ACS Publications. Most Trusted. Most Cited. Most Read
Solubilities of Pharmaceutical Compounds in Ionic Liquids
My Activity

Figure 1Loading Img
    Article

    Solubilities of Pharmaceutical Compounds in Ionic Liquids
    Click to copy article linkArticle link copied!

    View Author Information
    GlaxoSmithKline, New Frontiers Science Park, Harlow, Essex, CM19 5AW, United Kingdom
    School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
    Other Access Options

    Journal of Chemical & Engineering Data

    Cite this: J. Chem. Eng. Data 2011, 56, 5, 2039–2043
    Click to copy citationCitation copied!
    https://doi.org/10.1021/je101040p
    Published March 7, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    The solubilities of paracetamol and ibuprofen were determined in two different ionic liquids at temperatures of 298.15 K, 308.15 K, 318.15 K, 328.15 K, and 338.15 K. The ionic liquids selected were 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6] and 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF6]. In addition, solubility data for paracetamol and ibuprofen in water are reported at the same temperatures extending the data commonly reported in pharmaceutical reference texts. For all solvents the concentration of drug in solution was determined by UV spectrophotometry.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 104 publications.

    1. John Adewole Alara Oluwaseun Ruth Alara . Application of Magnetic Surfactant in DNA Compaction and Drug Delivery. , 33-46. https://doi.org/10.1021/bk-2023-1447.ch003
    2. Reyhaneh Taherinia, Fariba Ghaffari, Hemayat Shekaari, Masumeh Mokhtarpour. Thermophysical Properties of Acetaminophen in Aqueous Solutions of Protic Ionic Liquids Based on Ethanolamine at T = 288.15–318.15 K. Journal of Chemical & Engineering Data 2023, 68 (7) , 1525-1533. https://doi.org/10.1021/acs.jced.2c00710
    3. Wenbing Zhang, Yan Guo, Jiale Yang, Gang Tang, Jian Zhang, Yongsong Cao. Prodrug Based on Ionic Liquids for Dual-Triggered Release of Thiabendazole. ACS Omega 2023, 8 (3) , 3484-3492. https://doi.org/10.1021/acsomega.2c07511
    4. Nicole M. Stephens, Hayley P. Masching, Mohammad K. I. Walid, Jacob W. Petrich, Jared L. Anderson, Emily A. Smith. Temperature-Dependent Constrained Diffusion of Micro-Confined Alkylimidazolium Chloride Ionic Liquids. The Journal of Physical Chemistry B 2022, 126 (23) , 4324-4333. https://doi.org/10.1021/acs.jpcb.2c01588
    5. Xu Jie, Chen Mengqi, Wei Yan, Hao Shuanghong. Investigation on Recovery of p-MePhSO3K Based on Solid–Liquid Equilibrium of the p-MePhSO3K–K2CO3–H2O System. Journal of Chemical & Engineering Data 2021, 66 (3) , 1249-1254. https://doi.org/10.1021/acs.jced.0c00837
    6. Benworth B. Hansen, Stephanie Spittle, Brian Chen, Derrick Poe, Yong Zhang, Jeffrey M. Klein, Alexandre Horton, Laxmi Adhikari, Tamar Zelovich, Brian W. Doherty, Burcu Gurkan, Edward J. Maginn, Arthur Ragauskas, Mark Dadmun, Thomas A. Zawodzinski, Gary A. Baker, Mark E. Tuckerman, Robert F. Savinell, Joshua R. Sangoro. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chemical Reviews 2021, 121 (3) , 1232-1285. https://doi.org/10.1021/acs.chemrev.0c00385
    7. Moira M. Esson, Sandro Mecozzi. Preparation, Characterization, and Formulation Optimization of Ionic-Liquid-in-Water Nanoemulsions toward Systemic Delivery of Amphotericin B. Molecular Pharmaceutics 2020, 17 (6) , 2221-2226. https://doi.org/10.1021/acs.molpharmaceut.9b00809
    8. Xue Sun, Hansen Yang, Zhimiao Wang, Fang Li, Hualiang An, Wei Xue, Yanji Wang. Measurement and Correlation of the Solubility of Theobromine and Theophylline in Seven Imidazolium-Based Ionic Liquids at Various Temperatures. Journal of Chemical & Engineering Data 2020, 65 (2) , 848-855. https://doi.org/10.1021/acs.jced.9b01043
    9. Paula Berton, Manish Kumar Mishra, Hemant Choudhary, Allan S. Myerson, Robin D. Rogers. Solubility Studies of Cyclosporine Using Ionic Liquids. ACS Omega 2019, 4 (5) , 7938-7943. https://doi.org/10.1021/acsomega.9b00603
    10. Chen Meng-qi, Xu Jie, Wei Yan, Hao Shuang-hong. Recovery of PhSO3K from Industrial Waste Based on Solid–Liquid Equilibrium of the PhSO3K–K2CO3–H2O System. Journal of Chemical & Engineering Data 2018, 63 (5) , 1397-1402. https://doi.org/10.1021/acs.jced.7b00998
    11. Sónia P. M. Ventura, Francisca A. e Silva, Maria V. Quental, Dibyendu Mondal, Mara G. Freire, and João A. P. Coutinho . Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends. Chemical Reviews 2017, 117 (10) , 6984-7052. https://doi.org/10.1021/acs.chemrev.6b00550
    12. Hugo F. D. Almeida, Isabel M. Marrucho, and Mara G. Freire . Removal of Nonsteroidal Anti-Inflammatory Drugs from Aqueous Environments with Reusable Ionic-Liquid-Based Systems. ACS Sustainable Chemistry & Engineering 2017, 5 (3) , 2428-2436. https://doi.org/10.1021/acssuschemeng.6b02771
    13. Ricardo A. M. Faria, Tiago F. M. Vieira, Catarina I. Melo, and Ewa Bogel-Łukasik . Solubility Data as a Response for a Challenge for Formulation Chemists: Imidazolium-Based Ionic Liquids and Antitubercular Antibiotic Medicines. Journal of Chemical & Engineering Data 2016, 61 (9) , 3116-3126. https://doi.org/10.1021/acs.jced.6b00201
    14. Li Ge, Anxian Bao, and Kedi Yang . Determination and Correlation of the Solubility for Berberine Chloride in Pure Imidazolium-Based Ionic Liquids. Journal of Chemical & Engineering Data 2016, 61 (5) , 1829-1835. https://doi.org/10.1021/acs.jced.5b01017
    15. Andrew S. Paluch, Tuanan C. Lourenço, Fenglin Han, and Luciano T. Costa . Understanding the Solubility of Acetaminophen in 1-n-Alkyl-3-methylimidazolium-Based Ionic Liquids Using Molecular Simulation. The Journal of Physical Chemistry B 2016, 120 (13) , 3360-3369. https://doi.org/10.1021/acs.jpcb.5b11648
    16. Cameron C. Weber, Samir A. Kulkarni, Andreas J. Kunov-Kruse, Robin D. Rogers, and Allan S. Myerson . The Use of Cooling Crystallization in an Ionic Liquid System for the Purification of Pharmaceuticals. Crystal Growth & Design 2015, 15 (10) , 4946-4951. https://doi.org/10.1021/acs.cgd.5b00855
    17. Sofiane Saouane and Francesca P. A. Fabbiani . Structural Behavior of Long-Chain Imidazolium-Based Ionic Liquid [C10mim]Cl–Water Mixtures. Crystal Growth & Design 2015, 15 (8) , 3875-3884. https://doi.org/10.1021/acs.cgd.5b00494
    18. Hemayat Shekaari, Mohammed Taghi Zafarani-Moattar, and Seyyedeh Narjes Mirheydari . Density, Viscosity, Speed of Sound, and Refractive Index of a Ternary Solution of Aspirin, 1-Butyl-3-methylimidazolium Bromide, and Acetonitrile at Different Temperatures T = (288.15 to 318.15) K. Journal of Chemical & Engineering Data 2015, 60 (6) , 1572-1583. https://doi.org/10.1021/je5008372
    19. Li Ge, Liangchi Guo, Kedi Yang, Kejia Tao, Jing Su, and Yunfei Long . Solubility of Diosgenin in Several Imidazolium-Based Ionic Liquids. Journal of Chemical & Engineering Data 2015, 60 (1) , 11-15. https://doi.org/10.1021/je5004324
    20. Jacqueline Resende de Azevedo, Jean-Jacques Letourneau, Fabienne Espitalier, and Maria Inês Ré . Solubility of a New Cardioactive Prototype Drug in Ionic Liquids. Journal of Chemical & Engineering Data 2014, 59 (6) , 1766-1773. https://doi.org/10.1021/je4009624
    21. Urszula Domańska, Aneta Pobudkowska, and Patrycja Bocheńska . Extraction of Nitrofurantoin Using Ionic Liquids. Journal of Chemical & Engineering Data 2012, 57 (7) , 1894-1898. https://doi.org/10.1021/je201301b
    22. Catarina Lourenço, Catarina I. Melo, Rafał Bogel-Łukasik, and Ewa Bogel-Łukasik . Solubility Advantage of Pyrazine-2-carboxamide: Application of Alternative Solvents on the Way to the Future Pharmaceutical Development. Journal of Chemical & Engineering Data 2012, 57 (5) , 1525-1533. https://doi.org/10.1021/je300044x
    23. Juan D. Henao, Jorge A. Velásquez, Luis F. Cardona, Luis A. Forero. Modeling and experimental data of LLE, VLE, kinematic Viscosity, and density for the 2-Phenylethanol + n-Heptane mixture at low pressure. The Journal of Chemical Thermodynamics 2025, 205 , 107459. https://doi.org/10.1016/j.jct.2025.107459
    24. Dhrubajyoti Maji, Ranjit Biswas. Solvation structure of paracetamol in ChCl-based polyol deep eutectic solvents: Microscopic insights into increased solubility. Journal of Molecular Liquids 2025, 423 , 127042. https://doi.org/10.1016/j.molliq.2025.127042
    25. Ab Raouf Bhat, Rajan Patel. Adsorption kinetics and solubilisation of ciprofloxacin in quaternary ammonium-based surface-active compounds: experimental and computational study. Soft Matter 2025, 21 (4) , 626-640. https://doi.org/10.1039/D4SM00936C
    26. Sachind Prabha Padinhattath, M. Shaibuna, Ramesh L. Gardas. Exploring Ionic Liquid-Based Liquid–Liquid Extraction as a Benign Alternative for Sustainable Wastewater Treatment. Sustainability & Circularity NOW 2025, 02 (CP) https://doi.org/10.1055/a-2515-6076
    27. Prerna Uniyal, Shibam Das, Surbhi Panwar, Neelima Kukreti, Pankaj Nainwal, Rohit Bhatia. A Comprehensive Review on Imperative Role of Ionic Liquids in Pharmaceutical Sciences. Current Drug Delivery 2024, 21 (9) , 1197-1210. https://doi.org/10.2174/0115672018255191230921035859
    28. Elaheh Mirhadi, Prashant Kesharwani, Saurav Kumar Jha, Sercan Karav, Amirhossein Sahebkar. Utilizing ionic liquids as eco-friendly and sustainable carriers for delivering nucleic acids: A review on the revolutionary advancement in nano delivery systems. International Journal of Biological Macromolecules 2024, 17 , 137582. https://doi.org/10.1016/j.ijbiomac.2024.137582
    29. Alireza Sadeghi, Amir Mohammad Jasour, Elaheh Kowsari, Mohammad Gheibi, Mohammad Hadi Ghasemi, Seeram Ramakrishna. Comprehensive viewpoint on ionic liquids applications in sustainable pharmaceutical technology (experiments, simulations, and managerial insights). Journal of Molecular Liquids 2024, 404 , 124991. https://doi.org/10.1016/j.molliq.2024.124991
    30. Xinyan Dong, Xueqing Li, Xiru Ruan, Liyun Kong, Ningfeng Wang, Wenyi Gao, Ruichi Wang, Yangyang Sun, Micong Jin. A deep insight into the structure-solubility relationship and molecular interaction mechanism of diverse flavonoids in molecular solvents, ionic liquids, and molecular solvent/ionic liquid mixtures. Journal of Molecular Liquids 2023, 385 , 122359. https://doi.org/10.1016/j.molliq.2023.122359
    31. Rizwan Safdar, Muhammad Nawaz, Asim Mushtaq, Thien Khanh Tran, Abdul Aziz Omar. A bibliometric analysis for estimating the global research trends related to applications of ionic liquids in drug delivery. Journal of Molecular Liquids 2023, 381 , 121778. https://doi.org/10.1016/j.molliq.2023.121778
    32. Reyhaneh Taherinia, Hemayat Shekaari, Masumeh Mokhtarpour. Effect of mono, di, tri ethanolamine lactate ionic liquids on the solubility of acetaminophen: Experimental measurement and correlation. Journal of Molecular Liquids 2023, 373 , 121162. https://doi.org/10.1016/j.molliq.2022.121162
    33. Huma Warsi Khan, Amal A. M. Elgharbawy, Mohamed Azmi Bustam, Masahiro Goto, Muhammad Moniruzzaman. Ionic Liquid-Based Green Emulsion Liquid Membrane for the Extraction of the Poorly Soluble Drug Ibuprofen. Molecules 2023, 28 (5) , 2345. https://doi.org/10.3390/molecules28052345
    34. Mohammad Barzegar-Jalali, Parisa Jafari, Abolghasem Jouyban, Elaheh Rahimpour. Solubility of paracetamol in binary mixtures of biodegradable betaine/ethylene glycol deep eutectic solvent and water: measurement and correlation. Physics and Chemistry of Liquids 2023, 61 (1) , 41-58. https://doi.org/10.1080/00319104.2022.2101056
    35. Ranjit De, Manoj Kumar Mahata, Ajaya Bhattarai. Origin and evaluation of ionic liquids as a green solvent. 2023, 1-12. https://doi.org/10.1016/B978-0-323-95931-5.00013-0
    36. Zhaoxi Sun, Lei Zheng, Zuo-Yuan Zhang, Yalong Cong, Mao Wang, Xiaohui Wang, Jingjing Yang, Zhirong Liu, Zhe Huai. Molecular Modelling of Ionic Liquids: Situations When Charge Scaling Seems Insufficient. Molecules 2023, 28 (2) , 800. https://doi.org/10.3390/molecules28020800
    37. Zhaoxi Sun, Abhijit Kayal, Zhihao Gong, Lei Zheng, Qiaole He. Molecular modelling of ionic liquids: Physical properties of species with extremely long aliphatic chains from a near-optimal regime. Journal of Molecular Liquids 2022, 367 , 120492. https://doi.org/10.1016/j.molliq.2022.120492
    38. Mohammad Barzegar-Jalali, Parisa Jafari, Abolghasem Jouyban. Experimental determination and correlation of naproxen solubility in biodegradable low-toxic betaine-based deep eutectic solvents and water mixtures at 293.15 K to 313.15 K. Fluid Phase Equilibria 2022, 560 , 113508. https://doi.org/10.1016/j.fluid.2022.113508
    39. Md Nurul Huda, Isaac G. Deaguero, Edgar A. Borrego, Raj Kumar, Tamanna Islam, Humayra Afrin, Armando Varela-Ramirez, Renato J. Aguilera, Eden E.L. Tanner, Md Nurunnabi. Ionic liquid-mediated delivery of a BCL-2 inhibitor for topical treatment of skin melanoma. Journal of Controlled Release 2022, 349 , 783-795. https://doi.org/10.1016/j.jconrel.2022.07.035
    40. N. Dhayananth, S. Karthika, P. Kalaichelvi, T.K Radhakrishnan. Correlation of solubility data and solution properties of chlorzoxazone in pure solvents. The Journal of Chemical Thermodynamics 2022, 170 , 106777. https://doi.org/10.1016/j.jct.2022.106777
    41. Yiping Huang, Defang Ouyang, Yuanhui Ji. The role of hydrogen‐bond in solubilizing drugs by ionic liquids: A molecular dynamics and density functional theory study. AIChE Journal 2022, 68 (6) https://doi.org/10.1002/aic.17672
    42. Wenchang Zhuang, Kadda Hachem, Dmitry Bokov, Mohammad Javed Ansari, Ali Taghvaie Nakhjiri. Ionic liquids in pharmaceutical industry: A systematic review on applications and future perspectives. Journal of Molecular Liquids 2022, 349 , 118145. https://doi.org/10.1016/j.molliq.2021.118145
    43. Soraya S. Santos, Nicolas Keppeler, Jeanine Giarolla, Elizabeth I. Ferreira, Omar A. El Seoud. Applications of Ionic Liquids in Pharmaceutical Sciences. 2022, 471-502. https://doi.org/10.1007/978-981-16-7152-4_17
    44. Belen Altava, Santiago V. Luis, Eduardo García-Verdugo, Raul Porcar. Application of ionic liquids in pharmaceutics and medicine. 2022, 317-375. https://doi.org/10.1016/B978-0-323-91306-5.00008-X
    45. Teresa B. V. Dinis, Francisca A. e Silva, Fani Sousa, Mara G. Freire. Advances Brought by Hydrophilic Ionic Liquids in Fields Involving Pharmaceuticals. Materials 2021, 14 (21) , 6231. https://doi.org/10.3390/ma14216231
    46. Namdeo R. Jadhav, Shatavari P. Bhosale, Shraddha S. Bhosale, Snehal D. Mali, Pranil B. Toraskar, Triveni S. Kadam. Ionic liquids: Formulation avenues, drug delivery and therapeutic updates. Journal of Drug Delivery Science and Technology 2021, 65 , 102694. https://doi.org/10.1016/j.jddst.2021.102694
    47. Saba Humayun, Maan Hayyan, Yatimah Alias, Adeeb Hayyan. Oxidative degradation of acetaminophen using superoxide ion generated in ionic liquid/aprotic solvent binary system. Separation and Purification Technology 2021, 270 , 118730. https://doi.org/10.1016/j.seppur.2021.118730
    48. Masumeh Mokhtarpour, Paria Ardi Samberan, Behrang Golmohammadi, Saeideh Gharouni Fattah, Mohammad Khorsandi, Mohammad Reza Behboudi, Hemayat Shekaari, Mohammed Taghi Zafarani-Moattar. Paracetamol in aqueous solutions of polymeric-based deep eutectic solvents; solubility, partitioning, volumetric and compressibility studies. The Journal of Chemical Thermodynamics 2021, 158 , 106390. https://doi.org/10.1016/j.jct.2021.106390
    49. Sónia N. Pedro, Carmen S. R. Freire, Armando J. D. Silvestre, Mara G. Freire. Ionic Liquids in Drug Delivery. Encyclopedia 2021, 1 (2) , 324-339. https://doi.org/10.3390/encyclopedia1020027
    50. Natali Mustafa, Vincent Spelbos, Geert-Jan Witkamp, Robert Verpoorte, Young Choi. Solubility and Stability of Some Pharmaceuticals in Natural Deep Eutectic Solvents-Based Formulations. Molecules 2021, 26 (9) , 2645. https://doi.org/10.3390/molecules26092645
    51. Faiyaz Shakeel, Md. Khalid Anwer, Abdullah M.E Youssof, Nazrul Haq, Fars K. Alanazi, Ibrahim A. Alsarra. Solubilization, Hansen solubility parameters, and thermodynamic studies of delafloxacin in (transcutol + 1-butyl-3-methyl imidazolium hexafluorophosphate) mixtures. Drug Development and Industrial Pharmacy 2021, 47 (4) , 654-662. https://doi.org/10.1080/03639045.2021.1908338
    52. Jennifer A. Kist, Hua Zhao, Katie R. Mitchell-Koch, Gary A. Baker. The study and application of biomolecules in deep eutectic solvents. Journal of Materials Chemistry B 2021, 9 (3) , 536-566. https://doi.org/10.1039/D0TB01656J
    53. Rahman Md Moshikur, Md. Korban Ali, Masahiro Goto. Ionic Liquids for Increasing the Solubility of Sparingly Soluble Drug Molecules. 2021, 51-70. https://doi.org/10.1007/978-981-16-4365-1_4
    54. Umaima Gazal, Imran Khan, Aamir H. Bhat, Vishal Pathak. Ionic liquids as green solvents in the pharmaceutical industry. 2021, 41-54. https://doi.org/10.1016/B978-0-12-821885-3.00002-5
    55. Shima Taheri Vardanjani, Aliakbar Roosta, Jafar Javanmardi. Natural deep eutectic solvents for enhancing the solubility of two B vitamins in aqueous solutions: Experimental study and thermodynamic aspects. Korean Journal of Chemical Engineering 2020, 37 (12) , 2307-2316. https://doi.org/10.1007/s11814-020-0658-3
    56. Sónia N. Pedro, Carmen S. R. Freire, Armando J. D. Silvestre, Mara G. Freire. The Role of Ionic Liquids in the Pharmaceutical Field: An Overview of Relevant Applications. International Journal of Molecular Sciences 2020, 21 (21) , 8298. https://doi.org/10.3390/ijms21218298
    57. Salva Golgoun, Masumeh Mokhtarpour, Hemayat Shekaari. Solubility Enhancement of Betamethasone, Meloxicam and Piroxicam by Use of Choline-Based Deep Eutectic Solvents. Pharmaceutical Sciences 2020, 27 (1) , 86-101. https://doi.org/10.34172/PS.2020.58
    58. Santosh S. Terdale, Ila J. Warke. Physicochemical properties of dilute aqueous solutions of 1-Ethyl-3-Methylimidazolium Ethylsulfate, 1-Ethyl-3-Methylimidazolium Methylsulfate, 1-Ethyl-3-Methylimidazolium Tosylate and 1, 3-Dimethylimidazolium Methylsulfate at different temperatures and at atmospheric pressure. The Journal of Chemical Thermodynamics 2020, 147 , 106118. https://doi.org/10.1016/j.jct.2020.106118
    59. Hania Benimam, Cherif Si-Moussa, Maamar Laidi, Salah Hanini. Modeling the activity coefficient at infinite dilution of water in ionic liquids using artificial neural networks and support vector machines. Neural Computing and Applications 2020, 32 (12) , 8635-8653. https://doi.org/10.1007/s00521-019-04356-w
    60. Yiping Huang, Yuanhui Ji, Mao Zhang, Defang Ouyang. How imidazolium‐based ionic liquids solubilize the poorly soluble ibuprofen? A theoretical study. AIChE Journal 2020, 66 (5) https://doi.org/10.1002/aic.16940
    61. Weizi Huang, Xiying Wu, Jianping Qi, Quangang Zhu, Wei Wu, Yi Lu, Zhongjian Chen. Ionic liquids: green and tailor-made solvents in drug delivery. Drug Discovery Today 2020, 25 (5) , 901-908. https://doi.org/10.1016/j.drudis.2019.09.018
    62. Md. Khalid Anwer, Muqtader Mohammad, Nasr Y. Khalil, Faisal Imam, Mohammad Javed Ansari, Mohammed F. Aldawsari, Faiyaz Shakeel, Muzaffar Iqbal. Solubility, thermodynamics and molecular interaction studies of delafloxacin in environmental friendly ionic liquids. Journal of Molecular Liquids 2020, 305 , 112854. https://doi.org/10.1016/j.molliq.2020.112854
    63. Mohammad Barzegar-Jalali, Abolghasem Jouyban, Fleming Martinez, Hemayat Shekaari, Seyyedeh Narjes Mirheydari. Solubility and thermodynamics of lamotrigine in ternary mixtures of ionic liquids ([OMIm][Br] + [HMIm][Br] + water) at different temperatures. Chinese Journal of Chemical Engineering 2020, 28 (1) , 198-207. https://doi.org/10.1016/j.cjche.2019.02.026
    64. Masumeh Mokhtarpour, Hemayat Shekaari, Fleming Martinez, Mohammed Taghi Zafarani-Moattar. Performance of Local Composition Models to Correlate the Aqueous Solubility of Naproxen in Some Choline Based Deep Eutectic Solvents at T = (298.15-313.15) K. Pharmaceutical Sciences 2019, 25 (3) , 244-253. https://doi.org/10.15171/PS.2019.31
    65. O.M. Morales-Gonzalez, C. Zhang, S. Li, V. Hessel. Solvent impact assessment for the “One-Flow Functional Solvent Factory”. Chemical Engineering Science: X 2019, 3 , 100024. https://doi.org/10.1016/j.cesx.2019.100024
    66. Seyyedeh Narjes Mirheydari, Mohammad Barzegar-Jalali, Hemayat Shekaari, Fleming Martinez, Abolghasem Jouyban. Experimental determination and correlation of lamotrigine solubility in aqueous mixtures of 1-octyl-3-methylimidazolium bromide ionic liquid at various temperatures. The Journal of Chemical Thermodynamics 2019, 135 , 75-85. https://doi.org/10.1016/j.jct.2019.03.024
    67. Nilesh Ade, Yogesh Koirala, M.Sam Mannan. Towards an inherently safer bioprocessing industry: A review. Journal of Loss Prevention in the Process Industries 2019, 60 , 125-132. https://doi.org/10.1016/j.jlp.2019.04.015
    68. Jacqueline Resende de Azevedo, Fabienne Espitalier, Maria Inês Ré. Ultrasound assisted crystallization of a new cardioactive prototype using ionic liquid as solvent. Ultrasonics Sonochemistry 2019, 55 , 32-43. https://doi.org/10.1016/j.ultsonch.2019.03.011
    69. Mohammad Barzegar-Jalali, Abolghasem Jouyban, Hemayat Shekaari, Fleming Martinez, Seyyedeh Narjes Mirheydari. The effect of 1-hexyl-3-methylimidazolium bromide ionic liquid as a co-solvent on the aqueous solubility of lamotrigine at T = (293.2–313.2) K. The Journal of Chemical Thermodynamics 2019, 133 , 261-271. https://doi.org/10.1016/j.jct.2019.02.013
    70. Ana R. Jesus, Mário R.C. Soromenho, Luís R. Raposo, José M.S.S. Esperança, Pedro V. Baptista, Alexandra R. Fernandes, Patrícia M. Reis. Enhancement of water solubility of poorly water-soluble drugs by new biocompatible N-acetyl amino acid N-alkyl cholinium-based ionic liquids. European Journal of Pharmaceutics and Biopharmaceutics 2019, 137 , 227-232. https://doi.org/10.1016/j.ejpb.2019.03.004
    71. Fatemeh Soghra Jahed, Mohammad Galehassadi, Soodabeh Davaran. A novel 1,2,3-benzotriazolium based ionic liquid monomer for preparation of MMT/poly ionic liquid (PIL) pH-sensitive positive charge nanocomposites. Journal of Chemical Sciences 2019, 131 (3) https://doi.org/10.1007/s12039-019-1592-y
    72. Stephen T. Nestor, Allison N. Hawkins, Xhensila Xhani, Richard E. Sykora, James X. Mao, Kwangho Nam, Gregory J. McManus, Arsalan Mirjafari. Studies on solubility and S-alkylation of 2-thiouracil in ionic liquids. Journal of Molecular Liquids 2018, 265 , 463-467. https://doi.org/10.1016/j.molliq.2018.06.026
    73. Hemayat Shekaari, Mohammed Taghi Zafarani-Moattar, Masumeh Mokhtarpour. Experimental determination and correlation of acetaminophen solubility in aqueous solutions of choline chloride based deep eutectic solvents at various temperatures. Fluid Phase Equilibria 2018, 462 , 100-110. https://doi.org/10.1016/j.fluid.2018.01.017
    74. Patricia Lucía Amado Alviz, Alejandro J. Alvarez. Comparative life cycle assessment of the use of an ionic liquid ([Bmim]Br) versus a volatile organic solvent in the production of acetylsalicylic acid. Journal of Cleaner Production 2017, 168 , 1614-1624. https://doi.org/10.1016/j.jclepro.2017.02.107
    75. Hemayat Shekaari, Mohammed Taghi Zafarani-Moattar, Masumeh Mokhtarpour. Solubility, volumetric and compressibility properties of acetaminophen in some aqueous solutions of choline based deep eutectic solvents at T = (288.15 to 318.15) K. European Journal of Pharmaceutical Sciences 2017, 109 , 121-130. https://doi.org/10.1016/j.ejps.2017.07.021
    76. Ji-Hun An, Alice Kiyonga, Woojin Yoon, Minho Park, Changjin Lim, Younghwi Yun, Gyu-Hwan Park, Kiwon Jung. Effect of Ionic Liquids on the Separation of Sucrose Crystals from a Natural Product Using Crystallization Techniques. Crystals 2017, 7 (10) , 284. https://doi.org/10.3390/cryst7100284
    77. Resende de Azevedo Jacqueline, Espitalier Fabienne, Letourneau Jean-Jacques, Ré Maria Inês. Antisolvent crystallization of a cardiotonic drug in ionic liquids: Effect of mixing on the crystal properties. Journal of Crystal Growth 2017, 472 , 29-34. https://doi.org/10.1016/j.jcrysgro.2016.12.057
    78. Bong‐Seop Lee, Shiang‐Tai Lin. Prediction and screening of solubility of pharmaceuticals in single‐ and mixed‐ionic liquids using COSMO‐SAC model. AIChE Journal 2017, 63 (7) , 3096-3104. https://doi.org/10.1002/aic.15595
    79. Andreas J. Kunov‐Kruse, Cameron C. Weber, Robin D. Rogers, Allan S. Myerson. The A Priori Design and Selection of Ionic Liquids as Solvents for Active Pharmaceutical Ingredients. Chemistry – A European Journal 2017, 23 (23) , 5498-5508. https://doi.org/10.1002/chem.201605704
    80. Arunprakash T. Karunanithi, Reza Farahipour, Kamila Dilmurat. Ionic Liquids: Applications by Computational Design. 2016, 1-13. https://doi.org/10.1002/9781119951438.eibc2411
    81. Ryan T. Ley, Andrew S. Paluch. Understanding the large solubility of lidocaine in 1- n -butyl-3-methylimidazolium based ionic liquids using molecular simulation. The Journal of Chemical Physics 2016, 144 (8) https://doi.org/10.1063/1.4942025
    82. Anna K. Ressmann, Katharina Bica. Leaching of Active Ingredients from Plants with Ionic Liquids. 2016, 135-165. https://doi.org/10.1007/978-3-662-48520-0_7
    83. Chao Lu, Jun Cao, Ning Wang, Erzheng Su. Significantly improving the solubility of non-steroidal anti-inflammatory drugs in deep eutectic solvents for potential non-aqueous liquid administration. MedChemComm 2016, 7 (5) , 955-959. https://doi.org/10.1039/C5MD00551E
    84. Francisca A. e Silva, Magda Caban, Piotr Stepnowski, João A. P. Coutinho, Sónia P. M. Ventura. Recovery of ibuprofen from pharmaceutical wastes using ionic liquids. Green Chem. 2016, 18 (13) , 3749-3757. https://doi.org/10.1039/C6GC00261G
    85. Noorul Adawiyah, Muhammad Moniruzzaman, Siti Hawatulaila, Masahiro Goto. Ionic liquids as a potential tool for drug delivery systems. MedChemComm 2016, 7 (10) , 1881-1897. https://doi.org/10.1039/C6MD00358C
    86. Mahmoud A. Alawi, Imad I. Hamdan, ALSayed A. Sallam, Najiah Abu Heshmeh. Solubility enhancement of glibenclamide in choline–tryptophan ionic liquid: Preparation, characterization and mechanism of solubilization. Journal of Molecular Liquids 2015, 212 , 629-634. https://doi.org/10.1016/j.molliq.2015.10.006
    87. Shishu Goindi, Ramanpreet Kaur, Randeep Kaur. An ionic liquid-in-water microemulsion as a potential carrier for topical delivery of poorly water soluble drug: Development, ex-vivo and in-vivo evaluation. International Journal of Pharmaceutics 2015, 495 (2) , 913-923. https://doi.org/10.1016/j.ijpharm.2015.09.066
    88. Hemayat Shekaari, Mohammed Taghi Zafarani-Moattar, Seyyedeh Narjes Mirheydari. Thermodynamic study of aspirin in the presence of ionic liquid, 1-hexyl-3-methylimidazolium bromide in acetonitrile at T=(288.15 to 318.15) K. Journal of Molecular Liquids 2015, 209 , 138-148. https://doi.org/10.1016/j.molliq.2015.05.032
    89. Indrajyoti Mukherjee, Satya P. Moulik. Ionic Liquids in Colloidal Regime. 2015, 207-237. https://doi.org/10.1002/9781118854501.ch10
    90. Ricardo A. Faria, Ewa Bogel-Łukasik. Solubilities of pharmaceutical and bioactive compounds in trihexyl(tetradecyl)phosphonium chloride ionic liquid. Fluid Phase Equilibria 2015, 397 , 18-25. https://doi.org/10.1016/j.fluid.2015.03.053
    91. Ricardo A. Faria, Manuel Nunes da Ponte, Ewa Bogel-Łukasik. Solubility studies on the system of trihexyl(tetradecyl)phosphonium bis[(trifluoromethyl)sulfonyl]amide) ionic liquid and pharmaceutical and bioactive compounds. Fluid Phase Equilibria 2015, 385 , 1-9. https://doi.org/10.1016/j.fluid.2014.10.033
    92. C. C. Weber, A. J. Kunov-Kruse, R. D. Rogers, A. S. Myerson. Manipulation of ionic liquid anion–solute–antisolvent interactions for the purification of acetaminophen. Chemical Communications 2015, 51 (20) , 4294-4297. https://doi.org/10.1039/C5CC00198F
    93. M. Smiglak, J. M. Pringle, X. Lu, L. Han, S. Zhang, H. Gao, D. R. MacFarlane, R. D. Rogers. Ionic liquids for energy, materials, and medicine. Chem. Commun. 2014, 50 (66) , 9228-9250. https://doi.org/10.1039/C4CC02021A
    94. K. B. Smith, R. H. Bridson, G. A. Leeke. Crystallisation control of paracetamol from ionic liquids. CrystEngComm 2014, 16 (47) , 10797-10803. https://doi.org/10.1039/C4CE01796J
    95. Gregory Chatel, Jorge F. B. Pereira, Varun Debbeti, Hui Wang, Robin D. Rogers. Mixing ionic liquids – “simple mixtures” or “double salts”?. Green Chemistry 2014, 16 (4) , 2051. https://doi.org/10.1039/c3gc41389f
    96. Katsumi Tochigi, Hiroyuki Matsuda, Kiyofumi Kurihara, Daisuke Kodama, Shigeki Takishima. Thermophysical Properties of Ionic Liquid Systems and Their Applications. KAGAKU KOGAKU RONBUNSHU 2014, 40 (5) , 347-365. https://doi.org/10.1252/kakoronbunshu.40.347
    97. Qilong REN, Huabin XING, Zongbi BAO, Baogen SU, Qiwei YANG, Yiwen YANG, Zhiguo ZHANG. Recent Advances in Separation of Bioactive Natural Products. Chinese Journal of Chemical Engineering 2013, 21 (9) , 937-952. https://doi.org/10.1016/S1004-9541(13)60560-1
    98. Efthimia I. Alevizou, Epaminondas C. Voutsas. Solubilities of p-coumaric and caffeic acid in ionic liquids and organic solvents. The Journal of Chemical Thermodynamics 2013, 62 , 69-78. https://doi.org/10.1016/j.jct.2013.02.013
    99. Urszula Domańska, Elena Vadimovna Lukoshko, Marek Królikowski. Phase behaviour of ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate with alcohols, water and aromatic hydrocarbons. Fluid Phase Equilibria 2013, 345 , 18-22. https://doi.org/10.1016/j.fluid.2013.01.027
    100. Ana M.O. Azevedo, Diogo M.G. Ribeiro, Paula C.A.G. Pinto, Marlene Lúcio, Salette Reis, M. Lúcia M.F.S. Saraiva. Imidazolium ionic liquids as solvents of pharmaceuticals: Influence on HSA binding and partition coefficient of nimesulide. International Journal of Pharmaceutics 2013, 443 (1-2) , 273-278. https://doi.org/10.1016/j.ijpharm.2012.12.030
    Load all citations

    Journal of Chemical & Engineering Data

    Cite this: J. Chem. Eng. Data 2011, 56, 5, 2039–2043
    Click to copy citationCitation copied!
    https://doi.org/10.1021/je101040p
    Published March 7, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    2014

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.