ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Vapor−Liquid Equilibrium Data for the Nitrogen + Dodecane System at Temperatures from (344 to 593) K and at Pressures up to 60 MPa

View Author Information
Laboratorio de Termodinámica, Programa de Investigación en Ingeniería Molecular, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, 07730 México, D.F., México
Departamento de Ingeniería Química Petrolera, ESIQIE, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, 07738 México, D.F., México
*Tel.: +52 55 9175 6574. E-mail: [email protected]
Cite this: J. Chem. Eng. Data 2011, 56, 4, 1555–1564
Publication Date (Web):February 11, 2011
https://doi.org/10.1021/je1012372
Copyright © 2011 American Chemical Society

    Article Views

    767

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)
    Supporting Info (1)»

    Abstract

    A static-analytical apparatus with visual sapphire windows and pneumatic capillary samplers has been used to obtain new vapor−liquid equilibrium data for the N2 + C12H26 system over the temperature range from (344 to 593) K and at pressures up to 60 MPa. Equilibrium phase compositions and vapor−liquid equilibrium ratios are reported. All of the measured vapor−liquid equilibrium data were subject to a thermodynamic consistency test of high-pressure vapor−liquid equilibrium data involving the calculation of the vapor-phase composition from the isothermal pressure liquid phase composition data. The consistency test showed that most of the data are thermodynamically consistent. The new results were compared with solubility data reported by other authors. The comparison showed that the vapor−liquid equilibrium data obtained in this study are in good agreement with those reported in the literature. The experimental data were modeled with the PR (Peng−Robinson) and PC-SAFT (perturbed-chain statistical associating fluid theory) equations of state by using one-fluid mixing rules and a single temperature-independent interaction parameter. Results of the modeling indicated that the PC-SAFT equation of state represents better the measured data of the N2 + C12H26 system over the whole temperature, pressure, and composition range studied.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Description of apparatus and uncertainty measurements. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 33 publications.

    1. Michael H. H. Fechter, Andreas S. Braeuer. Vapor–Liquid Equilibria of Binary Systems Consisting of Nitrogen and n-Tridecane, n-Pentadecane, n-Hexadecane, and n-Heptadecane at Pressures of 1.5–9 MPa and Temperatures of 303–633 K─Determined with a Raman Spectroscopy-Coupled Microfluidic Device. Journal of Chemical & Engineering Data 2023, 68 (8) , 1976-1988. https://doi.org/10.1021/acs.jced.3c00107
    2. Marcia Luna Ramirez Hincapie, Arun Kumar Narayanan Nair, Mohd Fuad Anwari Che Ruslan, Yafan Yang, Shuyu Sun. Bulk and Interfacial Properties of the Alkane + Nitrogen System. Journal of Chemical & Engineering Data 2022, 67 (10) , 3138-3145. https://doi.org/10.1021/acs.jced.2c00533
    3. Brian H. Morrow, Judith A. Harrison. Interfacial Properties of Linear Alkane/Nitrogen Binary Mixtures: Molecular Dynamics Vapor–Liquid Equilibrium Simulations. The Journal of Physical Chemistry B 2022, 126 (23) , 4379-4388. https://doi.org/10.1021/acs.jpcb.2c00688
    4. Zongyu Yue, Hongyan Zhu, Chenchen Wang, Zhen Li, Hu Wang, Mingfa Yao, Rolf D. Reitz. Artificial neural network models for phase equilibrium predictions under engine trans/supercritical spray conditions. Fuel 2023, 339 , 127425. https://doi.org/10.1016/j.fuel.2023.127425
    5. Hesham Gaballa, Chaouki Habchi, Jean-Charles de Hemptinne. Modeling and LES of high-pressure liquid injection under evaporating and non-evaporating conditions by a real fluid model and surface density approach. International Journal of Multiphase Flow 2023, 160 , 104372. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104372
    6. Nguyen Ly, Arijit Majumdar, Matthias Ihme. Regimes of evaporation and mixing behaviors of nanodroplets at transcritical conditions. Fuel 2023, 331 , 125870. https://doi.org/10.1016/j.fuel.2022.125870
    7. Suman Chakraborty, Yixuan Sun, Guang Lin, Li Qiao. Vapor–liquid equilibrium estimation of n-alkane/nitrogen mixtures using neural networks. Journal of Computational and Applied Mathematics 2022, 408 , 114059. https://doi.org/10.1016/j.cam.2021.114059
    8. Hesham Gaballa, Sajad Jafari, Chaouki Habchi, Jean-Charles de Hemptinne. Numerical investigation of droplet evaporation in high-pressure dual-fuel conditions using a tabulated real-fluid model. International Journal of Heat and Mass Transfer 2022, 189 , 122671. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122671
    9. Mohammad-Reza Mohammadi, Fahimeh Hadavimoghaddam, Saeid Atashrouz, Ali Abedi, Abdolhossein Hemmati-Sarapardeh, Ahmad Mohaddespour. Modeling of nitrogen solubility in unsaturated, cyclic, and aromatic hydrocarbons: Deep learning methods and SAFT equation of state. Journal of the Taiwan Institute of Chemical Engineers 2022, 131 , 104124. https://doi.org/10.1016/j.jtice.2021.10.024
    10. Dehao Ju, Li Huang, Kangping Zhang, Ming Ye, Zhong Huang, Gao Yi. Comparison of evaporation rate constants of a single fuel droplet entering subcritical and supercritical environments. Journal of Molecular Liquids 2022, 347 , 118346. https://doi.org/10.1016/j.molliq.2021.118346
    11. Zongyu Yue, Hongyan Zhu, Chenchen Wang, Zhen Li, Hu Wang, Mingfa Yao, Rolf D. Reitz. Artificial Neural Network Models for Phase Equilibrium Predictions Under Engine Trans/Supercritical Spray Conditions. SSRN Electronic Journal 2022, 282 https://doi.org/10.2139/ssrn.4181403
    12. Seyed Ali Madani, Mohammad-Reza Mohammadi, Saeid Atashrouz, Ali Abedi, Abdolhossein Hemmati-Sarapardeh, Ahmad Mohaddespour. Modeling of nitrogen solubility in normal alkanes using machine learning methods compared with cubic and PC-SAFT equations of state. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-03643-8
    13. Zhanyuan Wang, Lei Zhou, Gequn Shu, Haiqiao Wei. Droplet evaporation and phase transition modes in supercritical environment by molecular dynamic simulation. Physics of Fluids 2021, 33 (6) https://doi.org/10.1063/5.0053328
    14. Lluís Jofre, Javier Urzay. Transcritical diffuse-interface hydrodynamics of propellants in high-pressure combustors of chemical propulsion systems. Progress in Energy and Combustion Science 2021, 82 , 100877. https://doi.org/10.1016/j.pecs.2020.100877
    15. Yanzhi Zhang, Ming Jia, Ping Yi, Yachao Chang, Zhixia He, Qian Wang. A molecular dynamics study of binary-component n-alkane fuel vaporization characteristics at sub/supercritical nitrogen environments. Proceedings of the Combustion Institute 2021, 38 (2) , 3303-3312. https://doi.org/10.1016/j.proci.2020.06.108
    16. Alvaro Vidal, Phoevos Koukouvinis, Manolis Gavaises. Vapor-liquid equilibrium calculations at specified composition, density and temperature with the perturbed chain statistical associating fluid theory (PC-SAFT) equation of state. Fluid Phase Equilibria 2020, 521 , 112661. https://doi.org/10.1016/j.fluid.2020.112661
    17. Aleksey Vishnyakov, Tim Weathers, Ashvin Hosangadi, Yee C. Chiew. Molecular models for phase equilibria of alkanes with air components and combustion products I. Alkane mixtures with nitrogen, CO2 and water. Fluid Phase Equilibria 2020, 514 , 112553. https://doi.org/10.1016/j.fluid.2020.112553
    18. Aaron J. Rowane, Manolis Gavaises, Mark A. McHugh. Vapor-liquid equilibria and mixture densities for 2,2,4,4,6,8,8-heptamethylnonane + N2 and n-hexadecane + N2 binary mixtures up to 535 K and 135 MPa. Fluid Phase Equilibria 2020, 506 , 112378. https://doi.org/10.1016/j.fluid.2019.112378
    19. Ioannis K. Karathanassis, Foivos (Phoevos) Koukouvinis, Manolis Gavaises. Multiphase Phenomena in Diesel Fuel Injection Systems. 2020, 95-126. https://doi.org/10.1007/978-981-15-0335-1_8
    20. Songzhi Yang, Ping Yi, Chaouki Habchi. Real-fluid injection modeling and LES simulation of the ECN Spray A injector using a fully compressible two-phase flow approach. International Journal of Multiphase Flow 2020, 122 , 103145. https://doi.org/10.1016/j.ijmultiphaseflow.2019.103145
    21. Li Qiao, Shourya Jain, Guiyuan Mo. Molecular Simulations to Research Supercritical Fuel Properties. 2020, 409-460. https://doi.org/10.2514/5.9781624105814.0409.0460
    22. C. Rodriguez, Houman B. Rokni, P. Koukouvinis, Ashutosh Gupta, M. Gavaises. Complex multicomponent real-fluid thermodynamic model for high-pressure Diesel fuel injection. Fuel 2019, 257 , 115888. https://doi.org/10.1016/j.fuel.2019.115888
    23. Suman Chakraborty, Li Qiao. Molecular investigation of sub-to-supercritical transition of hydrocarbon mixtures: Multi-component effect. International Journal of Heat and Mass Transfer 2019, 145 , 118629. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118629
    24. Suman Chakraborty, Li Qiao. Molecular Dynamics Investigation of Sub-to-supercritical Transition of n-Alkane Fuel Mixtures in Nitrogen. 2019https://doi.org/10.2514/6.2019-4292
    25. Stephanie Peper, José M.S. Fonseca, Ralf Dohrn. High-pressure fluid-phase equilibria: Trends, recent developments, and systems investigated (2009–2012). Fluid Phase Equilibria 2019, 484 , 126-224. https://doi.org/10.1016/j.fluid.2018.10.007
    26. Timothy Weathers, Aleksey Vishnyakov, Yee Chiew, Ashvin Hosangadi. Characterizing Thermodynamic Properties of Pure Components and Binary Mixtures at Rocket Conditions Using Molecular Dynamics. 2019https://doi.org/10.2514/6.2019-1284
    27. Guowei Xiao, Kai H. Luo, Xiao Ma, Shijin Shuai. A molecular dynamics study of fuel droplet evaporation in sub- and supercritical conditions. Proceedings of the Combustion Institute 2019, 37 (3) , 3219-3227. https://doi.org/10.1016/j.proci.2018.09.020
    28. C. Rodriguez, A. Vidal, P. Koukouvinis, M. Gavaises, M.A. McHugh. Simulation of transcritical fluid jets using the PC-SAFT EoS. Journal of Computational Physics 2018, 374 , 444-468. https://doi.org/10.1016/j.jcp.2018.07.030
    29. Prithwish Kundu, Muhsin M Ameen, Sibendu Som. Importance of turbulence-chemistry interactions at low temperature engine conditions. Combustion and Flame 2017, 183 , 283-298. https://doi.org/10.1016/j.combustflame.2017.05.025
    30. Daniel T. Banuti, Peter C. Ma, Matthias Ihme. Phase separation analysis in supercritical injection using large-eddy-simulation and vapor-liquid-equilibrium. 2017https://doi.org/10.2514/6.2017-4764
    31. Lluis Jofre, Javier Urzay. Interface dynamics in the transcritical flow of liquid fuels into high-pressure combustors. 2017https://doi.org/10.2514/6.2017-4940
    32. Guiyuan Mo, Li Qiao. A molecular dynamics investigation of n-alkanes vaporizing into nitrogen: transition from subcritical to supercritical. Combustion and Flame 2017, 176 , 60-71. https://doi.org/10.1016/j.combustflame.2016.09.028
    33. Sai R. Panuganti, Francisco M. Vargas, Doris L. Gonzalez, Anjushri S. Kurup, Walter G. Chapman. PC-SAFT characterization of crude oils and modeling of asphaltene phase behavior. Fuel 2012, 93 , 658-669. https://doi.org/10.1016/j.fuel.2011.09.028

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect