ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

1-Ethyl-3-methylimidazolium Ethylsulfate in Water, Acetonitrile, and Dichloromethane: Molar Conductivities and Association Constants

View Author Information
Faculty of Chemistry, Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D-93040 Regensburg, Germany
Cite this: J. Chem. Eng. Data 2011, 56, 4, 1261–1267
Publication Date (Web):February 16, 2011
https://doi.org/10.1021/je101130e
Copyright © 2011 American Chemical Society

    Article Views

    1309

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Molar conductivities, Λ, of dilute solutions of the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate in water, acetonitrile (AN), and dichloromethane (DCM) were determined as a function of temperature (AN: T = (273.15 to 313.15) K; DCM: T = (273.15 to 308.15) K; water: T = (278.15 to 313.15) K) in the concentration range c = (≈0.25 to ≈5)·10−3 mol·dm−3. The data were analyzed with Barthel's low-concentration chemical (lcCM) model to obtain the limiting molar conductivities, Λ(T), and association constants, KA°(T), of this electrolyte in the investigated solvents. From Λ(T) the Eyring activation enthalpy of charge transport was determined and found to be slightly larger than the corresponding value for viscous flow of the solvent. Strong ion pairing was found for the electrolyte in DCM (KA° ≈ 6·104 mol−1·dm3), whereas ion association in AN is rather weak (KA° ≈ 40 mol−1·dm3). From the temperature dependence of KA°(T) the enthalpy and entropy of the ion-pairing process were calculated, and ion association was found to be entropy-driven for both nonaqueous solvents. In water the salt is fully dissociated.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 63 publications.

    1. Oscar Nordness, Joan F. Brennecke. Ion Dissociation in Ionic Liquids and Ionic Liquid Solutions. Chemical Reviews 2020, 120 (23) , 12873-12902. https://doi.org/10.1021/acs.chemrev.0c00373
    2. Agnieszka Boruń and Adam Bald . Conductance and Ionic Association of Imidazolium-Based Ionic Liquids in N,N-Dimethylacetamide. Journal of Chemical & Engineering Data 2016, 61 (11) , 3788-3793. https://doi.org/10.1021/acs.jced.6b00354
    3. Maolin Sha, Huaze Dong, Fabao Luo, Zhongfeng Tang, Guanglai Zhu, and Guozhong Wu . Dilute or Concentrated Electrolyte Solutions? Insight from Ionic Liquid/Water Electrolytes. The Journal of Physical Chemistry Letters 2015, 6 (18) , 3713-3720. https://doi.org/10.1021/acs.jpclett.5b01513
    4. Bimalendu Adhikari, Alan J. Lough, Bryan Barker, Afzal Shah, Cuili Xiang, and Heinz-Bernhard Kraatz . Bis-amino Acid Derivatives of 1,1′-Ferrocenedicarboxylic Acid: Structural, Electrochemical, and Metal Ion Binding Studies. Organometallics 2014, 33 (18) , 4873-4887. https://doi.org/10.1021/om500032p
    5. Tejwant Singh Kang, Keita Ishiba, Masa-aki Morikawa, and Nobuo Kimizuka . Self-Assembly of Azobenzene Bilayer Membranes in Binary Ionic Liquid–Water Nanostructured Media. Langmuir 2014, 30 (9) , 2376-2384. https://doi.org/10.1021/la405010f
    6. Marija Bešter-Rogač, Alexander Stoppa, and Richard Buchner . Ion Association of Imidazolium Ionic Liquids in Acetonitrile. The Journal of Physical Chemistry B 2014, 118 (5) , 1426-1435. https://doi.org/10.1021/jp412344a
    7. Patrick Yee, Jindal K. Shah, and Edward J. Maginn . State of Hydrophobic and Hydrophilic Ionic Liquids in Aqueous Solutions: Are the Ions Fully Dissociated?. The Journal of Physical Chemistry B 2013, 117 (41) , 12556-12566. https://doi.org/10.1021/jp405341m
    8. Qiao-Li Chen, Ke-Jun Wu, and Chao-Hong He . Thermal Conductivities of [EMIM][EtSO4], [EMIM][EtSO4] + C2H5OH, [EMIM][EtSO4] + H2O, and [EMIM][EtSO4] + C2H5OH + H2O at T = (283.15 to 343.15) K. Journal of Chemical & Engineering Data 2013, 58 (7) , 2058-2064. https://doi.org/10.1021/je400268t
    9. Vitaly V. Chaban and Oleg V. Prezhdo . Ionic and Molecular Liquids: Working Together for Robust Engineering. The Journal of Physical Chemistry Letters 2013, 4 (9) , 1423-1431. https://doi.org/10.1021/jz400113y
    10. E. Rilo, J. Vila, S. García-Garabal, L. M. Varela, and O. Cabeza . Electrical Conductivity of Seven Binary Systems Containing 1-Ethyl-3-methyl Imidazolium Alkyl Sulfate Ionic Liquids with Water or Ethanol at Four Temperatures. The Journal of Physical Chemistry B 2013, 117 (5) , 1411-1418. https://doi.org/10.1021/jp309891j
    11. Johannes Hunger, Roland Neueder, Richard Buchner, and Alexander Apelblat . A Conductance Study of Guanidinium Chloride, Thiocyanate, Sulfate, and Carbonate in Dilute Aqueous Solutions: Ion-Association and Carbonate Hydrolysis Effects. The Journal of Physical Chemistry B 2013, 117 (2) , 615-622. https://doi.org/10.1021/jp311425v
    12. Z. Wojnarowska, K. Grzybowska, L. Hawelek, A. Swiety-Pospiech, E. Masiewicz, M. Paluch, W. Sawicki, A. Chmielewska, P. Bujak, and J. Markowski . Molecular Dynamics Studies on the Water Mixtures of Pharmaceutically Important Ionic Liquid Lidocaine HCl. Molecular Pharmaceutics 2012, 9 (5) , 1250-1261. https://doi.org/10.1021/mp2005609
    13. Ines F. Pierola and Yahya Agzenai . Ion Pairing and Anion-Driven Aggregation of an Ionic Liquid in Aqueous Salt Solutions. The Journal of Physical Chemistry B 2012, 116 (13) , 3973-3981. https://doi.org/10.1021/jp212202b
    14. Agnieszka Boruń and Adam Bald . Conductometric Studies of 1-Ethyl-3-methylimidazolium Tetrafluoroborate and 1-Butyl-3-methylimidazolium Tetrafluoroborate in N,N-Dimethylformamide at Temperatures from (283.15 to 318.15) K. Journal of Chemical & Engineering Data 2012, 57 (2) , 475-481. https://doi.org/10.1021/je201014c
    15. Rahmat Sadeghi and Nosaibah Ebrahimi . Ionic Association and Solvation of the Ionic Liquid 1-Hexyl-3-methylimidazolium Chloride in Molecular Solvents Revealed by Vapor Pressure Osmometry, Conductometry, Volumetry, and Acoustic Measurements. The Journal of Physical Chemistry B 2011, 115 (45) , 13227-13240. https://doi.org/10.1021/jp2055188
    16. Zdzisław Kinart. Electrical Conductivity of Ionic Liquids 1-Hexyl-3-Methylimidazolium Chloride (HMIM) and 1-Methyl-3-Octylimidazolium Chloride (OMIM) in Mixtures with Selected Alkoxy Alcohols over a Wide Temperature Range. Molecules 2023, 28 (23) , 7831. https://doi.org/10.3390/molecules28237831
    17. Hui Wang, Zhida Zuo, Linghong Lu, Aatto Laaksonen, Yonglei Wang, Xiaohua Lu, Xiaoyan Ji. Experimental and theoretical study on ion association in [Hmim][halide] + water/isopropanol mixtures. Fluid Phase Equilibria 2023, 566 , 113680. https://doi.org/10.1016/j.fluid.2022.113680
    18. Emmanouil Veroutis, Steffen Merz, Rüdiger‐A. Eichel, Josef Granwehr. Solvation and Ion‐Pairing Effects of Choline Acetate Electrolyte in Protic and Aprotic Solvents Studied by NMR Titrations. ChemPhysChem 2022, 23 (1) https://doi.org/10.1002/cphc.202100602
    19. Renato Tomaš, Zdzisław Kinart, Aleksandar Tot, Snežana Papović, Teona Teodora Borović, Milan Vraneš. Volumetric properties, conductivity and computation analysis of selected imidazolium chloride ionic liquids in ethylene glycol. Journal of Molecular Liquids 2022, 345 , 118178. https://doi.org/10.1016/j.molliq.2021.118178
    20. Agnieszka Boruń, Anna Wypych-Stasiewicz. Conductivity studies of 1:1 electrolytes in water + methanol mixtures at 298.15 K. Journal of Molecular Liquids 2021, 344 , 117695. https://doi.org/10.1016/j.molliq.2021.117695
    21. Dóra Takács, Bojana Katana, Adél Szerlauth, Dániel Sebők, Matija Tomšič, István Szilágyi. Influence of adsorption of ionic liquid constituents on the stability of layered double hydroxide colloids. Soft Matter 2021, 17 (40) , 9116-9124. https://doi.org/10.1039/D1SM01074C
    22. Zdzislaw Kinart, Renato Tomaš. Conductivity Properties of Selected Aliphatic Monocarboxylic Acid Anions in Water at 298.15 K. International Journal of Electrochemical Science 2020, 15 (10) , 10007-10027. https://doi.org/10.20964/2020.10.68
    23. Zdzisław Kinart, Renato Tomaš. Conductometric study of potassium chloride in ethylene glycol + water mixtures at different temperatures. International Journal of Electrochemical Science 2020, 15 (6) , 5560-5570. https://doi.org/10.20964/2020.06.91
    24. Marta Stańczyk, Agnieszka Boruń, Małgorzata Jóźwiak. Molar conductivity and association constants of sodium salts of selected cinnamic acids in water at temperatures from 288.15 to 318.15 K. Journal of Molecular Liquids 2019, 292 , 111370. https://doi.org/10.1016/j.molliq.2019.111370
    25. Saadia Shaukat, Marina V. Fedotova, Sergey E. Kruchinin, Marija Bešter-Rogač, Črtomir Podlipnik, Richard Buchner. Hydration and ion association of aqueous choline chloride and chlorocholine chloride. Physical Chemistry Chemical Physics 2019, 21 (21) , 10970-10980. https://doi.org/10.1039/C9CP01016E
    26. Marta Stańczyk, Agnieszka Boruń, Małgorzata Jóźwiak. Conductance studies of aqueous solutions of sodium salts of selected benzoic acid derivatives at temperatures from (288.15 to 318.15) K. Journal of Molecular Liquids 2019, 278 , 247-252. https://doi.org/10.1016/j.molliq.2019.01.047
    27. Agnieszka Boruń. Conductance and ionic association of selected imidazolium ionic liquids in various solvents: A review. Journal of Molecular Liquids 2019, 276 , 214-224. https://doi.org/10.1016/j.molliq.2018.11.140
    28. Pankaj D. Patil, Vasim R. Shaikh, Gaurav R. Gupta, Dilip G. Hundiwale, Kesharsingh J. Patil. Studies of Volumetric and Viscosity Properties in Aqueous Solutions of Imidazolium Based Ionic Liquids at Different Temperatures and at Ambient Pressure. Journal of Solution Chemistry 2019, 48 (1) , 45-60. https://doi.org/10.1007/s10953-019-00845-7
    29. Chunyan Ma, Aatto Laaksonen, Chang Liu, Xiaohua Lu, Xiaoyan Ji. The peculiar effect of water on ionic liquids and deep eutectic solvents. Chemical Society Reviews 2018, 47 (23) , 8685-8720. https://doi.org/10.1039/C8CS00325D
    30. Yue Li, Li Wei, Wen Zhang, Zhiqiang Dong, Yuping Qiu. Counteranion-dependent sorption of imidazolium- and benzimidazolium-based ionic liquids by soot. Chemosphere 2018, 202 , 264-271. https://doi.org/10.1016/j.chemosphere.2018.03.092
    31. Ce-Ce Hu, Qiang Gao, Zhi-Xiu Zhu, Li-Li Chang, Wen-Jun Zhou, Kai-Sheng Xia, Bo Han, Cheng-Gang Zhou. Ionic liquid-grafted probe for selective detection and individual identification of different metal ions in 100% aqueous solutions. Sensors and Actuators B: Chemical 2018, 259 , 411-419. https://doi.org/10.1016/j.snb.2017.12.080
    32. Marina V. Fedotova, Sergey E. Kruchinin, Gennady N. Chuev. Local ion hydration structure in aqueous imidazolium-based ionic liquids: The effects of concentration and anion nature. Journal of Molecular Liquids 2017, 247 , 100-108. https://doi.org/10.1016/j.molliq.2017.09.087
    33. Agnieszka Boruń. Conductometric studies of [emim][BF 4 ] and [bmim][BF 4 ] in propan-2-ol. Association of ionic liquids in alcohols. Journal of Molecular Liquids 2017, 240 , 717-722. https://doi.org/10.1016/j.molliq.2017.05.039
    34. Li-rong Nie, Shun Yao, Bing Dong, Xin-lu Li, Hang Song. Synthesis, characterization and physical properties of novel cholinium-based organic magnetic ionic liquids. Journal of Molecular Liquids 2017, 240 , 152-161. https://doi.org/10.1016/j.molliq.2017.05.044
    35. Sarwar Ahmad Pandit, Mudasir Ahmad Rather, Sajad Ahmad Bhat, Roohi Jan, Ghulam Mohd Rather, Mohsin Ahmad Bhat. An Insight into a Fascinating DMF‐Water Mixed Solvent System: Physicochemical and Electrochemical Studies. ChemistrySelect 2017, 2 (18) , 5115-5127. https://doi.org/10.1002/slct.201700553
    36. Preeti Jain, Anil Kumar. Comparable Ionicity of the Solutions of Aprotic and Protic Ionic Liquids by Anion Substitution. Journal of Solution Chemistry 2017, 46 (6) , 1315-1327. https://doi.org/10.1007/s10953-017-0640-9
    37. Abbas Mehrdad, Elahe Parvini. Interactions of Sodium Polystyrene Sulfonate with 1-Octyl-3-methylimidazolium Bromide in Aqueous Solution: Conductometric, Spectroscopic and Density Functional Theory Studies. Journal of Solution Chemistry 2017, 46 (4) , 908-930. https://doi.org/10.1007/s10953-017-0608-9
    38. Christian Schröder. Proteins in Ionic Liquids: Current Status of Experiments and Simulations. Topics in Current Chemistry 2017, 375 (2) https://doi.org/10.1007/s41061-017-0110-2
    39. Naushad Anwar, Riyazuddeen. Effect of composition and temperature variations on thermophysical properties of binary and ternary mixtures of 1-ethyl-3-methylimidazolium ethylsulfate with 1-butanol and/or methanol. Fluid Phase Equilibria 2017, 437 , 127-139. https://doi.org/10.1016/j.fluid.2017.01.019
    40. S. Papović, N. Cvjetićanin, Slobodan Gadžurić, M. Bešter-Rogač, M. Vraneš. Physicochemical and electrochemical characterisation of imidazolium based IL + GBL mixtures as electrolytes for lithium-ion batteries. Phys. Chem. Chem. Phys. 2017, 19 (41) , 28139-28152. https://doi.org/10.1039/C7CP04478J
    41. Artashes A. Khachatrian, Mikhail A. Varfolomeev, Bulat S. Akhmadeev. Enthalpies of solution of 1-ethyl- and 1-butyl-3-methylimidazolium based ionic liquids in tetrahydrofuran and chloroform at 298.15 K: Thermochemical proton acceptor scale of anions. Thermochimica Acta 2016, 641 , 71-78. https://doi.org/10.1016/j.tca.2016.08.022
    42. Agnieszka Boruń, Adam Bald. Ionic association and conductance of ionic liquids in dichloromethane at temperatures from 278.15 to 303.15 K. Ionics 2016, 22 (6) , 859-867. https://doi.org/10.1007/s11581-015-1613-x
    43. Agnieszka Boruń, Adam Bald. Ionic association and conductance of [emim][BF 4 ] and [bmim][BF 4 ] in 1-butanol in a wide range of temperature. The Journal of Chemical Thermodynamics 2016, 96 , 175-180. https://doi.org/10.1016/j.jct.2015.12.029
    44. Elise A. Cade, João Petenuci, Markus M. Hoffmann. Aggregation Behavior of Several Ionic Liquids in Molecular Solvents of Low Polarity—Indication of a Bimodal Distribution. ChemPhysChem 2016, 17 (4) , 520-529. https://doi.org/10.1002/cphc.201500990
    45. Rudolf Holze. Ionic conductivities of binary mixture of EMIM-EtSO4 and acetonitrile. 2016, 1584-1588. https://doi.org/10.1007/978-3-642-02723-9_1415
    46. Rudolf Holze. Ionic conductivities of binary mixture of 1-ethyl-3-methylimidazolium-ethylsulfate and dichloromethane. 2016, 1682-1684. https://doi.org/10.1007/978-3-642-02723-9_1463
    47. Rudolf Holze. Limiting conductivities of Emim-EtSO4 ionic liquids. 2016, 2180-2180. https://doi.org/10.1007/978-3-642-02723-9_1777
    48. Rudolf Holze. Limiting conductivities of Emim-EtSO4 ionic liquids. 2016, 2181-2181. https://doi.org/10.1007/978-3-642-02723-9_1778
    49. Rudolf Holze. Limiting conductivities of Emim-EtSO4 ionic liquids. 2016, 2182-2182. https://doi.org/10.1007/978-3-642-02723-9_1779
    50. Tamas Oncsik, Anthony Desert, Gregor Trefalt, Michal Borkovec, Istvan Szilagyi. Charging and aggregation of latex particles in aqueous solutions of ionic liquids: towards an extended Hofmeister series. Physical Chemistry Chemical Physics 2016, 18 (10) , 7511-7520. https://doi.org/10.1039/C5CP07238G
    51. Jing Lu, Hang Song, Yang Yang, Guofei Qian, Lirong Nie, Shun Yao. Synthesis and characterization of novel hexafluorophosphate salts with tropine-type cations. Journal of Molecular Liquids 2015, 209 , 648-656. https://doi.org/10.1016/j.molliq.2015.06.027
    52. Hubert K. Stassen, Ralf Ludwig, Alexander Wulf, Jairton Dupont. Imidazolium Salt Ion Pairs in Solution. Chemistry – A European Journal 2015, 21 (23) , 8324-8335. https://doi.org/10.1002/chem.201500239
    53. Agnieszka Boruń, Carlos Fernandez, Adam Bald. Conductance Studies of Aqueous Ionic Liquids Solutions [emim][BF4] and [bmim][BF4] at Temperatures from (283.15 to 318.15) K. International Journal of Electrochemical Science 2015, 10 (3) , 2120-2129. https://doi.org/10.1016/S1452-3981(23)04834-4
    54. Agnieszka Borun, Ilona Trzcinska, Adam Bald. Conductometric Studies of Sodium Iodide, Sodium Tetraphenylborate, Tetrabutylammonium Iodide, and Sodium Tetrafluoroborate in 1-Propanol at Temperatures from (283.15 to 318.15) K. International Journal of Electrochemical Science 2014, 9 (12) , 7805-7818. https://doi.org/10.1016/S1452-3981(23)11007-8
    55. Agnieszka Borun, Adam Bald. Conductometric Studies of 1-Ethyl-3-methylimidazolium Tetrafluoroborate and 1-Butyl-3-methylimidazolium Tetrafluoroborate in 1-Propanol at Temperatures from (283.15 to 318.15) K. International Journal of Electrochemical Science 2014, 9 (6) , 2790-2804. https://doi.org/10.1016/S1452-3981(23)07968-3
    56. Christian Schröder, Marcello Sega, Michael Schmollngruber, Elias Gailberger, Daniel Braun, Othmar Steinhauser. On the collective network of ionic liquid/water mixtures. IV. Kinetic and rotational depolarization. The Journal of Chemical Physics 2014, 140 (20) https://doi.org/10.1063/1.4878116
    57. Thomas Sonnleitner, David A. Turton, Stefan Waselikowski, Johannes Hunger, Alexander Stoppa, Markus Walther, Klaas Wynne, Richard Buchner. Dynamics of RTILs: A comparative dielectric and OKE study. Journal of Molecular Liquids 2014, 192 , 19-25. https://doi.org/10.1016/j.molliq.2013.09.019
    58. Valentin Wagner, Peter S. Schulz, Peter Wasserscheid. Asymmetric hydrogenation catalysis via ion-pairing in chiral ionic liquids. Journal of Molecular Liquids 2014, 192 , 177-184. https://doi.org/10.1016/j.molliq.2013.10.025
    59. Deepak Ekka, Mahendra Nath Roy. Quantitative and qualitative analysis of ionic solvation of individual ions of imidazolium based ionic liquids in significant solution systems by conductance and FT-IR spectroscopy. RSC Adv. 2014, 4 (38) , 19831-19845. https://doi.org/10.1039/C3RA48051H
    60. Nathan T. Scharf, Annegret Stark, Markus M. Hoffmann. Calorimetric Study on the Ion Pairing and Aggregation of 1-Ethyl-3-Methylimidazolium bis(trifluoromethylsulfonyl)amide ([C2mim][NTf2]) and Related Ionic Liquids in the Low-Dielectric Constant Solvent Chloroform. Journal of Solution Chemistry 2013, 42 (10) , 2034-2056. https://doi.org/10.1007/s10953-013-0082-y
    61. Zohreh Karimzadeh, S.A.A. Hosseini, Farzad Deyhimi. The thermodynamic properties prediction of aqueous ionic liquid ([Emim][X]) solutions by Monte Carlo simulation. Fluid Phase Equilibria 2012, 9 https://doi.org/10.1016/j.fluid.2012.06.009
    62. Y.J. Chen, X.P. Xuan, H.H. Zhang, K.L. Zhuo. Conductivities of 1-alkyl-3-methylimidazolium chloride ionic liquids in monosaccharide+water solutions at 298.15K. Fluid Phase Equilibria 2012, 316 , 164-171. https://doi.org/10.1016/j.fluid.2011.11.028
    63. Marija Bešter-Rogač, Alexander Stoppa, Johannes Hunger, Glenn Hefter, Richard Buchner. Association of ionic liquids in solution: a combined dielectric and conductivity study of [bmim][Cl] in water and in acetonitrile. Physical Chemistry Chemical Physics 2011, 13 (39) , 17588. https://doi.org/10.1039/c1cp21371g

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect