scale simulation study. Journal of Molecular Liquids 2020, 320 , 114408. https://doi.org/10.1016/j.molliq.2020.114408
    41. Paola Bernardo, Daniela Zampino, Gabriele Clarizia. Triggering the gas transport in PVdF-HFP membranes via imidazolium ionic liquids. Separation and Purification Technology 2020, 250 , 117201. https://doi.org/10.1016/j.seppur.2020.117201
    42. Qazi Sohaib, Jose Manuel Vadillo, Lucía Gómez-Coma, Jonathan Albo, Stéphanie Druon-Bocquet, Angel Irabien, José Sanchez-Marcano. Post-combustion CO2 capture by coupling [emim] cation based ionic liquids with a membrane contactor; Pseudo-steady-state approach. International Journal of Greenhouse Gas Control 2020, 99 , 103076. https://doi.org/10.1016/j.ijggc.2020.103076
    43. Sohaib Qazi, Lucía Gómez‐Coma, Jonathan Albo, Stéphanie Druon‐Bocquet, Angel Irabien, Mohammad Younas, José Sanchez‐Marcano. Mathematical modeling of CO 2 absorption with ionic liquids in a membrane contactor, study of absorption kinetics and influence of temperature. Journal of Chemical Technology & Biotechnology 2020, 95 (7) , 1844-1857. https://doi.org/10.1002/jctb.6265
    44. Fan Yang, Xianjuan Wang, Yang Liu, Yanmei Yang, Mingwen Zhao, Xiangdong Liu, Weifeng Li. Understanding CO 2 capture kinetics and energetics by ionic liquids with molecular dynamics simulation. RSC Advances 2020, 10 (24) , 13968-13974. https://doi.org/10.1039/D0RA02221G
    45. Joanna Szala-Bilnik, Ellis Crabtree, Asghar Abedini, Jason E. Bara, C. Heath Turner. Solubility and diffusivity of CO2 in ionic polyimides with [C(CN)3]x[oAc]1−x anion composition. Computational Materials Science 2020, 174 , 109468. https://doi.org/10.1016/j.commatsci.2019.109468
    46. Mohammad Farsi, Ebrahim Soroush. CO2 absorption by ionic liquids and deep eutectic solvents. 2020, 89-105. https://doi.org/10.1016/B978-0-12-819657-1.00004-9
    47. J. G. Yao, P. S. Fennell, J. P. Hallett. Ionic Liquids. 2019, 69-105. https://doi.org/10.1039/9781788012744-00069
    48. Rahma Hachicha, Ramzi Zarrougui, Sabri Messaoudi, Steven le Vot, Olivier Fontaine, Frédéric Favier, Ouassim Ghodbane. Physicochemical properties and theoretical studies of novel fragile ionic liquids based on N-allyl-N,N-dimethylethylammonium cation. Journal of Molecular Liquids 2019, 284 , 522-535. https://doi.org/10.1016/j.molliq.2019.03.166
    49. Stephanie Peper, José M.S. Fonseca, Ralf Dohrn. High-pressure fluid-phase equilibria: Trends, recent developments, and systems investigated (2009–2012). Fluid Phase Equilibria 2019, 484 , 126-224. https://doi.org/10.1016/j.fluid.2018.10.007
    50. Alsu I. Akhmetshina, Anton N. Petukhov, Olesya R. Gumerova, Andrey V. Vorotyntsev, Alexander V. Nyuchev, Ilya V. Vorotyntsev. Solubility of H2S and CO2 in imidazolium-based ionic liquids with bis(2-ethylhexyl) sulfosuccinate anion. The Journal of Chemical Thermodynamics 2019, 130 , 173-182. https://doi.org/10.1016/j.jct.2018.10.013
    51. Yoshiro Yasaka, Yuma Saito, Yoshifumi Kimura. Role of Hydrogen‐Bond Interactions in CO 2 Capture by Wet Phosphonium Formate Ionic Liquid: A Raman Spectroscopic Study. ChemPhysChem 2018, 19 (13) , 1674-1682. https://doi.org/10.1002/cphc.201701324
    52. Chong Chen, Nengjie Feng, Qirui Guo, Zhong Li, Xue Li, Jing Ding, Lei Wang, Hui Wan, Guofeng Guan. Surface engineering of a chromium metal-organic framework with bifunctional ionic liquids for selective CO2 adsorption: Synergistic effect between multiple active sites. Journal of Colloid and Interface Science 2018, 521 , 91-101. https://doi.org/10.1016/j.jcis.2018.03.029
    53. Mai Bui, Claire S. Adjiman, André Bardow, Edward J. Anthony, Andy Boston, Solomon Brown, Paul S. Fennell, Sabine Fuss, Amparo Galindo, Leigh A. Hackett, Jason P. Hallett, Howard J. Herzog, George Jackson, Jasmin Kemper, Samuel Krevor, Geoffrey C. Maitland, Michael Matuszewski, Ian S. Metcalfe, Camille Petit, Graeme Puxty, Jeffrey Reimer, David M. Reiner, Edward S. Rubin, Stuart A. Scott, Nilay Shah, Berend Smit, J. P. Martin Trusler, Paul Webley, Jennifer Wilcox, Niall Mac Dowell. Carbon capture and storage (CCS): the way forward. Energy & Environmental Science 2018, 11 (5) , 1062-1176. https://doi.org/10.1039/C7EE02342A
    54. Mei Wang, Mingming Wang, Na Rao, Jiale Li, Jianfen Li. Enhancement of CO 2 capture performance of aqueous MEA by mixing with [NH 2 e-mim][BF 4 ]. RSC Advances 2018, 8 (4) , 1987-1992. https://doi.org/10.1039/C7RA11757D
    55. Ramzi Zarrougui, Rahma Hachicha, Refka Rjab, Sabri Messaoudi, Ouassim Ghodbane. Physicochemical characterizations of novel dicyanamide-based ionic liquids applied as electrolytes for supercapacitors. RSC Advances 2018, 8 (54) , 31213-31223. https://doi.org/10.1039/C8RA05820B
    56. Wen-Tao Zheng, Feng Zhang, You-Ting Wu, Xing-Bang Hu. Concentrated aqueous solutions of protic ionic liquids as effective CO2 absorbents with high absorption capacities. Journal of Molecular Liquids 2017, 243 , 169-177. https://doi.org/10.1016/j.molliq.2017.08.035
    57. Bihan Jiang, Melissa Y. Horton, William E. Acree, Michael H. Abraham. Ion-specific equation coefficient version of the Abraham model for ionic liquid solvents: determination of coefficients for tributylethylphosphonium, 1-butyl-1-methylmorpholinium, 1-allyl-3-methylimidazolium and octyltriethylammonium cations. Physics and Chemistry of Liquids 2017, 55 (3) , 358-385. https://doi.org/10.1080/00319104.2016.1218009
    58. Lucia Gómez-Coma, Aurora Garea, Angel Irabien. Mass Transfer Analysis of CO 2 Capture by PVDF Membrane Contactor and Ionic Liquid. Chemical Engineering & Technology 2017, 40 (4) , 678-690. https://doi.org/10.1002/ceat.201600293
    59. Alireza Afsharpour, Ali Haghtalab. Simultaneous measurement absorption of CO 2 and H 2 S mixture into aqueous solutions containing Diisopropanolamine blended with 1-butyl-3-methylimidazolium acetate ionic liquid. International Journal of Greenhouse Gas Control 2017, 58 , 71-80. https://doi.org/10.1016/j.ijggc.2017.01.004
    60. Shokat Sarmad, Jyri‐Pekka Mikkola, Xiaoyan Ji. Carbon Dioxide Capture with Ionic Liquids and Deep Eutectic Solvents: A New Generation of Sorbents. ChemSusChem 2017, 10 (2) , 324-352. https://doi.org/10.1002/cssc.201600987
    61. Xiangping Zhang, Lu Bai, Shaojuan Zeng, Hongshuai Gao, Suojiang Zhang, Maohong Fan. Ionic Liquids: Advanced Solvents for CO2 Capture. 2017, 153-176. https://doi.org/10.1007/978-3-319-47262-1_7
    62. Y. Yasaka, K. Watanabe, Y. Kimura. SO 2 capture by ionic liquid and spectroscopic speciation of sulfur( iv ) therein. RSC Advances 2017, 7 (11) , 6538-6547. https://doi.org/10.1039/C6RA25528K
    63. Gabriel Zarca, W. Jeffrey Horne, Inmaculada Ortiz, Ane Urtiaga, Jason E. Bara. Synthesis and gas separation properties of poly(ionic liquid)-ionic liquid composite membranes containing a copper salt. Journal of Membrane Science 2016, 515 , 109-114. https://doi.org/10.1016/j.memsci.2016.05.045
    64. Guoqiang Han, Yaotai Jiang, Dongshun Deng, Ning Ai. Solubilities and thermodynamic properties of SO 2 in five biobased solvents. The Journal of Chemical Thermodynamics 2016, 92 , 207-213. https://doi.org/10.1016/j.jct.2015.09.017
    65. Zhongde Dai, Richard D. Noble, Douglas L. Gin, Xiangping Zhang, Liyuan Deng. Combination of ionic liquids with membrane technology: A new approach for CO2 separation. Journal of Membrane Science 2016, 497 , 1-20. https://doi.org/10.1016/j.memsci.2015.08.060
    66. Guokai Cui, Jianji Wang, Suojiang Zhang. Active chemisorption sites in functionalized ionic liquids for carbon capture. Chemical Society Reviews 2016, 45 (15) , 4307-4339. https://doi.org/10.1039/C5CS00462D
    67. Liliana C. Tomé, Isabel M. Marrucho. Ionic liquid-based materials: a platform to design engineered CO 2 separation membranes. Chemical Society Reviews 2016, 45 (10) , 2785-2824. https://doi.org/10.1039/C5CS00510H
    68. Stefan Baj, Tomasz Krawczyk, Aleksandra Dąbrowska, Agnieszka Siewniak, Aleksander Sobolewski. Absorption of carbon dioxide in aqueous solutions of imidazolium ionic liquids with carboxylate anions. Korean Journal of Chemical Engineering 2015, 32 (11) , 2295-2299. https://doi.org/10.1007/s11814-015-0082-2
    69. Youngjune Park, Kun-Yi Andrew Lin, Ah-Hyung Alissa Park, Camille Petit. Recent Advances in Anhydrous Solvents for CO2 Capture: Ionic Liquids, Switchable Solvents, and Nanoparticle Organic Hybrid Materials. Frontiers in Energy Research 2015, 3 https://doi.org/10.3389/fenrg.2015.00042
    70. Meizhen Lu, Guoqiang Han, Yaotai Jiang, Xudong Zhang, Dongshun Deng, Ning Ai. Solubilities of carbon dioxide in the eutectic mixture of levulinic acid (or furfuryl alcohol) and choline chloride. The Journal of Chemical Thermodynamics 2015, 88 , 72-77. https://doi.org/10.1016/j.jct.2015.04.021
    71. Liliana C. Tomé, Isabel M. Marrucho. Poly(ionic liquid)s: Designing CO2 Separation Membranes. 2015, 267-295. https://doi.org/10.1007/978-3-662-44903-5_10
    72. Zhen Liu, Sherif Zein El Abedin, Frank Endres. Electrochemical and spectroscopic study of Zn( ii ) coordination and Zn electrodeposition in three ionic liquids with the trifluoromethylsulfonate anion, different imidazolium ions and their mixtures with water. Physical Chemistry Chemical Physics 2015, 17 (24) , 15945-15952. https://doi.org/10.1039/C5CP01472G
    73. Kris Anderson, Martin P. Atkins, Julien Estager, Yongcheun Kuah, Shieling Ng, Alexander A. Oliferenko, Natalia V. Plechkova, Alberto V. Puga, Kenneth R. Seddon, David F. Wassell. Carbon dioxide uptake from natural gas by binary ionic liquid–water mixtures. Green Chemistry 2015, 17 (8) , 4340-4354. https://doi.org/10.1039/C5GC00720H
    74. Guo-Qiang Han, Yao-Tai Jiang, Dong-Shun Deng, Ning Ai. Absorption of SO 2 by renewable ionic liquid/polyethylene glycol binary mixture and thermodynamic analysis. RSC Advances 2015, 5 (107) , 87750-87757. https://doi.org/10.1039/C5RA13750K
    75. Da-Niu Cai, Kuan Huang, Xiao-Min Zhang, Xing-Bang Hu, You-Ting Wu. Amino Acid Modified Macroreticular Anion Exchange Resins for CO2 Adsorption. Journal of Chemical Engineering of Japan 2015, 48 (4) , 268-275. https://doi.org/10.1252/jcej.14we188
    76. Kuan Huang, Xiao-Min Zhang, Ya-Xin Li, You-Ting Wu, Xing-Bang Hu. Facilitated separation of CO2 and SO2 through supported liquid membranes using carboxylate-based ionic liquids. Journal of Membrane Science 2014, 471 , 227-236. https://doi.org/10.1016/j.memsci.2014.08.022
    77. Timothy W. Stephens, Vicky Chou, Amanda N. Quay, Connie Shen, Nishu Dabadge, Amy Tian, Matthew Loera, Bria Willis, Anastasia Wilson, William E. Acree, Pamela Twu, Jared L. Anderson, Michael H. Abraham. Thermochemical investigations of solute transfer into ionic liquid solvents: updated Abraham model equation coefficients for solute activity coefficient and partition coefficient predictions. Physics and Chemistry of Liquids 2014, 52 (4) , 488-518. https://doi.org/10.1080/00319104.2014.880114
    78. Kuan Huang, Da‐Niu Cai, Yong‐Le Chen, You‐Ting Wu, Xing‐Bang Hu, Zhi‐Bing Zhang. Dual Lewis Base Functionalization of Ionic Liquids for Highly Efficient and Selective Capture of H 2 S. ChemPlusChem 2014, 79 (2) , 241-249. https://doi.org/10.1002/cplu.201300365
    79. Liliana C. Tomé, David J. S. Patinha, Rui Ferreira, Helga Garcia, Cristina Silva Pereira, Carmen S. R. Freire, Luís Paulo N. Rebelo, Isabel M. Marrucho. Cholinium‐based Supported Ionic Liquid Membranes: A Sustainable Route for Carbon Dioxide Separation. ChemSusChem 2014, 7 (1) , 110-113. https://doi.org/10.1002/cssc.201300613
    80. Liliana C. Tomé, Catarina Florindo, Carmen S. R. Freire, Luís Paulo N. Rebelo, Isabel M. Marrucho. Playing with ionic liquid mixtures to design engineered CO 2 separation membranes. Physical Chemistry Chemical Physics 2014, 16 (32) , 17172. https://doi.org/10.1039/C4CP01434K
    81. Anne-Lise Girard, Nathália Simon, Marcileia Zanatta, Sandro Marmitt, Paulo Gonçalves, Jairton Dupont. Insights on recyclable catalytic system composed of task-specific ionic liquids for the chemical fixation of carbon dioxide. Green Chem. 2014, 16 (5) , 2815-2825. https://doi.org/10.1039/C4GC00127C
    82. S. Stevanovic, A. Podgorsek, L. Moura, C.C. Santini, A.A.H. Padua, M.F. Costa Gomes. Absorption of carbon dioxide by ionic liquids with carboxylate anions. International Journal of Greenhouse Gas Control 2013, 17 , 78-88. https://doi.org/10.1016/j.ijggc.2013.04.017
    83. Liang‐Liang Zhang, Jie‐Xin Wang, Zhi‐Ping Liu, Ying Lu, Guang‐Wen Chu, Wen‐Chuan Wang, Jian‐Feng Chen. Efficient capture of carbon dioxide with novel mass‐transfer intensification device using ionic liquids. AIChE Journal 2013, 59 (8) , 2957-2965. https://doi.org/10.1002/aic.14072
    84. Kuan Huang, Da‐Niu Cai, Yong‐Le Chen, You‐Ting Wu, Xing‐Bang Hu, Zhi‐Bing Zhang. Thermodynamic validation of 1‐alkyl‐3‐methylimidazolium carboxylates as task‐specific ionic liquids for H 2 S absorption. AIChE Journal 2013, 59 (6) , 2227-2235. https://doi.org/10.1002/aic.13976
    85. Kuan Huang, Jian-Feng Lu, You-Ting Wu, Xing-Bang Hu, Zhi-Bing Zhang. Absorption of SO2 in aqueous solutions of mixed hydroxylammonium dicarboxylate ionic liquids. Chemical Engineering Journal 2013, 215-216 , 36-44. https://doi.org/10.1016/j.cej.2012.10.091
    86. Liliana C. Tomé, David J. S. Patinha, Carmen S. R. Freire, Luís Paulo N. Rebelo, Isabel M. Marrucho. CO2 separation applying ionic liquid mixtures: the effect of mixing different anions on gas permeation through supported ionic liquid membranes. RSC Advances 2013, 3 (30) , 12220. https://doi.org/10.1039/c3ra41269e
    87. Kuan Huang, Guan-Nan Wang, Yue Dai, You-Ting Wu, Xing-Bang Hu, Zhi-Bing Zhang. Dicarboxylic acid salts as task-specific ionic liquids for reversible absorption of SO2 with a low enthalpy change. RSC Advances 2013, 3 (37) , 16264. https://doi.org/10.1039/c3ra42256a
    88. Mei WANG, Li-qi ZHANG, Hao LIU, Jun-ying ZHANG, Chu-guang ZHENG. Studies on CO2 absorption performance by imidazole-based ionic liquid mixtures. Journal of Fuel Chemistry and Technology 2012, 40 (10) , 1264-1268. https://doi.org/10.1016/S1872-5813(12)60124-8
    89. Xiangping Zhang, Xiaochun Zhang, Haifeng Dong, Zhijun Zhao, Suojiang Zhang, Ying Huang. Carbon capture with ionic liquids: overview and progress. Energy & Environmental Science 2012, 5 (5) , 6668. https://doi.org/10.1039/c2ee21152a

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect