ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Density and Viscosity of Aqueous (Piperazine + Carbon Dioxide) Solutions

View Author Information
Department of Chemical Engineering, The University of Texas at Austin, 1 University Station C0400, Austin Texas 78712, United States
*E-mail: [email protected], [email protected]. Tel.: +1 (512) 471-7230. Fax: +1 (512) 471-7060.
Cite this: J. Chem. Eng. Data 2011, 56, 3, 574–581
Publication Date (Web):February 14, 2011
https://doi.org/10.1021/je1012263
Copyright © 2011 American Chemical Society

    Article Views

    1403

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)

    Abstract

    The density (ρ) and viscosity (μ) of aqueous (piperazine (PZ) + carbon dioxide (CO2)) solutions were measured over a temperature range of (293.15 to 333.15) K and concentration ranges of (1.5 to 7.0) mol·kg−1 PZ ((2 to 20) molal (m) PZ) and (0 to 4.0) mol·kg−1 CO2. Data for density and viscosity are presented in tabular form and include units useful for CO2 capture applications (CO2 loading and PZ concentration in m). Density data are analyzed as the ratio of ρ to the density of water to eliminate the effect of temperature. On this basis, ρ for (5 to 12) m PZ ((3.2 to 5.0) mol·kg−1 PZ) was correlated with a linear regression as a function of CO2 and PZ concentrations to within 0.78 % for all data. A prediction of ρ up to 20 m PZ induces an error of only 1.5 %. Viscosity data are analyzed in a similar way, and a regression for 8 m PZ (4.1 mol·kg−1 PZ) viscosity fit all experimental data within 6.0 %. The applicability of these regressions to online monitoring of a PZ based CO2 capture application is discussed.

    Cited By

    This article is cited by 36 publications.

    1. Ali Aminian, Bahman ZareNezhad. Predicting the Shear Viscosity of Carbonated Aqueous Amine Solutions and Their Blends by Using an Artificial Neural Network Model. Energy & Fuels 2020, 34 (12) , 16389-16400. https://doi.org/10.1021/acs.energyfuels.0c03081
    2. Sigvart Evjen, Anne Fiksdahl, Hanna K. Knuutila. High-Capacity Amine-Imidazole Solvent Blends for CO2 Capture. Industrial & Engineering Chemistry Research 2019, 58 (24) , 10533-10539. https://doi.org/10.1021/acs.iecr.9b01486
    3. Serena Delgado, Benoît Valentin, Domitille Bontemps, Olivier Authier. Degradation of Amine Solvents in a CO2 Capture Plant at Lab-Scale: Experiments and Modeling. Industrial & Engineering Chemistry Research 2018, 57 (18) , 6057-6067. https://doi.org/10.1021/acs.iecr.7b05225
    4. Yangyang Bian, Yue Zhao, and Shufeng Shen . Characteristics of Potassium Prolinate + Water + Ethanol Solution as a Phase Changing Absorbent for CO2 Capture. Journal of Chemical & Engineering Data 2017, 62 (10) , 3169-3177. https://doi.org/10.1021/acs.jced.7b00267
    5. Clemens F. Patzschke, Jiafei Zhang, Paul S. Fennell, and J. P. Martin Trusler . Density and Viscosity of Partially Carbonated Aqueous Solutions Containing a Tertiary Alkanolamine and Piperazine at Temperatures between 298.15 and 353.15 K. Journal of Chemical & Engineering Data 2017, 62 (7) , 2075-2083. https://doi.org/10.1021/acs.jced.7b00144
    6. Alexandr Kachko, Leen V. van der Ham, Daphne E. Bakker, Annemieke van de Runstraat, Michiel Nienoord, Thijs J. H. Vlugt, and Earl L. V. Goetheer . In-Line Monitoring of the CO2, MDEA, and PZ Concentrations in the Liquid Phase during High Pressure CO2 Absorption. Industrial & Engineering Chemistry Research 2016, 55 (13) , 3804-3812. https://doi.org/10.1021/acs.iecr.6b00141
    7. Jiafei Zhang, Paul S. Fennell, and J. P. Martin Trusler . Density and Viscosity of Partially Carbonated Aqueous Tertiary Alkanolamine Solutions at Temperatures between (298.15 and 353.15) K. Journal of Chemical & Engineering Data 2015, 60 (8) , 2392-2399. https://doi.org/10.1021/acs.jced.5b00282
    8. Alexandr Kachko, Leen V. van der Ham, Leon F. G. Geers, Arjen Huizinga, Alexander Rieder, Mohammad R. M. Abu-Zahra, Thijs J. H. Vlugt, and Earl L. V. Goetheer . Real-Time Process Monitoring of CO2 Capture by Aqueous AMP-PZ Using Chemometrics: Pilot Plant Demonstration. Industrial & Engineering Chemistry Research 2015, 54 (21) , 5769-5776. https://doi.org/10.1021/acs.iecr.5b00691
    9. Stephanie Anne Freeman and Gary Thomas Rochelle . Thermal Degradation of Aqueous Piperazine for CO2 Capture. 1. Effect of Process Conditions and Comparison of Thermal Stability of CO2 Capture Amines. Industrial & Engineering Chemistry Research 2012, 51 (22) , 7719-7725. https://doi.org/10.1021/ie201916x
    10. Stephanie Anne Freeman and Gary Thomas Rochelle . Thermal Degradation of Aqueous Piperazine for CO2 Capture: 2. Product Types and Generation Rates. Industrial & Engineering Chemistry Research 2012, 51 (22) , 7726-7735. https://doi.org/10.1021/ie201917c
    11. Stephanie A. Freeman Fred B. Closmann Gary T. Rochelle . Oxidation of Aqueous Piperazine: Oxidation Rates, Products, and High-Temperature Oxidation. 2012, 219-237. https://doi.org/10.1021/bk-2012-1097.ch011
    12. Rattanaporn Apaiyakul, Prathana Nimmanterdwong, Thitiya Kanchanakungvalkul, Papitchaya Puapan, Hongxia Gao, Zhiwu Liang, Paitoon Tontiwachwuthikul, Teerawat Sema. Precipitation behavior, density, viscosity, and CO2 absorption capacity of highly concentrated ternary AMP-PZ-MEA solvents. International Journal of Greenhouse Gas Control 2022, 120 , 103775. https://doi.org/10.1016/j.ijggc.2022.103775
    13. Tianci Li, Congning Yang, Puttipong Tantikhajorngosol, Teerawat Sema, Paitoon Tontiwachwuthikul. Studies on advanced configurations of post-combustion CO2 capture process applied to cement plant flue gases. Carbon Capture Science & Technology 2022, 4 , 100064. https://doi.org/10.1016/j.ccst.2022.100064
    14. Athreya Suresh Babu, Gary T. Rochelle. Energy use of piperazine with the advanced stripper from pilot plant testing. International Journal of Greenhouse Gas Control 2022, 113 , 103531. https://doi.org/10.1016/j.ijggc.2021.103531
    15. Xiaoqin Shi, Yu Dong, Shufeng Shen. Densities and viscosities of partially carbonated nonaqueous blends of 2-(methylamino)ethanol with 2-alkoxyethanols at temperatures of (293.15 to 353.15) K. The Journal of Chemical Thermodynamics 2022, 164 , 106615. https://doi.org/10.1016/j.jct.2021.106615
    16. Olajide Otitoju, Eni Oko, Meihong Wang. Technical and economic performance assessment of post-combustion carbon capture using piperazine for large scale natural gas combined cycle power plants through process simulation. Applied Energy 2021, 292 , 116893. https://doi.org/10.1016/j.apenergy.2021.116893
    17. Athreya Suresh Babu, Gary T. Rochelle. Heat Loss and Energy Use in Pilot Plant Testing of Piperazine With the Advanced Stripper. SSRN Electronic Journal 2021, 325 https://doi.org/10.2139/ssrn.3811548
    18. Hui Li, Hui Guo, Shufeng Shen. Water-lean blend mixtures of amino acid salts and 2-methoxyethanol for CO2 capture: Density, viscosity and solubility of CO2. The Journal of Chemical Thermodynamics 2020, 150 , 106237. https://doi.org/10.1016/j.jct.2020.106237
    19. Tiantian Ping, Yu Dong, Shufeng Shen. Densities, viscosities and spectroscopic study of partially CO2-loaded nonaqueous blends of 2-butoxyethanol with 2-(ethylamino)ethanol and 2-(butylamino)ethanol at temperatures of (293.15 to 353.15) K. Journal of Molecular Liquids 2020, 312 , 113389. https://doi.org/10.1016/j.molliq.2020.113389
    20. Eduardo I. Concepción, Alejandro Moreau, M. Carmen Martín, M. Dolores Bermejo, José J. Segovia. Density and viscosity measurements of (piperazine + water) and (piperazine + 2-dimethylaminoethanol + water) at high pressures. The Journal of Chemical Thermodynamics 2020, 141 , 105960. https://doi.org/10.1016/j.jct.2019.105960
    21. Tomasz Spietz, Marcin Stec, Andrzej Wilk, Aleksander Krótki, Adam Tatarczuk, Lucyna Więcław‐Solny. Density correlation of carbonated amine solvents for CO 2 loading determination. Asia-Pacific Journal of Chemical Engineering 2018, 13 (6) https://doi.org/10.1002/apj.2248
    22. Hui Li, Hui Guo, Yangyang Bian, Yue Zhao, Shufeng Shen. Measurements and correlations of solubility of N 2 O in and density, viscosity of partially CO 2 loaded water-lean amino acid salts. The Journal of Chemical Thermodynamics 2018, 126 , 82-90. https://doi.org/10.1016/j.jct.2018.06.021
    23. Zhiyuan Ma, Anli Xu, Yongqin Du, Jian Wang, Hongkun Zhao, Guowang Diao, Xuedong Zhu, Xuhong Guo. Density, viscosity, refractive index and conductivity of switchable hydrophilicity solvent systems: N,N -Dimethylbenzylamine, water and carbon dioxide. Fluid Phase Equilibria 2018, 459 , 94-102. https://doi.org/10.1016/j.fluid.2017.12.005
    24. J.P. Martin Trusler. Thermophysical Properties and Phase Behavior of Fluids for Application in Carbon Capture and Storage Processes. Annual Review of Chemical and Biomolecular Engineering 2017, 8 (1) , 381-402. https://doi.org/10.1146/annurev-chembioeng-060816-101426
    25. Leigh T. Wardhaugh, Ashleigh Cousins. Process Implications of CO2 Capture Solvent Selection. 2017, 27-67. https://doi.org/10.1007/978-3-319-47262-1_3
    26. Mohammad Shokouhi, Reza Ahmadi. Measuring the density and viscosity of H 2 S-loaded aqueous methyldiethanolamine solution. The Journal of Chemical Thermodynamics 2016, 102 , 228-236. https://doi.org/10.1016/j.jct.2016.06.007
    27. M.K. Wong, M.A. Bustam, A.M. Shariff. In situ measurement of physical solubility of carbon dioxide in loaded aqueous monoethanolamine by Raman spectroscopy. Journal of Natural Gas Science and Engineering 2016, 36 , 305-313. https://doi.org/10.1016/j.jngse.2016.10.029
    28. Karim Golzar, Hamid Modarress, Sepideh Amjad-Iranagh. Evaluation of density, viscosity, surface tension and CO 2 solubility for single, binary and ternary aqueous solutions of MDEA, PZ and 12 common ILs by using artificial neural network (ANN) technique. International Journal of Greenhouse Gas Control 2016, 53 , 187-197. https://doi.org/10.1016/j.ijggc.2016.08.008
    29. Marcin Stec, Tomasz Spietz, Lucyna Więcław-Solny, Adam Tatarczuk, Andrzej Wilk, Aleksander Sobolewski. Density of unloaded and CO 2 -loaded aqueous solutions of piperazine and 2-amino-2-methyl-1-propanol and their mixtures from 293.15 to 333.15 K. Physics and Chemistry of Liquids 2016, 54 (4) , 475-486. https://doi.org/10.1080/00319104.2015.1115328
    30. Jozsef Gaspar, Nicolas von Solms, Kaj Thomsen, Philip Loldrup Fosbøl. Multivariable Optimization of the Piperazine CO2 Post-Combustion Process. Energy Procedia 2016, 86 , 229-238. https://doi.org/10.1016/j.egypro.2016.01.024
    31. Haley M. Stowe, Eunsu Paek, Gyeong S. Hwang. First-principles assessment of CO 2 capture mechanisms in aqueous piperazine solution. Physical Chemistry Chemical Physics 2016, 18 (36) , 25296-25307. https://doi.org/10.1039/C6CP03584A
    32. Yu-Jeng Lin, Eric Chen, Gary T. Rochelle. Pilot plant test of the advanced flash stripper for CO 2 capture. Faraday Discussions 2016, 192 , 37-58. https://doi.org/10.1039/C6FD00029K
    33. Chao Wang, A. Frank Seibert, Gary T. Rochelle. Packing characterization: Absorber economic analysis. International Journal of Greenhouse Gas Control 2015, 42 , 124-131. https://doi.org/10.1016/j.ijggc.2015.07.027
    34. Mohammad Shokouhi, Amir Hossein Jalili, Farid Samani, Masih Hosseini-Jenab. Experimental investigation of the density and viscosity of CO2-loaded aqueous alkanolamine solutions. Fluid Phase Equilibria 2015, 404 , 96-108. https://doi.org/10.1016/j.fluid.2015.06.034
    35. Markus Rabensteiner, Gerald Kinger, Martin Koller, Günter Gronald, Christoph Hochenauer. Investigation of carbon dioxide capture with aqueous piperazine on a post combustion pilot plant–Part I: Energetic review of the process. International Journal of Greenhouse Gas Control 2015, 39 , 79-90. https://doi.org/10.1016/j.ijggc.2015.05.003
    36. Stefania Moioli, Laura A. Pellegrini. Physical properties of PZ solution used as a solvent for CO2 removal. Chemical Engineering Research and Design 2015, 93 , 720-726. https://doi.org/10.1016/j.cherd.2014.06.016

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect