ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Solid–Liquid Equilibrium of Binary Mixtures Containing Fatty Acids and Triacylglycerols

View Author Information
EXTRAE, Department of Food Engineering, Faculty of Food Engineering (DEA-FEA), University of Campinas (UNICAMP), Postal code: 13083-862, Campinas, São Paulo, Brazil
LPT, Department of Chemical Processes, School of Chemical Engineering (DPQ-FEQ), University of Campinas (UNICAMP), Postal code: 13083-970, Campinas, São Paulo, Brazil
§ DETQUI, Department of Chemical Technology, Federal University of Maranhão (UFMA), São Luís, Maranhão, Brazil
Antonio José de Almeida Meirelles, Department of Food Engineering (DEA), Faculty of Food Engineering (FEA), University of Campinas (UNICAMP). CEP: 13083-862. Campinas, São Paulo, Brazil. Phone: +55-19-3251-4037, e-mail: [email protected]
Cite this: J. Chem. Eng. Data 2011, 56, 8, 3277–3284
Publication Date (Web):July 13, 2011
https://doi.org/10.1021/je200033b
Copyright © 2011 American Chemical Society

    Article Views

    867

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Solid–liquid phase diagrams of the following systems were measured using differential scanning calorimetry (DSC): tristearin (2,3-di(octadecanoyloxy)propyl octadecanoate) + tripalmitin (2,3-di(hexadecanoyloxy)propyl hexadecanoate), tristearin (2,3-di(octadecanoyloxy)propyl octadecanoate) + palmitic acid (n-hexadecanoic acid), tristearin (2,3-di(octadecanoyloxy)propyl octadecanoate) + linoleic acid (cis-9,cis-12-octadecadienoic acid), tripalmitin (2,3-di(hexadecanoyloxy)propyl hexadecanoate) + triolein (2,3-bis[[(Z)-octadec-9-enoyl]oxy]propyl (Z)-octadec-9-enoate), and tripalmitin (2,3-di(hexadecanoyloxy)propyl hexadecanoate) + commercial oleic acid (commercial (Z)-octadec-9-enoic acid). The eutectic point was observed for two systems, tristearin with tripalmitin or with palmitic acid. Polarized optical microscopy was employed to investigate the solid phase of the systems and confirmed the occurrence of a solid solution at the extreme of the phase diagram rich in the component with a higher melting temperature. Margules-2-suffix, Margules-3-suffix, nonrandom two-liquid (NRTL), and universal quasichemical functional group activity coefficient (UNIFAC) models were employed to describe the liquidus line of the studied systems, except for the system formed by tripalmitin (2,3-di(hexadecanoyloxy)propyl hexadecanoate) + commercial oleic acid (commercial (Z)-octadec-9-enoic acid) which is a pseudobinary system that was well-described by the UNIFAC model. The best results for the other systems were obtained when employing the Margules-3-suffix and NRTL models.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 30 publications.

    1. Jorge Macridachis, Laura Bayés-García, Teresa Calvet. Mixing Phase Behavior of Tripalmitin and Oleic-Rich Molecular Compound-Forming Triacylglycerols. Industrial & Engineering Chemistry Research 2021, 60 (15) , 5374-5384. https://doi.org/10.1021/acs.iecr.1c00324
    2. Renata Costa Di Prinzio, Paula Virginia de Almeida Pontes, Mariana Conceição da Costa, Antonio José de Almeida Meirelles, Eduardo Augusto Caldas Batista, Guilherme José Maximo. Phase Equilibrium of Fats and Monoterpenes and How It Affects Chocolate Quality. Journal of Chemical & Engineering Data 2019, 64 (8) , 3231-3243. https://doi.org/10.1021/acs.jced.8b01200
    3. Chao Lu, Bo Zhang, Hua Zhang, Yun Guo, Leping Dang, Zhengan Liu, Qingyan Shu, Zhanzhong Wang. Solid–Liquid Phase Equilibrium and Phase Behaviors for Binary Mixtures Composed of Tripalmitoylglycerol (PPP), 1,3-Dipalmitoyl-2-oleoyl-glycerol (POP), and 1,2-Dioleoyl-3-palmitoyl-glycerol (POO). Industrial & Engineering Chemistry Research 2019, 58 (23) , 10044-10052. https://doi.org/10.1021/acs.iecr.9b01947
    4. Antonio Pizzirusso, Fernanda Peyronel, Edmund D. Co, Alejandro G. Marangoni, Giuseppe Milano. Molecular Insights into the Eutectic Tripalmitin/Tristearin Binary System. Journal of the American Chemical Society 2018, 140 (39) , 12405-12414. https://doi.org/10.1021/jacs.8b04729
    5. Kazuko Yui, Yasuhiro Itsukaichi, Takuro Kobayashi, Tomoya Tsuji, Keisuke Fukui, Kouji Maeda, and Hidetoshi Kuramochi . Solid–Liquid Equilibria in the Binary Systems of Saturated Fatty Acids or Triglycerides (C12 to C18) + Hexadecane. Journal of Chemical & Engineering Data 2017, 62 (1) , 35-43. https://doi.org/10.1021/acs.jced.6b00355
    6. Diana Cholakova, Nikolai Denkov. Polymorphic phase transitions in triglycerides and their mixtures studied by SAXS/WAXS techniques: In bulk and in emulsions. Advances in Colloid and Interface Science 2024, 323 , 103071. https://doi.org/10.1016/j.cis.2023.103071
    7. Moda Geetha Rani, Rajaraman Rangasamy. Review of phase change material application in thermal management of electric vehicle battery pack. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 2023, https://doi.org/10.1177/09576509231193195
    8. Fernanda Paludetto Pelaquim, Flávio Cardoso de Matos, Eduardo Augusto Caldas Batista, Antonio José de Almeida Meirelles, Mariana Conceição da Costa. Solid–liquid phase equilibrium diagrams of binary mixtures containing fatty acids, fatty alcohol compounds, and tristearin. Brazilian Journal of Chemical Engineering 2023, 40 (1) , 269-286. https://doi.org/10.1007/s43153-022-00227-5
    9. Eduardo S. Esperança, Mariane S. Bonatto, Karen C. G. Silva, Gustavo G. Shimamoto, Matthieu Tubino, Mariana C. Costa, Christianne E. C. Rodrigues, Antonio J. A. Meirelles, Ana C. K. Sato, Guilherme J. Maximo. Phytosterols and γ-Oryzanol as Cholesterol Solid Phase Modifiers during Digestion. Foods 2022, 11 (22) , 3629. https://doi.org/10.3390/foods11223629
    10. Mirna González‐González, Guillermo Picó, Álvaro Silva Lima, Cassamo Ussemane Mussagy, Jorge Fernando Brandão Pereira, Hector Marcelo Fernandez‐Lahore, Juan A. Asenjo, Marco Rito‐Palomares. Aqueous two‐phase systems in Latin America: perspective and future trends. Journal of Chemical Technology & Biotechnology 2022, 97 (6) , 1353-1362. https://doi.org/10.1002/jctb.6890
    11. Eduardo S. Esperança, Mariane S. Bonatto, Mariana C. Costa, Antonio J.A. Meirelles, Guilherme J. Maximo. Cholesterol thermodynamic behaviour in mixtures with medium chain fatty acids and vegetable oils composed of them. Fluid Phase Equilibria 2022, 557 , 113432. https://doi.org/10.1016/j.fluid.2022.113432
    12. Ericsem Pereira, Débora T. V. Pereira, Antonio J. A. Meirelles, Guilherme J. Maximo. Modeling the solid-liquid equilibrium of binary mixtures of triacylglycerols using UNIFAC and predictive UNIQUAC models. Fluid Phase Equilibria 2022, 554 , 113327. https://doi.org/10.1016/j.fluid.2021.113327
    13. De-Tao Pan, Wei-Cheng Yan, Zheng-Hong Luo. Solid-liquid equilibrium of 3,3-dilauryl thiodipropionate/lauryl alcohol in melt crystallization and model based process design. Chemical Engineering Science 2022, 248 , 117209. https://doi.org/10.1016/j.ces.2021.117209
    14. Kouji Maeda, Yosuke Naito, Hidetoshi Kuramochi, Koji Arafune, Kenji Iimura, Shogo Taguchi, Takuji Yamamoto. Isothermal solid-liquid equilibrium for three binary systems of oleic acid, linoleic acid and α-linolenic acid under high pressure. The Journal of Chemical Thermodynamics 2022, 165 , 106647. https://doi.org/10.1016/j.jct.2021.106647
    15. Shuang Qiu, Xueping Wang, Mingyang Zan, Zhanzhong Wang, Leping Dang. The insight into separation of oleic, linoleic, and α-linolenic acid in peony seed oil from eutectic behaviors, polymorphic transition and solid-liquid phase equilibrium. LWT 2021, 138 , 110738. https://doi.org/10.1016/j.lwt.2020.110738
    16. Jorge Macridachis-González, Laura Bayés-García, Teresa Calvet. An Insight into the Solid-State Miscibility of Triacylglycerol Crystals. Molecules 2020, 25 (19) , 4562. https://doi.org/10.3390/molecules25194562
    17. Ericsem Pereira, Antonio J.A. Meirelles, Guilherme J. Maximo. Predictive models for physical properties of fats, oils, and biodiesel fuels. Fluid Phase Equilibria 2020, 508 , 112440. https://doi.org/10.1016/j.fluid.2019.112440
    18. Edmund D. Co, Alejandro G. Marangoni. Fat Crystal Networks. 2020, 1-51. https://doi.org/10.1002/047167849X.bio008.pub2
    19. Fernanda Paludetto Pelaquim, Flávio Cardoso de Matos, Lisandro Pavie Cardoso, Eduardo Augusto Caldas Batista, Antonio José de Almeida Meirelles, Mariana Conceição da Costa. Solid-liquid phase equilibrium diagrams of binary mixtures containing fatty acids, fatty alcohol compounds and tripalmitin using differential scanning calorimetry. Fluid Phase Equilibria 2019, 497 , 19-32. https://doi.org/10.1016/j.fluid.2019.05.020
    20. Larissa Castello Branco Almeida Bessa, Maria Dolores Robustillo, Antonio José de Almeida Meirelles, Pedro de Alcântara Pessôa Filho. (Solid + liquid) equilibrium of binary mixtures containing ethyl esters and p-xylene by differential scanning calorimetry. Journal of Thermal Analysis and Calorimetry 2019, 137 (6) , 2017-2028. https://doi.org/10.1007/s10973-019-08085-z
    21. Leandro Danielski, Luiz Stragevitch. Classical Models Part 2. 2019, 103-162. https://doi.org/10.1016/B978-0-12-811556-5.00004-1
    22. Guilherme J. Maximo, Natália D.D. Carareto, Mariana C. Costa. Solid–Liquid Equilibrium in Food Processes. 2019, 335-384. https://doi.org/10.1016/B978-0-12-811556-5.00008-9
    23. Flávio Cardoso de Matos, Mariana Conceição da Costa, Antonio José de Almeida Meirelles, Eduardo Augusto Caldas Batista. Binary solid–liquid equilibrium systems containing fatty acids, fatty alcohols and trilaurin by differential scanning calorimetry. Fluid Phase Equilibria 2016, 423 , 74-83. https://doi.org/10.1016/j.fluid.2016.04.008
    24. Karl-Andreas Eckert, Sunanda Dasgupta, Benjamin Selge, Peter Ay. Solid liquid phase diagrams of binary fatty acid mixtures—Palmitic/stearic with oleic/linoleic/linolenic acid mixture. Thermochimica Acta 2016, 630 , 50-63. https://doi.org/10.1016/j.tca.2016.02.008
    25. Flávio Cardoso de Matos, Mariana Conceição da Costa, Antonio José de Almeida Meirelles, Eduardo Augusto Caldas Batista. Binary solid–liquid equilibrium systems containing fatty acids, fatty alcohols and triolein by differential scanning calorimetry. Fluid Phase Equilibria 2015, 404 , 1-8. https://doi.org/10.1016/j.fluid.2015.06.015
    26. Jeppe L. Hjorth, Rasmus L. Miller, John M. Woodley, Søren Kiil. Thermodynamic Modeling of Multi‐phase Solid–Liquid Equilibria in Industrial‐Grade Oils and Fats. Journal of the American Oil Chemists' Society 2015, 92 (1) , 17-28. https://doi.org/10.1007/s11746-014-2577-0
    27. Guilherme J. Maximo, Natália D.D. Carareto, Mariana C. Costa, Adenilson O. dos Santos, Lisandro P. Cardoso, Maria A. Krähenbühl, Antonio J.A. Meirelles. On the solid–liquid equilibrium of binary mixtures of fatty alcohols and fatty acids. Fluid Phase Equilibria 2014, 366 , 88-98. https://doi.org/10.1016/j.fluid.2014.01.004
    28. Guilherme J. Maximo, Mariana C. Costa, Antonio J. A. Meirelles. The Crystal-T algorithm: a new approach to calculate the SLE of lipidic mixtures presenting solid solutions. Phys. Chem. Chem. Phys. 2014, 16 (31) , 16740-16754. https://doi.org/10.1039/C4CP01529K
    29. Guilherme J. Maximo, Mariana C. Costa, João A. P. Coutinho, Antonio J. A. Meirelles. Trends and demands in the solid–liquid equilibrium of lipidic mixtures. RSC Adv. 2014, 4 (60) , 31840-31850. https://doi.org/10.1039/C4RA02715A
    30. G. J. Maximo, M. C. Costa, A. J. A. Meirelles. Solid-liquid equilibrium of triolein with fatty alcohols. Brazilian Journal of Chemical Engineering 2013, 30 (1) , 33-43. https://doi.org/10.1590/S0104-66322013000100005

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect